Comparison of VEPM (model) and RSD (onroad) vehicle emission factors

VERSES

Vehicle Emissions Prediction Model (VEPM) Version 5.0 Development and User Information Report

> Prepared for: NZ Transport Agency and Auckland Council

by:

K.Jones, M.Graham, S.Elder and R.Raine Energy & Fuels Research Unit Department of Mechanical Engineering The University of Auckland

November 2011

Net Later

To verify that the VEPM is providing useful and realistic estimates of light duty vehicle emissions and

To increase stakeholder confidence in the emission data produced by VEPM.

Phase 1 – Data analysis

- Funded by Auckland Council
- Completed June 2013
- Three Tasks
 - 1. Calculate on-road emission factors for light duty vehicles from the RSD.
 - 2. Assess the day-to-day and from site-to-site variation in RSD emission factors.
 - 3. Compare the RSD and VEPM emission factors for light duty vehicles.

Phase 2 – Reporting

- Funded by NZTA
- 20 page report

December 9, 2013 Draft completed. Finalised by X mas

VEPM INPUTS

2012

Entry required in white cells. Entry optional in grey cells

Run Number

Elect Profile				
Fleet Profile				
			% of VKT	
	Weight		default values	optional user
	category	Fuel type	2006	entry
Cars	< 3.5 t	petrol	70.8%	
	< 3.5 t	diesel	8.1%	
	< 3.5 t	hybrid	0.1%	
LCV	< 3.5 t	petrol	4.2%	
	< 3.5 t	diesel	9.7%	
	< 3.5 t	hybrid	0.0%	
HCV	3.5 - 7.5 t	diesel	1.6%	
	7.5 - 12 t	diesel	0.8%	
	12 - 15 t	diesel	0.2%	
	15 - 20 t	diesel	0.3%	
	20 - 25 t	diesel	1.4%	
	25 - 30 t	diesel	1.2%	
	> 30 t	diesel	1.1%	
Buses 🗋	> 3.5 t	diesel	0.6%	

100%

Average Speeds				
cars	35	km/h		
LCV's	35	km/h		
HCV's/buses	35	km/h		
Note: valid HCV speed range for selected load and gradient is 6 - 86 km/h				

Run Model

Repeat a Previous Run

Optional Inputs					
	default values	optional user entry	options		
average trip length (km)	9.1		8 to 25		
ambient temperature °C	13.1		-10 to 30		
petrol fuel type - see worksheet	6		0 to 7		
diesel fuel type - see worksheet	5		0 to 5		
consider cold start?	yes		no		
consider degradation?	yes		no		
% of catalyst not working - old vehicles	15%		0-100%		
% of catalyst not working - new vehicles	0%		0-100%		
Heavy vehicles: gradient	0%		±2, 4, 6		
Heavy vehicles: load	50%		0, 100%		
Number of wheels					
Vehicle type	default values	optional upor			
Car	4	entry			
LCV	4				
HCV 3.5-7.5 t	6				
HCV 7.5-12 t	6				
HCV 12-15 t	8				
HCV 15-20 t	8				
HCV 20-25 t	8				
HCV 25-30 t	8				
HCV >30 t	8				
HCV >30 t Buses >3.5 t	8 6				

VEPM OUTPUTS

December 9, 2013

Site to site variability of RSD emission factors.

- Considerable variation of emission factors from site-to-site
- The HC emission factors exhibit the highest site-to-site variability.
- Lagoon Drive consistently had the lowest emission factors
- Universal Drive is always toward the high end of the measurements for all contaminants.
- The site-to-site variability of the emissions is most likely caused by:
 - the difference in vehicle fleet composition,
 - the age of the vehicles that are passing through the site

Day to Day variability of RSD emission factors.

Day to Day variability of RSD emission factors

- No significant day-to-day variation in the CO emission factors at any of the three sites.
- Significant day-to-day variation in the HC emission factors only at the Whangaparaoa Road site.
- Significant day-to-day variation in the NOx emission factors at the Lagoon Drive and Whangaparaoa Road sites.
- Significant day-to-day variation in the PM₁₀ emission factors at all three sites.
- The reasons for the observed day-to-day variability in emission factors are not immediately clear.

VEPM vs On-road Emission Facors

- VEPM (AC 2005 inventory)
 - Verses
- RSD emission factors (2006 monitoring programme)
 - Petrol cars
 - Petrol light commercial vehicles
 - Hybrid and Electric vehicles (none in 2005 RSD)
 - Diesel car vehicles
 - Diesel light commercial vehicles

VEPM vs On-road: Vehicle type

Figure 3: Comparison of fleet average RSD and VEPM CO emission factor.

Figure 4: Comparison of RSD and VEPM CO emission

Figure 4: Comparison of RSD and VEPM CO emission

Ratio VEPM/RSD	Colour
<0.50 or >2.0 (more than 100% diff)	Red
0.50-0.67 or 1.5-2.0 (between 50 and 100% diff)	Orange
0.67-1.5 (less than 50% diff)	Green

Summary of Results

	Petrol Car	Petrol LCV	Diesel Car	Diesel LCV
СО	1.7	1.6	1.5	2.4
нс	0.7	1.1	0.3	0.2
NO _x	1.0	1.4	0.6	0.5
PM ₁₀	8.2	21.0	0.5	0.7

5 Green 7 Orange 3 Red

To verify that the VEPM is providing useful and realistic estimates of light duty vehicle emissions and

To increase stakeholder confidence in the emission data produced by VEPM.

Recommendations for Future Work

- Put the findings of this study in context with VKT travelled by each vehicle class.
- Consider the variation of emission factors with speed. probably only practical only for petrol cars.
- Review implications of red cells (HC emission factors from diesel vehicles and on PM10 emission factors from petrol vehicles) which show relatively large differences between VEPM and RSD estimates.
- Evaluate validity of RSD PM10 emission factors given the limitations of open-path monitoring of particulate matter.
- Extend RSD emission factors to heavy duty diesel vehicles.
- Investigate the causes of and potential implications of day-to-day and site to site variation in RSD emissions factors.
- Plan future RSD monitoring programmes to fill knowledge gaps identified in this study

```
Re-run VEPM vs RSD for future years (e.g. 2011)
December 9, 2013
```


- Martin Unwin (NIWA) data analysis
- Auckland Council
 - Funding 2005 RSD monitoring
 - Funding Task 1 data analysis
- NIWA, ARC, NZTA, MoT use of the RSD database
- NZTA
 - Funding Task 2 Reporting
- Shanju Xie and Rob Hannaby Very helpful review comments

