AHB Alliance Auckland Harbour Bridge Maintenance Discharge Assessment of Environmental Effects

Auckland Harbour Bridge

ΛA

Quality Assurance Statement		
Project manager:	Alex Ingram, Auckland Harbour Bridge Alliance	
Prepared by:	Leon Keefer, Beca Ltd	
Reviewed by:	Blair Masefield, Beca Ltd, Bryce Julyan, Beca Ltd	
Approved for issue by:	Paul Glucina, New Zealand Transport Agency	

NO/-

Revision Schedule					
Rev. No	Date	Description	Prepared by	Reviewed by	Approved by
1	16/06/2014	First draft for client review	Leon Keefer	Blair Masefield, Bryce Julyan	
2	08/09/2014	Second draft for client review	Leon Keefer	Blair Masefield, , Bryce Julyan	
3	10/09/2014	Third draft for client review	Blair Masefield	Bryce Julyan	
4	09/10/2014	Final for lodgement	Leon Keefer	Blair Masefield, Bryce Julyan	Paul Glucina

Table of Contents

Å

1	Intro	oduction1-	-1
	1.1	Purpose of the Application1-	-1
	1.2	Project Context1-	-1
	1.3	Existing Consents1-	-2
	1.4	Summary of Resource Consents Required1-	-2
	1.5	Outline of this Report1-	-3
	1.6	Structure of Technical Reports1-	-3
2	Con	sideration of Alternatives2-	-4
	2.1	Summary of Considerations2-	-6
3	Exis	ting Environment3-	-7
	3.1	Bridge Description3-	-7
	3.2	Receiving Coastal Marine Environments3-	-7
	3.3	Receiving Land Environments	2
	3.4	Receiving Air Environment3-1	4
	3.5	Existing Consented Activities	4
	3.6	Existing Environmental Effects	7
	5.0	Existing Environmental Effects	.,
4		sons for Resource Consent	
4		-	21
4	Rea	sons for Resource Consent4-2	21 22
4	Rea 4.1	sons for Resource Consent4-2 Discharges to the Coastal Marine Area4-2	21 22 22
4	Rea 4.1 4.2	sons for Resource Consent4-2 Discharges to the Coastal Marine Area4-2 Discharges to Land4-2	21 22 22 22
4	Rea 4.1 4.2 4.3 4.4	sons for Resource Consent	21 22 22 22
-	Rea 4.1 4.2 4.3 4.4	sons for Resource Consent	21 22 22 23 24
-	Rea 4.1 4.2 4.3 4.4 Proj	sons for Resource Consent	21 22 22 23 24 25
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1	sons for Resource Consent	21 22 22 23 24 25 27
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2	sons for Resource Consent	21 22 22 23 24 25 27 27
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2 5.3	sons for Resource Consent	21 22 22 23 24 25 27 27 27
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2 5.3 5.4	sons for Resource Consent	21 22 23 24 25 27 27 27 29
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2 5.3 5.4 5.5	Sons for Resource Consent4-2Discharges to the Coastal Marine Area4-2Discharges to Land4-2Discharges to Air4-2Auckland Council District Plans4-2Dosed Adaptive Management Framework5-2Purpose of AMF5-2Key Contaminant Thresholds5-2Conditions5-2Operational Process5-2Monitoring Process5-2	21 22 23 24 25 27 27 29 30
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2 5.3 5.4 5.5 5.6	Sons for Resource Consent4-2Discharges to the Coastal Marine Area4-2Discharges to Land4-2Discharges to Air4-2Auckland Council District Plans4-2Dosed Adaptive Management Framework5-2Purpose of AMF5-2Key Contaminant Thresholds5-2Conditions5-2Operational Process5-2Monitoring Process5-2Reporting Process5-3	21 22 22 23 24 25 27 27 27 29 30
-	Rea 4.1 4.2 4.3 4.4 Prop 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	sons for Resource Consent.4-2Discharges to the Coastal Marine Area.4-2Discharges to Land4-2Discharges to Air4-2Auckland Council District Plans.4-2Aosed Adaptive Management Framework5-2Purpose of AMF.5-2Key Contaminant Thresholds5-2Operational Process5-2Monitoring Process5-2Reporting Process5-3Adaptation Process5-3	21 22 22 23 24 25 27 27 29 30 32

-lie

Table of Contents

	6.2	Marine Ecology6-34
	6.3	Land Discharge6-35
	6.4	Air Quality6-36
	6.5	Effects summary6-37
7	Stat	utory Framework7-38
	7.1	Part 2 – Purpose and Principles7-38
	7.2	Hauraki Gulf Marine Park Act 20007-40
	7.3	Land Transport Management Act 20037-41
	7.4 2004	Resource Management (National Environmental Standards for Air Quality) Regulations 7-41
	7.5	New Zealand Coastal Policy Statement 20107-41
	7.6	Auckland Regional Policy Statement 19997-44
	7.7	Auckland Regional Plan: Coastal
	7.8	Auckland Regional Plan: Air, Land, and Water7-47
	7.9	Proposed Auckland Unitary Plan7-49
8	Mar	a Whenua Consultation8-53
9	Prop	oosed Draft Conditions

Appendices

- Appendix A Adaptive Management Framework
- Appendix B Marine Ecology Assessment (Boffa Miskell, September 2014)
- Appendix C Discharges to Land Assessment of Effects (Opus, October 2014)
- Appendix D Air Quality Assessment (Air Matters Ltd, September 2014)
- Appendix E Washwater Sampling Report (Opus, September 2014)
- Appendix F Records of Iwi Consultation

Table of Contents

List of Acronyms

ACDP:NS	Auckland Council District Plan: Operative North Shore Section
ACDP:I	Auckland Council District Plan: Operative Isthmus Section
AHB	Auckland Harbour Bridge
AHBA	Auckland Harbour Bridge Alliance
AMF	Adaptive Management Framework
ANZECC	Australia and New Zealand Guidelines for Fresh and Marine Water Quality 2000
ARP:ALW	Auckland Regional Plan: Air, Land, and Water
ARP:C	Auckland Regional Plan: Coastal
CWH	Central Waitemata Harbour
CPA	Coastal Protection Areas
DoC	Department of Conservation
EMP	Environmental Management Plan
HGMPA	Hauraki Gulf Marine Park Act 2000
LTMA	Land Transport Management Act (2003)
NES:AQ	National Environmental Standard: Air Quality (2004)
NZCPS	New Zealand Coastal Policy Statement (2010)
PAUP	Proposed Auckland Unitary Plan (2013)
RMA	Resource Management Act 1991
RPS	Auckland Regional Policy Statement (1999)
SEA:M	Significant Ecological Areas – Marine

Z

1 Introduction

1.1 Purpose of the Application

The current consents regulating Auckland Harbour Bridge (AHB) maintenance discharges are prescriptive and inflexible. These consents require a containment structure to capture discharges from maintenance activities and the consents also limit the type of paints that can be used. They require 85% capture of the dry discharge resulting from maintenance activities (or 15% of discharges to occur), recognising that 100% capture of discharges is not possible or practicable. 100% containment of washwater discharges however is required.

This proposal seeks to maintain the current consented discharge levels and environmental outcomes, while improving flexibility of maintenance activities and enabling the potential reduction of discharge levels over the sought 25 year consent duration. The discharge amounts currently authorised form the basis of calculating thresholds for each key contaminant that is likely to cause adverse environmental effects. These are proposed as key contaminant thresholds that cannot be exceeded in an annual period (or the relevant averaging period for air quality thresholds).

This application proposes an Adaptive Management Framework (AMF) that provides flexibility to the maintenance operations, methodologies and the types of products that can be used for the maintenance of the AHB, on the basis that the annual discharge thresholds are not exceeded. This approach will enable maintenance behaviour to reduce the annual discharges further below the thresholds.

1.2 Project Context

The AHB is the most strategically important bridge in New Zealand, providing the primary transportation link between Northland and the Auckland Isthmus. The bridge also serves as a conduit for regional water supply, electricity transmission, natural gas, and telecommunications networks. As such, the bridge forms a vital link that enables the sustainability of the Regional and National economy.

As the AHB is part of the State Highway network, the New Zealand Transport Agency (NZ Transport Agency) has a statutory responsibility under the Land Transport Management Act 2003 (LTMA) to manage and operate the AHB so that it is maintained to operate in a safe and structurally sound condition. To undertake this responsibility, the Auckland Harbour Bridge Alliance (AHBA) was formed, comprising NZ Transport Agency staff and various contractors, to plan and undertake maintenance works.

The AHB is a predominately steel structure in an exposed location spanning the Waitemata Harbour, and is vulnerable to continuous exposure to environmental elements. Its approximately 125,000m² of surface area is exposed to wind, UV radiation, and corrosion from rainwater and coastal salt spray. Constant maintenance of the bridge is required to maintain its safe and efficient operation, its structural integrity, and its aesthetic value as an iconic structure and New Zealand landmark.

AGENC

Maintenance has typically been undertaken at a rate of approximately 10% of its surface area annually.

Daily maintenance activities on the bridge typically involve surface preparation and repairs, including water blasting, wet/dry abrasive blasting, application of coatings (primers, rust inhibitors, and paints), and minor strengthening works. Bridge maintenance activities have historically resulted in discharges of contaminants to air, land, and coastal water; such activities were consented in accordance with the Resource Management Act 1991 (RMA) first in 2001 and again in 2011.

1.3 Existing Consents

The current resource consents 38519, 38835, and 38836 granted in 2011 authorise three types of discharges:

- 38519: Discharge of contaminants into air;
- 38835: Discharge (other) of washwater, wastewater, and dry wastes to land; and
- 38836: Discharge of contaminants to the Coastal Marine Area.

These activities are regulated by consent conditions stipulating the progressive phasing of containment to 85% of dry discharges, and 100% of wastewater discharges to air, water and land by 2021. This applied to the majority (approximately 96%) of the bridge surface areas but excluded the lower overarch which was excluded from containment due to restricted access. The basis for full containment as a method was driven largely by international best practice.

Since the granting of these resource consents, the NZ Transport Agency has further investigated the possibilities of compliance with 'full containment' and has subsequently determined that this is not the Best Practicable Option. This is discussed further in 2.0 below.

The consented mass or concentrations for each key containment discharge authorised by the 15% threshold is quantified in the supporting technical reports, and set out in Section 3.5.1 of the AEE in the key contaminants table (Table 3.1). This discharge threshold and the level of effect generated by these discharges constitute part of the existing environment that is authorised by these existing consents 38519, 38835, and 38836.

Additional adverse effects of the proposal are therefore limited to effects that may arise as a result of undertaking this consented level of discharge without a containment structure in place.

1.4 Summary of Resource Consents Required

This AEE supports an application for resource consents to authorise the same or improved level of discharge effects resulting from bridge maintenance as authorised under the prescriptive 'containment' consents. However, it seeks to remove the prescriptive requirement to achieve this outcome via a physical containment structure. This same level of effect can be achieved by remaining within set discharge thresholds for key contaminants.

The application proposes that these thresholds can be measured and achieved via the proposed AMF (Appendix A), Environmental Management Plan (EMP) and draft conditions (section 9 below).

Resource consents are being sought for the following activities under section 15 of the Resource Management Act 1991:

- Discharge of contaminants to the Coastal Marine Area; and
- Discharge of contaminants into Air;

1.5 Outline of this Report

This AEE has been prepared in accordance with the RMA, particularly the matters set out in the Fourth Schedule. The AEE sets out:

- A consideration of alternatives to the proposal;
- A description of the existing receiving environment;
- Reasons for this consent application;
- The proposed adaptive management framework (AMF);
- An assessment of the actual and potential effects of the proposal;
- The statutory framework within which this application has been prepared;
- An assessment of the proposal against the relevant matters of the RMA;
- Proposed conditions; and
- Discussion on consultation undertaken to date.

1.6 Structure of Technical Reports

The technical reports appended to this AEE have been prepared to provide an understanding of the level of effects from each of the three types of discharges that result from bridge maintenance activities (marine, land, and air). These reports have been structured to set out the existing environment which includes the level of discharge permitted under the existing consent and to assess the level of effects generated by those discharges. These levels are set as annual thresholds for key contaminant discharges.

The reports describe the AMF and how this framework enables annual discharges to remain within or below the key contaminant discharge thresholds and / or identifies further mitigation necessary to meet the thresholds. The technical reports include a case study regarding a trialled product called 'Termarust'. The case studies were undertaken iteratively in conjunction with the development of the AMF. The purpose of the case studies is to show how the adaptive processes within the AMF will work in practice.

Outputs of the case studies include the technical sheets that are attached to the AMF (Appendix A). These sheets set out the methodology and processes that will be followed to understand and determine whether the level of effects of a new product or method will be within the effects envelope of the granted consent, and whether discharges as a result of the new method/product can be maintained within the proposed key contaminant discharge thresholds.

2 Consideration of Alternatives

Current consents 38519, 38835, and 38836 granted in 2011 require containment as the prescribed method to achieve environmental outcomes associated with maintenance discharges from the AHB. International best practice examples, such as maintenance on the Sydney Harbour Bridge, heavily informed the original decision to implement containment on the AHB.

Since the granting of the above consents, the Transport Agency has undertaken feasibility investigations and recently completed a Containment Feasibility Summary Report (August 2014) to investigate the actions necessary to move containment from a concept for resource consenting purposes to a physical structure for maintenance and operational purposes. These investigations conclude a number of difficulties with the practical implementation of containment on a structure of the scale and form of the AHB and in particular in the exposed location. The feasibility report concludes that a capital cost of \$66 million would be required to establish a containment structure.

Full containment is often implemented in order to avoid the discharge of lead into coastal environments from large-scale works. In these instances, the risks and likelihood of lead contaminants discharging are relatively high due to discharge masses and receiving environments. The potential discharge of lead from the AHB is especially limited in mass due to its presence only on Span 7 (refer Figure 3.1 below).

Additionally, new painting methods and products are available which reduce the need for abrasive blasting, effectively avoiding discharge of lead without any further mitigation. Targeted repainting and spot repairs have also become a more standard method of maintenance, reducing both the potential discharge mass and the efficiency of a full containment system.

The project team for this consenting process has considered reasonable alternatives to containment to inform the consent application and satisfy RMA requirements to consider alternatives for discharges that contravene section 15 of the RMA. Section 105 of the RMA states that:

- If an application is for a discharge permit or coastal permit to do something that would contravene section 15 or section 15B, the consent authority must, in addition to the matters in section 104(1), have regard to—
- (c) any possible alternative methods of discharge, including discharge into any other receiving environment.

Section 107 of the RMA provides further guidance on maintenance discharge applications:

- 2) A consent authority may grant a discharge permit or a coastal permit to do something that would otherwise contravene section 15 or section 15A that may allow any of the effects described in subsection (1) if it is satisfied—
- (c) that the discharge is associated with necessary maintenance work-

and that it is consistent with the purpose of this Act to do so.

The project team have considered three broad alternatives in preparing this consent application for discharges under section 15 of the RMA:

- Option 1 Relax the discharge restrictions;
- Option 2 Containment; and
- Option 3 Adaptive Management Framework.

These options are discussed below:

Option 1 (Relax discharge restrictions):

This option involves a relaxation of the consents to enable continued discharges at historic rates or at a lesser degree of restriction allowing greater discharges of contaminants. This option was discounted at the outset, as the Transport Agency is committed to environmental best practice and improving environmental outcomes.

Option 2 (Containment):

This option involves pursuing a containment structure and any associated consents.

The feasibility report identified a range of constraints in implementing a discharge containment system, providing strong indications that physical containment is not the best practicable option for numerous activities and areas on the AHB.

The main constraint is the insufficient structural capacity of the truss bridge, in some areas, to support the gravity and wind loads of a containment system. The issue of sufficient clearance under the bridge for water traffic would need to be addressed. Furthermore, while not considered in detail, occupation consents would be required for the containment structure and the visual effects of such a structure would likely be contentious and potentially difficult to consent.

The feasibility report also determined indicative costs of implementing the containment system. The AHB was originally designed for a 4-lane road deck, and has been subsequently upgraded to include two additional lanes on each side and cables for telecommunications and power – the former requiring strengthening of the bridge structure.

The installation and infrastructure required to undertake containment was estimated at \$66 million over ten years including strengthening. This compares to a current annual coatings budget of less than \$1 Million.

Option 3 (AMF):

This option involves formalising the level of discharge authorised by the containment consents into thresholds and then managing the maintenance activities so those thresholds are not exceeded.

This approach considers the use of contaminant thresholds and an AMF to enable the application of Best Practicable Options for mitigating contaminant discharges. This envisages an adaptive process that can annually operate within existing consented discharge levels and incorporate emerging methods and products, potentially with lesser environmental risks and improved operational efficiency.

This provides flexibility, which the existing consent does not provide for due to its prescriptive nature, and recognises that there are a range of maintenance methods and products which generate different effects and will be more appropriate in certain locations and situations than in others. These methods and products are discussed further in Section 5: The Adaptive Management Framework (AMF) and Section 6: Assessment of Environmental Effects (AEE) of this report. The principle of this approach is that the outcomes will be no worse, potentially better, and more practicable. This drives improvement in practice rather than just enforcing controls on methods.

2.1 Summary of Considerations

In summary, the NZ Transport Agency considered Option 2 and Option 3 as potential methods for environmental management for bridge maintenance. Option 1, which would seek to relax the discharge consent restrictions, was considered to be contrary to the environmental principles of the Transport Agency. As such, it was discounted without further analysis.

The concept of Option 2 (Containment) was considered to be the preferred option during the development of the existing consent applications. Through the analysis in the feasibility studies, it was shown that while this option was not infeasible, it was highly impracticable due to the physical design, operation, and maintenance that the containment structures would require. It would be very complex, costly, and would require significant structural strengthening. Potentially it could create adverse visual effects.

Option 3 (AMF) was selected as the preferred option and is being pursued as the best practicable option (BPO) for the reasons set out above, particularly when compared to option 2 and the cost implication of this option. Option 3 enables the Transport Agency to achieve the same environmental outcomes as option 2 using a range of mitigation and control methods in a far more cost effective way. This option also drives improvements in operational behaviour rather than relying on a prescriptive method (containment).

3 Existing Environment

3.1 Bridge Description

The AHB spans the Waitemata Harbour between Stokes Point (northern abutment) and Point Erin (southern abutment). The bridge carries an annual average of approximately 160,000 vehicles per day, and is the primary transport link between Auckland and Northland, providing a vital route for both commuter traffic and freight. In addition to its economic significance, it is an iconic structure in the Auckland skyline.

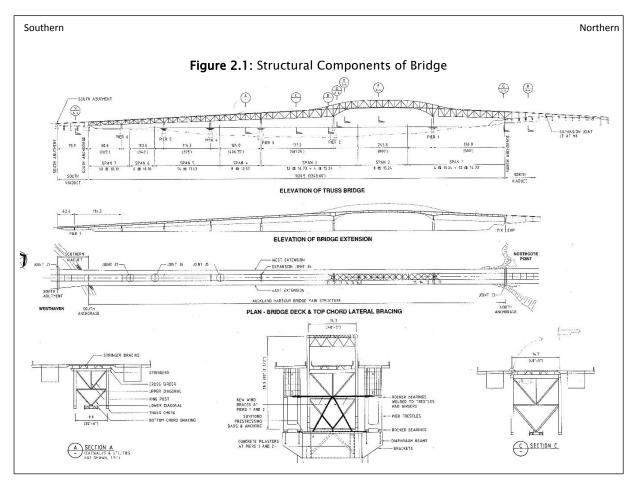


Figure 3.1. Outline of the Auckland Harbour Bridge, showing the abutments and piers.

3.2 Receiving Coastal Marine Environments

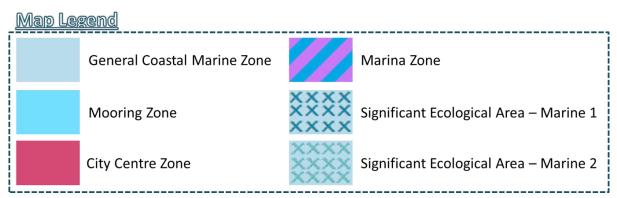
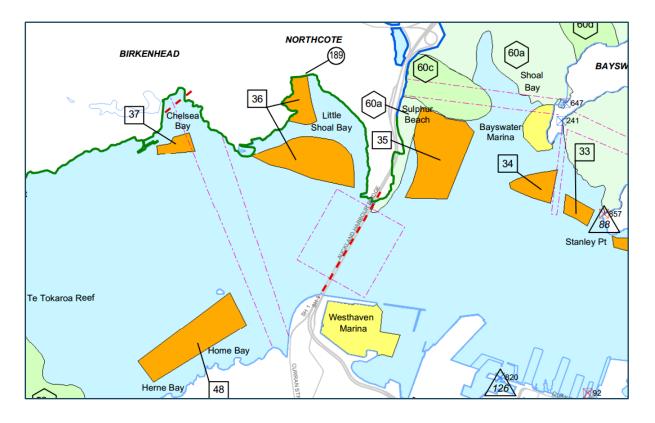
The AHB spans approximately 1km of the Waitemata Harbour, which is the primary receiving water environment for discharges from the AHB. As described in the Marine Ecology Assessment (MEA) in Appendix B, the Waitemata Harbour is located on the east coast of the Auckland Isthmus in the Hauraki Gulf and is described as a drowned river valley, extending from Riverhead in the north-west to the Tamaki River in the east. It is the largest estuary on the east coast of the Auckland Region at 80km².

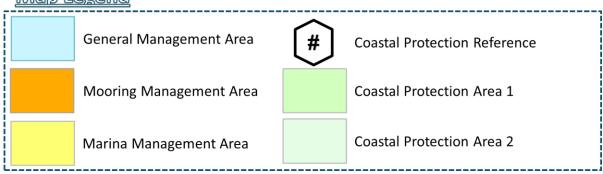
The AHB and its surrounding environment are located within the Central Waitemata Harbour (CWH), which extends from the harbour mouth to Catalina Bay, Hobsonville. The waters beneath the bridge are subject to marine traffic from a range of users, including anglers, recreational craft, event participants, and ferry services.

In addition to the waters directly beneath the bridge, the CWH contains a number of smaller embayments and landforms. Little Shoal Bay, Shoal Bay/Ngataringa Bay, Te Tokaroa/Meola Reef, and Westhaven Marina are subject to tidal influence from waters within the harbour.

3.2.1 Planning Maps

The Coastal Marine Area is regulated through the Auckland Regional Plan: Coastal (ARP:C) and the Proposed Auckland Unitary Plan (PAUP). Figures 3.2 and 3.3 show the zone/overlay areas under the PAUP and the ARP:C. A description of each is provided below.


Figure 3.2. Excerpt from Auckland Unitary Plan GIS Viewer of the Auckland Harbour Bridge and surrounding environment.

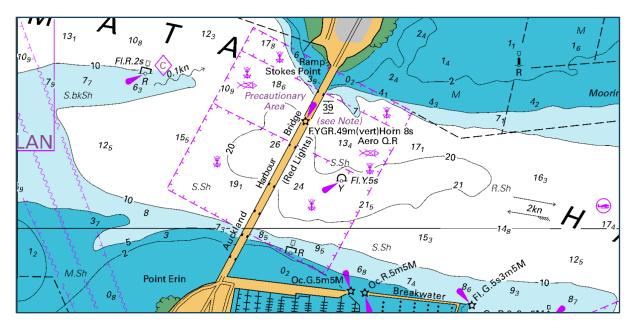
7 AGENCY

Existing Environment

<u>Map Legend</u>

Figure 3.3. Excerpt from ARP:C Map 29, Series 1.

3.2.2 Primary Coastal Marine Receiving Environments


The MEA has identified the two primary coastal marine receiving environments as the benthic environments in the CWH directly beneath the AHB and that of Shoal Bay/Ngataringa Bay.

3.2.2.1 Central Waitemata Harbour

The harbour in the vicinity of the bridge is constricted due to the two natural headlands of Point Erin and Stokes Point. The harbour in this location has a channel that is (at its deepest) approximately 26m in depth. The MEA notes that its benthic habitat is likely to comprise relatively coarse grained sediment, low to moderate species diversity, and likely contains both sensitive and tolerant exotic and indigenous species.

Stormwater catchments that empty to the CWH are laden with sediment, polycyclic aromatic hydrocarbons, and heavy metals from land uses and the transport network. The MEA notes that the total annual discharge of zinc to the CWH was estimated to be 18,600 kg.

3.2.2.2 Shoal Bay and Ngataringa Bay

Shoal Bay and Ngataringa Bay are located on the eastern shore of Stokes Point (see Figure 3.5 overleaf). The combined area is approximately 6,465,000 m² and is mainly surrounded by residential and transportation land uses. The Northern Motorway stretches from the northern abutment of the AHB for approximately 3km along Shoal Bay, and Esmonde Road for another 1km.

The majority of the embayment area is scheduled as Coastal Protection Areas (CPA) under the ARP:C and Significant Ecological Areas – Marine (SEA:M) under the PAUP (refer Figures 3.2 and 3.3 above for the locations and status). These areas are considered under these plans to be significant areas for wading birds. The PAUP also identifies areas within the northern portion of the bay as Outstanding Natural Features.

The MEA notes that the bays are largely intertidal and comprise estuarine muds, sandflats, and sand/shell banks. The CPAs/SEAs are concentrated around the extensive areas of mangrove and saltmarsh vegetation, which provide habitat and feeding areas for coastal birds.

Existing Environment

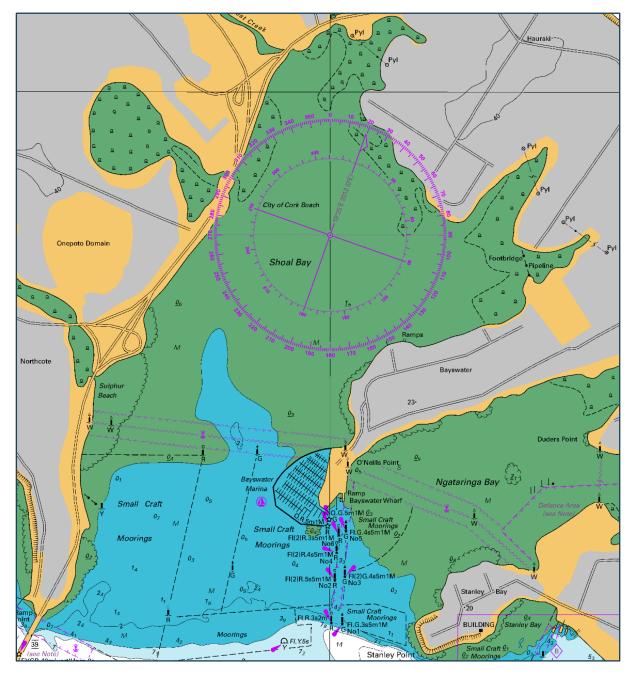
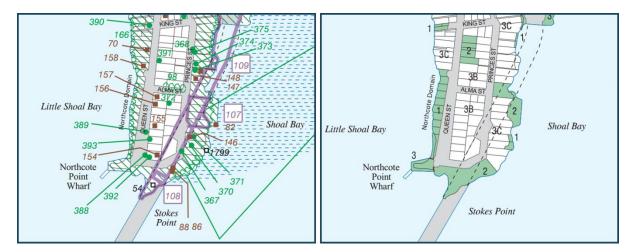


Figure 3.5. Excerpt of the nautical chart for Shoal Bay and Ngataringa Bay, showing bed depths.


3.2.3 Secondary Coastal Marine Receiving Environments

The coastal marine environments of Little Shoal Bay and Westhaven Marina are adjacent to the AHB, but are not considered to be primary receivers of environmental effects resulting from the works. Sediment and contaminant accumulation primarily occurs within the CWH and Shoal Bay/Ngataringa Bay, with the Hauraki Gulf as the ultimate receiving environment.

3.3 Receiving Land Environments

3.3.1 Stokes Point

The northern abutment of the AHB is located at Stokes Point, a peninsula between Little Shoal Bay and Shoal Bay primarily used for residential purposes. The steel structure of the AHB extends over Princes Street, directly adjacent to a number of residences. The southernmost extent of Stokes Point is a reserve with cultural and landscape values, as discussed below.

3.3.1.1 Social Uses

The land use zones in the vicinity of the bridge include the Stokes Point/Northcote Reserve, which is a 'Recreation 2' Zone under the Auckland Council District Plan: Operative North Shore Section (ACDP:NS) and a 'Public Open Space – Informal Recreation Zone' under the PAUP. A small beach area is located on the western shore of the reserve.

There are a number of residences on Queen, Alma and Princes Streets that are directly adjacent to or in close proximity to the AHB at the northern abutment. 'The Wharf' function and conference facility is located approximately 70m to the west of the northern abutment.

3.3.1.2 Culture and Heritage

Stokes Point is identified as a pa site, and there is known archaeological evidence within Stokes Point/Northcote Reserve. This is identified in the ACDP:NS (Archaeological Site #54) and in the PAUP as a Site/Place of Value to Mana Whenua (ID 1515).

In addition to the cultural values in Stokes Point, this area was developed pre-1940 for residential use. Many of the houses on the peninsula remain in their original form, and some are scheduled historical buildings under the ACDP:NS and PAUP.

3.3.1.3 Landscape and Vegetation

The coastline along Stokes Point is a 'Regionally Significant Coastal Landscape' under the ARP:C, with native tree and shrub vegetation that is classified as a 'Significant Ecological Area' under the PAUP. Ten scheduled groups of notable trees are also within the immediate vicinity of the AHB.

3.3.2 Point Erin

The southern abutment of the AHB is located at Point Erin, a peninsula between the Westhaven Marina and the Waitemata Harbour. The steel structure of the AHB extends over a small portion of the Point Erin reclamation, adjacent to the Ponsonby Cruising Club. Curran Street runs beneath the bridge at this point.

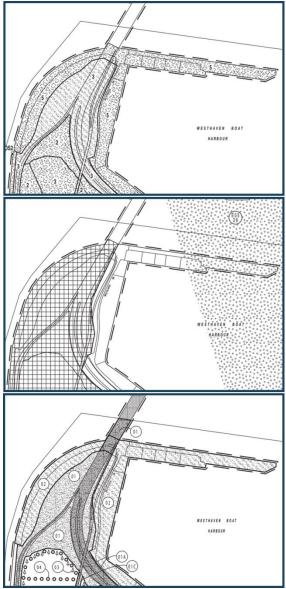


Figure 3.7. Excerpts from ACDP:I Maps A07.

3.3.2.1 Social Uses

Land uses within the vicinity of the southern abutment include Open Space (OS) 2, 3, and 5 Zones under the ACDP:I and City Centre and Public Open Space Zones under the PAUP. Immediately to the east of the southern abutment are activities associated with the Westhaven Marina, including boat clubs, a café, and offices utilised by marine industry businesses. The Point Erin Pools are located some 300m to the south. The seawall along the road is a popular spot for recreational anglers. The site office and access to the 'Auckland Bridge Climb and AJ Hackett Bungy' is also located here. The Auckland Bridge Bungy operates from beneath the road deck and the Bridge Climb traverses the entire structure.

3.3.2.2 Culture and Heritage

Point Erin has been significantly modified as part of the historical reclamations that occurred in part to construct the AHB and Westhaven Marina. There are no identified cultural or historic heritage items identified within the immediate vicinity of the AHB's southern abutment.

3.3.2.3 Landscape and Vegetation

Point Erin's coastline is heavily modified, with Curran Street and Westhaven Drive running its

length, bordered by a rock and concrete seawall. The only vegetation located within the vicinity of the southern abutment consists of screening vegetation directly adjacent to the AHB. There are no scheduled notable trees.

3.4 Receiving Air Environment

The receiving air environment is a mixture of urban and coastal air quality management areas, as defined under the Auckland Regional Plan: Air, Land and Water (ARP:ALW) and the PAUP. These areas are primarily impacted by vehicle emissions and the surrounding urban activities. Potential receivers also include land users, as described in Section 3.3 above.

The AHB is subject to prevailing south-westerly winds.

3.5 Existing Consented Activities

The existing environment includes the discharges from maintenance activities on the AHB (in accordance with an Environmental Management Plan) authorised by consents 38519, 38835, and 38836. The consents require progressive staging (over three stages) toward full containment as the prescribed method for managing maintenance discharge effects on the receiving environment. These stages are defined in the consents as:

- a) Pre-Containment Phase: Year 0 to 3, 30 August 2011 to 30 August 2014. 'Pre-Containment' means the maintenance works that will be carried out prior to the deployment of the proposed containment systems (including any structures);
- b) Partial Containment Phase: Year 3 to Year 10, Partial Containment to be in place by 30 August 2014. 'Partial Containment' shall be considered to be a method which controls and collects:
 - 85% of the mass of all dry discharges and spray paint generated during maintenance works; and
 - 100% of the mass of washwater used for treatment before discharge other than in Zone B, the 'Lower Overarch' (as specified on 'Figure 1 Proposed Zones for Encapsulation') which has 100% discharge of all contaminants;

and shall be deployed in the areas north of Pier 1 and south of Pier 5;

- c) Full Containment Phase: Year 10+, Full Containment to be in place by 30 August 2021. 'Full Containment' shall be considered to be a method which controls and collects:
 - 85% of the mass of all dry discharges and spray paint generated during maintenance works; and
 - 100% of the mass of washwater used for treatment before discharge other than in Zone B, the 'Lower Overarch' (as specified on 'Figure 1 Proposed Zones for Encapsulation') which has 100% discharge of all contaminants;

and shall be deployed in the area defined as 'partial containment' and the area between Pier 1 and Pier 5 (over the CMA).

3.5.1 Key Contaminants

The key contaminants discharged from AHB maintenance activities arise from overspray of applied surface coatings, abrasive agents, historical coatings, and washwater. Under the existing consents, during pre-containment, the mass of contaminants discharged annually to the environment as a result of the maintenance activities totals approximately 95.5 tonnes¹. This is mostly comprised of abrasive agent garnet sand (approximately 92 tonnes), but also includes zinc and other 'paint' contaminants (approximately 3.5 tonnes).

Under 'full-containment', 85% of particulate mass discharges are required to be contained (except for the lower overarch), and up to 15% of the 'pre-containment' mass is authorised to discharge to the air, land, and CMA under permits 38519, 38835, and 38836.

Therefore the existing consents allow a certain threshold of contaminant discharges and associated effects on the receiving environment. The level of discharge provided for by these existing consents has been calculated based on the assumed total uncontained discharges from maintenance activities which informed the applications for the existing consents. These levels are the recommended thresholds for discharges identified in Table 3.1 below. Additional air thresholds have been determined using international and New Zealand guidelines and standards.

The application, assessments and the officer's recommendation that informed the decision to grant the existing consents concluded that across all stages of the consent (pre, partial and full containment) there were less than minor adverse effects on the receiving environment and that there were no adversely affected parties. This same outcome can be achieved through this proposal by setting and not exceeding the thresholds in Table 3.1 below.

Contaminant	Source	Reasons for Inclusion	Recommended Thresholds / Guidelines
PM ₁₀ / Total Suspended Particulates	Released during dry abrasive blasting.	PM10 is a contaminant of concern for Auckland Council and regulated through the NES:AQ.	PM10 total: 31 kg/annum (2011 consent baseline for abrasive blasting) PM10 (acute - 24hr): 50μg/m ³ (MfE) TSP (acute - 24hr): 80μg/m ³ (MfE)
Garnet Sand / Dust	Released during dry abrasive blasting.	Non-toxic, but used in large volumes during AHB surface preparation.	Coastal: 14,679 kg/annum (2011 consent baseline)
Zinc	Present in bridge coatings. Released as particulate during dry abrasive blasting or as spray paint overspray (primer and mid-coat).	Contaminant of concern for Auckland Council and the Waitemata Harbour.	Air (acute 1hr): 20μg/m ³ (TCEQ ESL) Coastal: 223 kg/annum (2011 consent baseline)
Lead	Historic coating layers (Span 7). Released as	Only present in small quantities but known to	Air (acute 0.5hr): 1.5µg/m ³ (Ontario Ministry for the Environment)

Table 3.1. Key contaminants discharged as a result of AHB maintenance activities.

¹ Based on calculations used for the existing consents to determine the historic discharge volumes based on repainting 10% of the bridge per year.

Existing Environment

Contaminant	Source	Reasons for Inclusion	Recommended Thresholds / Guidelines
	particulate during dry abrasive blasting.	be toxic to humans. Air quality sampling has indicated lead is present during dry abrasive blasting.	
Chromium	Historic coating layers across bridge. Released as particulate during dry abrasive blasting.	Only present in small quantities but known to be toxic to humans. Air quality sampling has indicated chromium is present during dry abrasive blasting.	Air (acute 1hr): 3.6µg/m ³ (TCEQ ESL)
Iron	Present in bridge coatings. Released as particulate during dry abrasive blasting or as spray paint overspray (top coat).	Air quality sampling has indicated iron is present during dry abrasive blasting. Included due to potential human health effects.	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Volatile Organic Compounds (VOCs)	Released during spray painting.	VOCs are a contaminant of concern to Auckland Council.	Xylene: Air (odour 1hr): 350µg/m ³ (TCEQ ESL) Toluene: Air (odour 1hr): 640µg/m ³ (TCEQ ESL) Naptha: Air (odour 1hr): 3500µg/m ³ (TCEQ ESL) Ethylbenzene; Air (odour 1hr): 740µg/m ³ (TCEQ ESL) Methyl Isobutyl Ketone; Air (odour 1hr): 820µg/m ³ (TCEQ ESL)
Diisocyanates	Released during spray painting.	Contaminant of concern to Auckland Council.	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Paint	Released as overspray during spray painting and as paint flakes during abrasive blasting.	Not a key contaminant, but used as a 'catch-all' for any constituents not considered as separate 'key contaminants'.	Coastal: 646kg/annum (2011 consent baseline)

It is worth noting that air discharges are not calculated by a mass. This is because it is the concentration of air discharges that can result in an adverse effect on human health and nuisance (dust and odour). For this reason there are no concentrations referenced in the material supporting the existing consents from which to calculate a 15% discharge threshold in the same way that there is a mass discharge for particulates and paint.

The application and decision for the existing consents did however conclude that as a result of the containment method and consent conditions effect on the receiving environment would be less than minor and there would be no adversely affected parties. The above thresholds relevant to air discharges have been proposed to achieve the same or better outcomes.

3.6 Existing Environmental Effects

In assessing the effects of the proposal, it is necessary to establish the level of effects on the receiving environment that result from the discharges authorised by the existing consents. The assessment can then use the existing environment and current level of effects to understand the change in effects as a result of the proposal. This then informs methods to avoid, remedy and/or mitigate additional effects. Discharges to the coastal, land and air receiving environments under the existing consents have been assessed in the supporting technical reports (Appendix B, C, D and E) to enable an understanding of the effects of the maintenance discharges that are authorised by the current consents.

This section summarises the effects potentially or actually authorised to occur based on the assessments from the supporting technical reports.

3.6.1 Coastal Marine Ecology

The MEA undertaken by Boffa Miskell describes the primary potential effects of maintenance discharges from the AHB on the marine ecological values of the Waitemata Harbour as being the smothering of the benthic environment caused by the discharge of garnet sand, and toxicity of zinc to, and any bioaccumulation within, benthic organisms.

As part of the MEA, an 'effects matrix' was used to determine the magnitude of an effect based on the ecological or conservation values of the receiving environment, as well as the characteristics of the existing discharge. The two predominant receiving environments are the CWH and Shoal Bay/Ngataringa Bay. The CWH has been assessed as having moderate ecological and conservation value and Shoal Bay/Ngataringa Bay has been assessed has having moderate to high ecological and conservation value.

3.6.1.1 Particulate

Garnet sand is typically used as an abrasive agent used in dry abrasive blasting. Based on previous studies undertaken for the existing resource consent applications, the uncontained annual deposition of 62,500 kg of garnet sand to the CMA covered an area directly beneath the AHB of about 12,000m² at an average estimated depth of 2.5mm, and an additional adjacent area of 480,000m² at a depth of 0.2mm.

As the characteristics of the abrasive agent currently used has not changed, the MEA has estimated that allowable garnet sand discharges of 14,679kg during full containment will cover the 12,000m² area beneath the AHB at a depth of 0.6mm, and the 480,000m² area adjacent to the AHB at a depth of 0.09mm. Over time some sand will be redistributed within the benthic environment, resulting in the spreading of sand in thinner layers over a wider area.

The MEA notes that benthic marine invertebrate communities can be adversely affected by deposition to a depth of 3.0mm or greater. Given that the estimated depth of garnet deposition in the benthic habitats is predicted to be up to 0.6mm, and largely at depths closer to 0.09mm, it is concluded that the magnitude of the effect of the current consented discharge is negligible and the significance of effect of the current levels of discharge is very low.

3.6.1.2 Zinc

Auckland Council has identified zinc as a contaminant of concern for the Waitemata Harbour and its embayments.

Currently, an estimated total of 18,623 kg of zinc enters the CWH annually from all sources, based on Council's stormwater discharge contaminant modelling. Maintenance of the AHB results in the discharge of zinc to the coastal marine environment, and the current consents (containment) authorise a residual discharge to the CWH of 224 kg per annum, or 1.2% of the modelled total annual zinc load to the CWH.

The MEA has assumed that the zinc currently discharged to the harbour from AHB maintenance is discharged equally to the northern and southern sections of the AHB.For discharges from the southern half of the bridge, modelling indicates that 95% of sediment and contaminants discharge to the wider Hauraki Gulf, and 1% discharges to Shoal Bay. For discharges from the northern half of the bridge, modelling indicates that 67% of sediment and contaminants discharge to the wider Hauraki Gulf, and 24% are retained within Shoal Bay. In total, this roughly equates to annual zinc discharges of 181.4 kg to the CWH/Hauraki Gulf and 27.9kg to Shoal Bay.

Contaminant accumulation occurs within surface sediment layers, which are often referred to as the top 2-3 cm. Based on the area of Shoal Bay/Ngataringa Bay, an estimated density of surface sediment (2,000-2,500 kg/m³), and the annual discharge mass of zinc, the concentration of zinc within Shoal Bay can be estimated as 0.09 – 1.0mg/kg. The MEA assesses the accumulation of zinc at 1mg/kg of sediment per year resulting in low to very low effects on marine ecological values.

3.6.1.3 Washwater

The existing coastal permit requires that 100% of washwater discharges be contained (except for the lower overarch). Washwater contains a range of the key contaminants that are discharged from water blasting and also other contaminants, including copper and lead that may be discharged as a result of dislodging contaminants that have settled on the bridge structure from vehicles on the bridge (although this is difficult to confirm contaminant origin).

Under the current consents, adverse environmental effects as a result of discharges from washwater are significantly minimised due to the requirement to contain 100% of the washwater (except for the lower overarch, which represents approximately 4% of the total surface area of the bridge).

3.6.2 Soils

Total Bridge Services (Opus) has prepared an assessment of discharges to land (Appendix C). AHB maintenance works over land at Stokes Point and Point Erin involves some potential discharge to land immediately adjacent to the bridge. The current consent authorises the discharge to land of up to 15% of abrasive blasting and paint overspray to occur during the containment phase. The EMP that is currently in operation and has been approved by Auckland Council requires that discharges to land be avoided as far as practicable (during the pre-containment phase). The discharge of contaminants to land also potentially arises from washwater and wet abrasive blasting discharges. These discharges are currently contained and disposed of offsite in compliance with the existing consents requiring 100% of washwater to be contained.

In the containment phase (partial and full), 15% of contaminants (excluding those from washwater/wet abrasive blasting) are permitted to be discharged to land under the existing consents. This was concluded in the officer's report to result in less than minor effects.

3.6.3 Air Quality

The Air Discharge Assessment (ADA) of discharges to air prepared by Air Matters (Appendix D) includes the identification and description of the effects arising from discharges to air in order to determine the existing consented effects and determine the appropriate effect thresholds for air discharges where a threshold did not already exist under the existing consents. The report identifies three potential air quality effects that could arise as a result of the level of contaminants discharged from maintenance works: human toxicity, odour and nuisance effects.

The report describes in detail the constituents of the air discharges that will occur as a result of maintenance activities. These include particulate matter (TSP, PM₁₀ and PM_{2.5}), metals (Cr, Fe, Pb, and Zn), Volatile Organic Compounds (VOCs), and diisocyanates.

While the PM_{10} annual mass thresholds have been calculated based on the existing consents for the containment phase, calculating the mass discharge thresholds permitted for the remaining key contaminants in the pre-containment and containment phases is more complex. For the pre-containment phase, specific conditions (30 – 34) were imposed under the air discharge permit 38519.

These conditions regulate nuisance and odour effect on sensitive receivers and restrict the maintenance works at each end of the bridge. In the containment phase these conditions do not apply and the containment structure is assumed to achieve the same environmental outcome (less than minor effects and avoidance of adversely affected parties). The consented mass of air discharges can be assumed to form a part of mass discharges calculated to discharge to the coast for garnet sand (14.6 tonnes) and zinc and paint (869 kg) and the 15% discharge to land that has not been specifically calculated.

Because the existing consents were applied for and granted on the basis of theoretical data, monitoring was undertaken to validate the assumptions and to verify that the works in the precontainment phase could comply with conditions 30-34. Conditions included restrictions on the use of particular methods and products during periods of high wind speed and while wind was blowing in certain directions, plus avoiding adverse discharges beyond the boundary of the site and not giving rise to visible emissions. Data was collected during maintenance monitoring from locations as close as possible to the source, and then at stepped locations further downwind.

The results indicate that with one additional wind direction control, the discharges generated by maintenance carried out in the pre-containment phase would meet the existing consent conditions when managed in accordance with the EMP. This therefore achieves the intended consent outcome of causing less than minor adverse effects and not adversely affecting adjacent parties.

4 Reasons for Resource Consent

This section outlines the reasons for which resource consent is sought. The proposed AMF requires resource consent under the Section 15 of the RMA in accordance with the following sub-clauses:

15 – Discharge of contaminants into environment

- (1) No person may discharge any
 - (a) Contaminant or water into water; or
 - (b) Contaminant onto or into land in circumstances which may result in that contaminant entering water; or
 - (c) Contaminant from any industrial or trade premises into air;

unless the discharge is expressly allowed by a national environmental standard or other regulations, a rule in a regional plan as well as a rule in a proposed regional plan for the same region (if there is one), or a resource consent.

- (2) No person may discharge a contaminant into the air, or into or onto land, from a place or any other source, whether moveable or not, in a manner that contravenes a national environmental standard unless the discharge –
 - (a) is expressly allowed by other regulations; or
 - (b) is expressly allowed by a resource consent; or
 - (c) is an activity allowed by section 20A.
- (2A)No person may discharge a contaminant into the air, or into or onto land, from a place or any other source, whether moveable or not, in a manner that contravenes a regional rule unless the discharge –
 - (a) is expressly allowed by other regulations; or
 - (b) is expressly allowed by a resource consent; or
 - (c) is an activity allowed by section 20A.
- (3) This section shall not apply to anything which section 15A or 15B applies.

The discharge of contaminants to air and water will exceed the permitted activity criteria of the ARP:ALW ARP:C, and PAUP, and therefore fails to comply with ss15(1) and 15(2A). Discharges do not contravene any national environmental standard, and neither s15A nor s15B apply.

As such, the Transport Agency seeks resource consents under s15 of the RMA for the following discharges:

- Discharges to the Coastal Marine Area; and
- Discharges to Air.

4.1 Discharges to the Coastal Marine Area

Maintenance activities will result in discharges to the CMA including but not limited to abrasive agents used in abrasive blasting, constituent contaminants within surface coats that are historic and those used in the future, and in washwater from water blasting, in accordance with the provisions identified in Table 4.1 below.

Table 4.1. Reasons for consent for discharges to the CMA.

Provision	Activity	Activity Status
Discharges to Coas	tal Marine Area	
ARP:C 20.5.5	<i>Discharges of contaminants from the maintenance of existing lawful structures in the coastal marine area.</i>	Controlled
PAUP 3.I.6.1.1.7	Discharges into coastal water not otherwise authorised by a rule in the Unitary Plan, or covered by the Resource Management (Marine Pollution) Regulations 1998, that do not comply with the permitted activity controls	Discretionary

Resource consents are required for Discretionary Activities in accordance with s15(1) and s15(2A) of the RMA.

4.2 Discharges to Land

Maintenance activities over land may result in discharges to land from washwater, wet and dry abrasive blasting and overspray of surface coatings.

Overspray resulting from maintenance activities over land will comply with the Permitted Activity criteria of PAUP Rules 3.H.4.18.1 and permitted activity controls of 3.H.18.2.1.1.

Washwater, dry and wet abrasive blasting discharges generated during maintenance activities over land are proposed to be managed in a way that complies with the Permitted Activity criteria of ARP:ALW Rules 5.5.54 and 5.5.55, and PAUP Rules 3.H.4.18.1 and permitted activity controls of 3.H.18.2.1.1.

It is proposed that these discharges can be managed to meet permitted activity standards, therefore no consents under s15 are necessary (refer Appendix C).

4.3 Discharges to Air

Maintenance activities will result in discharges to air including but not limited to abrasive agents used in abrasive blasting, constituent contaminants within surface coats that are historic and those used in the future, in accordance with the provisions identified in Table 4.3.

 Table 4.2. Reasons for consent for discharges to air.

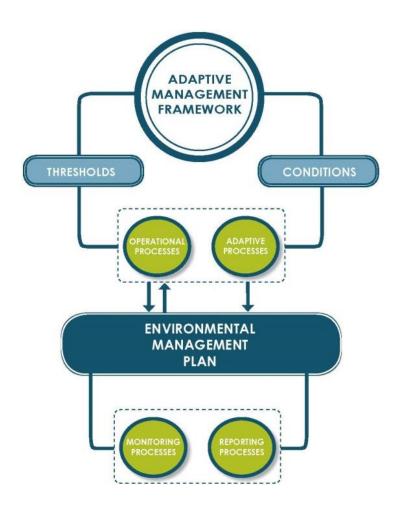
Provision	Activity	Activity Status
Discharges to Air		

1		
ARP:ALW 4.5.61	The discharge of contaminants into air from any dry abrasive, vacuum or sweep blasting process that uses abrasive material for blasting containing no more than 5 per cent dry weight free silica that does not comply with Rule 4.5.52, Rule 4.5.53 or Rule 4.5.54	Restricted Discretionary
ARP:ALW 4.5.96	The discharge of contaminants into air from any process that includes the use of diisocyanates, methylene chloride or organic plasticisers at a rate exceeding a total of 100 kg/hr.	Discretionary
ARP:ALW 4.5.97	The discharge of volatile organic compounds (including solvents) into air at a rate exceeding 20 kg/hr or 10 tonnes/yr.	Discretionary
PAUP 3.H.4.1.1	Blasting (dry abrasive, vacuum or sweep) using abrasive material containing less than 5 percent silica but not meeting the permitted activity controls.	Restricted Discretionary
PAUP 3.H.4.1.1	Any process that discharges more than 20kg/hour or 10t/year of volatile organic compounds such as large-scale application of surface coatings or printing ink without the application of heat, excluding the ventilation, displacement or dispensing of motor fuels.	Discretionary
PAUP 3.H.4.1.1	Spray application of surface coatings containing diisocyanates or hazardous organic plasticisers not in a spray booth or at a domestic premises at an application rate no more than 2L/day.	Discretionary

Wet abrasive blasting and stripe coating discharges resulting from maintenance activities will also comply with the Permitted Activity criteria of ALWP Rule 4.5.1 and PAUP Rules 3.H.4.1.1.

Overall, resource consent is required for a Discretionary Activity in accordance with s15(1) of the RMA.

4.4 Auckland Council District Plans


All maintenance activities regulated by the legacy District Plans are authorised under Designation 108 for the north abutment (North Shore City) and A07-01 for the southern abutment (Auckland Isthmus). These designations are identified in the PAUP as ID 6718, ID 6721, and ID 6749.No resource consents are required under the District Plans.

5 Proposed Adaptive Management Framework

The Transport Agency is seeking to replace the prescriptive requirement for containment to manage discharges, as discussed in Section 3.5.3 above, with a more flexible Adaptive Management Framework (AMF). The AMF will be used to manage annual discharge to achieve the same or similar outcomes anticipated by the existing consents. This will be achieved through the management of maintenance discharge activities within the key containment thresholds set out in Table 3.1 above. The AMF enables the anticipated environmental outcomes using a range of methods and mitigations rather than relying on a prescribed method (containment).

In addition to the key contaminant thresholds, the AMF also needs to be understood in terms of its relationship with the Environmental Management Plan (EMP). The operational, monitoring and reporting processes within the AMF are set out at a conceptual level (described below), and the detail will be contained within the EMP. An EMP currently exists and it is proposed this will be updated to reflect the key contaminant thresholds, conditions, and AMF upon granting of consent. The EMP is the day-to-day guidance manual for the bridge maintenance operators.

So that all these elements are knitted together, we have included in section 9 below a set of draft proposed conditions. In particular these conditions reference the key contaminant thresholds, the AMF and its purpose, the EMP and its contents, monitoring and reporting requirements and some specific effect management conditions.

No X

Together the thresholds, the adaptive management processes (operational, adaptive, monitoring and reporting), the EMP and the proposed conditions form the basis of this application and demonstrate how effects are to be avoided, remedied and/or mitigated.

For clarity, this section should be read alongside the AMF in Appendix A.

5.1 Purpose of AMF

The purpose of the AMF is to enable the maintenance of the Auckland Harbour Bridge in a practicable way, while managing the effects of discharges to the environment at or below levels that could be achieved by full containment.

5.1.1 Principles

Of Effects:

• **Threshold** – the threshold of effects are the same or less than if full containment (at 85% efficiency) was in place.

Of Process:

- **Flexible** Provide for a flexible approach that focuses on the effects of the maintenance regime (instead of methods) and a process to review and update the EMP on an on-going basis;
- **Innovative** Allows for the introduction of new, innovative methods and/or materials where thresholds can be met and effects will not increase;
- **Certainty** Retains certainty of outcome by setting clear processes for thresholds, monitoring, trigger levels and reporting; and
- **Iterative** Provides for iterative decision-making based on evaluating results and adjusting actions on the basis of what has been learned. These principles help drive behaviour and promote a culture of continually improving environmental outcomes.

5.1.2 Outcomes

Of Effects:

• Management of discharge effects results in the same or improved environmental outcomes as full containment (at 85% efficiency) would have achieved.

Of Process:

• Environmental management can be effectively managed in a flexible manner that allows for adaptation and innovation without requiring changes/variations to the resource consents. This process drives operator behaviour toward a culture of improved outcomes.

The AMF will allow the NZ Transport Agency to undertake the proposed maintenance activities on the bridge while managing effects to achieve the same outcomes anticipated under full containment. The framework will provide a range of options to achieve this without limiting management measures to one method (i.e. containment).

The AMF also provides a process to assess new methods and products. If these new methods and/or products can be demonstrated to reduce or not change effects on the environment and reduce or

not exceed the key contaminant thresholds, the AMF enables use of these new methods and /or products via amending the EMP rather than changing the consent conditions.

In summary, the AMF comprises the following components:

- Key Contaminant Thresholds
 - The thresholds proposed will enable maintenance operators to track annual progress and provide tangible targets for maintenance activities regulated by the consents so that adverse effects are managed.
- Conditions
 - The proposed conditions in section 9 provide certainty to the applicant, maintenance operators and Auckland Council that the thresholds are being achieved on an annual basis and therefore adverse effects are being managed and the consent is being complied with.
- Operational Process
 - This process enables maintenance operators to select the most appropriate methods to undertake maintenance when considering the potential environmental effects. This is the 'business as usual' approach and generally reflects how daily maintenance activities occur and are managed.
- Monitoring Process
 - This process will use an operational model to track inputs and discharges resulting from maintenance and enables the maintenance operators to adjust the operational processes accordingly to manage maintenance activities within the consented thresholds.
- Reporting Process
 - This process sets out the approach for reporting the monitoring results using the operational model to track annual discharges and any outcomes from use of the adaptation process.
- Adaptation Process
 - This process enables the inclusion of new methods and products where there is no worsening of effects, new effects or increase in discharges above the proposed annual thresholds.
- EMP
 - The EMP provides the operational day to day manual that sets out methods and procedures to guide maintenance activities so that discharges are managed within the thresholds and any specific restrictions (e.g. wind speeds) are complied with. It provides for the monitoring and reporting processes to demonstrate consent compliance.

The purpose of the AMF is set out in proposed conditions 8 and 9 in Section 9 below.

5.2 Key Contaminant Thresholds

Refer section 3 and Table 3.1 above for a full explanation of the following table which sets out the key contaminant thresholds and the basis or source of the threshold.

Contaminant	Recommended Thresholds
PM ₁₀ / Total Suspended Particulates	PM10 total: 31 kg/annum (2011 consent baseline for abrasive blasting) PM10 (acute - 24hr): 50µg/m³ (MfE)
	TSP (acute - 24hr): 80μg/m ³ (MfE)
Garnet Sand / Dust	Coastal: 14,679 kg/annum (2011 consent baseline)
Zinc	Air (acute 1hr): 20μg/m ³ (TCEQ ESL)
	Coastal: 223 kg/annum (2011 consent baseline)
Lead	Air (acute 0.5hr): 1.5g/m ³ (Ontario Ministry for the Environment)
Chromium	Air (acute 1hr): 3.6μg/m ³ (TCEQ ESL)
Iron	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Volatile Organic	Xylene: Air (odour 1hr): 350µg/m ³ (TCEQ ESL)
Compounds (VOCs)	Toluene; Air (odour 1hr): 640μg/m ³ (TCEQ ESL)
	Naptha: Air (odour 1hr): 3500µg/m ³ (TCEQ ESL)
	Ethylbenzene: Air (odour 1hr): 740μg/m ³ (TCEQ ESL)
	Methyl Isobutyl Ketone; Air (odour 1hr): 820µg/m ³ (TCEQ ESL)
Diisocyanates	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Paint	Coastal: 646kg/annum (2011 consent baseline)

5.3 Conditions

Refer section 9 below for the proposed conditions that provide the statutory weight to the AMF.

5.4 Operational Process

The operational process describes the physical characteristics of the maintenance activities, the variables of the activities and environment, the effects on the environment, and the mitigation measures to be used. The process reflects routine operations and links to the EMP. When used as a whole it enables operators to undertake maintenance activities within the scope of the resource consent, with each method playing a role in an integrated approach to environmental management.

5.4.1 Maintenance Activities

The activities undertaken as part of bridge maintenance generally include, but are not limited to:

- Surface preparation:
 - Washdown / Waterblasting
 - Wet and dry abrasive blasting
 - Degreasing
 - Mechanical and chemical paint removal
 - Control of lichens and moss

• Application of coatings (exterior and interior) by hand and spray gun.

5.4.2 Environmental Variables

The maintenance activities have a range of potential effects. The scale of effect is influenced by environmental variables, including:

- Locations on the bridge/extent of the works;
- Timing, duration, and frequency of the maintenance methods;
- Volume of discharges to the environment (small vs. large);
- Sensitivity and values of the receiving environment

These variables will help determine appropriate mitigation methods and management practices to meet contaminant thresholds under the AMF.

5.4.3 Key Discharges

The Key Discharges that the AMF aims to manage (generated by bridge maintenance) are also those identified by Auckland Council as key contaminants, including:

- Garnet sand discharged to the CMA from abrasive sand blasting activities
- Lead and other metals from historical paint layers discharged to the air during abrasive blasting
- Zinc from spray painting discharges to the CMA
- VOCs, diisocyanates, and metals (zinc and iron) released to the air during spray painting

5.4.4 Environmental Effects

The effects that the AMF aims to manage will be those that are directly attributable to discharges associated with the bridge maintenance activities. The key discharges into the environment have the potential to generate the following adverse effects:

- Toxicity in marine biota
- Health effects for coastal users and nearby residents / businesses
- Sedimentation of the harbour bed
- Nuisance

The effects will be managed through compliance with the thresholds.

5.4.5 Mitigation Measures

The AMF relies on the operational processes to mitigate adverse effects resulting from the discharges of contaminants. This will be expanded in the EMP and the can be modified, improved, added to, and altered over time depending on efficiency of the methods or technical improvements, etc. Some examples of mitigation measures include:

- Coating application methods used hand rolled painting v spray painting
- Wind speed and direction limits to control the distance and direction contaminants can travel
- Containment if possible at certain locations

• Communication – with residents, water users, etc.

Different mitigation measures will be appropriate for different methods, for different variables, for different discharges, and for different effects.

5.4.6 EMP and Conditions

The EMP as discussed below will drive operator behaviour and set out the day to day processes and methods that will be used to manage environmental effects. Proposed conditions 10, 11, 12, 13 and 17 specifically relate to the operational processes and link to the EMP's role in managing this process.

5.5 Monitoring Process

Monitoring is proposed to be undertaken regularly using an operational model that will enable the operators to track contaminant loads and discharges throughout the year. This will assist in:

- Consent compliance;
- Mitigation selection; and
- Works scheduling.

The operational model will be informed through recording operator inputs. The monitoring process along with the operational documents (e.g. EMP) can help determine which mitigation measures are effective for specific maintenance methods. The monitoring proposed includes the following inputs and outputs which can be measured during operations:

Inputs to the operational model:

- Activity carried out: waterblasting, wet abrasive blasting, dry abrasive blasting, or spray painting (of either Termarust, MC Ferrox, MC Miomastic or MC Zinc)
- Location where work was carried out: Coast or land
- Surface area over which the activity was carried out(m2)
- If abrasive blasting, the amount of garnet used (kg)
- If painting, the amount of paint used (L), and an estimate of the overspray (%) (some guidance will be developed on how to estimate this in the EMP)
- If containment has been used, an estimate of the percentage containment achieved (some guidance on how to estimate/ determine this will be developed in the EMP)

Outputs from the operational model:

- Annual discharge of zinc to the coast and land;
- Annual discharge of garnet to the coast and land;
- Annual discharge of paint to the coast and land; and
- Annual discharge of PM10 to the airshed.

For air discharges, logging of wind speeds and wind direction relevant to the works activity and location on the bridge will be the method of monitoring compliance with any buffer zones that are set out in the EMP.

The EMP will set out what and how monitoring will occur and proposed condition 14 specifically addresses monitoring through the EMP.

5.6 Reporting Process

The reporting process will be undertaken to enable the NZ Transport Agency and its agents to manage maintenance activities within the AMF and to demonstrate to Council that those activities are being undertaken in accordance with the conditions of resource consent. The effectiveness of the AMF relies on relevant reporting that captures important information and is accepted by Council. The reporting to be provided to Council will:

- Be standardised;
- Summarise monitoring data to demonstrate how the maintenance activities have occurred within the thresholds for key contaminants, based on the monitoring data proposed above; and
- Record results and recommendations from any use of the Adaptation Process (see below).

A template for this process will be developed in the EMP to simplify reporting based on outputs that are easily computed from the operational model. Draft conditions have been proposed which set out what needs to be reported on. Reporting will be annual and provided to Council for information to show consent compliance. If this is shown, no further action is necessary.

The EMP will set out what and how reporting will occur and proposed condition 5 specifically addresses reporting through the EMP.

5.7 Adaptation Process

The AMF enables the potential for the NZ Transport Agency and its agents to introduce new maintenance methods and products to be used under this consent application, provided that their use can be undertaken within the proposed thresholds. It is important that there is flexibility to introduce new methods and products, as this may reduce costs, frequency, and discharges associated with bridge maintenance.

To determine the nature of the applicability of new methods and products, these will be assessed and introduced through a robust 4 step adaptation process, as set out in the AMF in Appendix A.

5.7.1 Step 1 – Identification

New methods and products will be assessed using material safety data sheets (MSDS) and manufacturer specifications to determine if they contain or generate any key contaminants. As part of the identification step, the following tasks will be undertaken:

- Define contaminant characteristics;
- Toxicity test, if required;
- Identify assumptions; and
- Test assumptions, if required.

5.7.2 Step 2 – Discharge Regulation

If it is determined that the information in Step 1 adequately describes the potential discharges, discharge regulation methods will be determined to confirm that the discharges are within the proposed thresholds and industry guidelines. Key tasks in Step 2 include:

- Confirm the relevant guidelines and standards;
- Calculate proposed annual discharges (if relevant);
- Undertake sampling during the method or product trial; and
- Confirm relevant planning regulations under Auckland Council plans.

5.7.3 Step 3 – Identify and Assess Effects

If it is determined that the discharge can be regulated in a manner consistent with the proposed thresholds, the potential environmental effects of the discharge will be identified and assessed. Key tasks in Step 3 include:

- Determine whether discharge of identified key contaminants can meet the current contaminant discharge thresholds;
- Model air dispersion, if required;
- Confirm that the effects of any new contaminants are within the scope of the maintenance consent or Permitted Activity criteria;
- Assess and set thresholds for new contaminants, if required; and
- Determine any new controls that are required to meet the above requirements.

5.7.4 Step 4 – Update Operational Documents

If it is determined that the environmental effects of the new method or product can be accommodated within the scope of the proposed consent, all operational documents will be updated to include the new discharge. Key tasks in Step 4 include:

- Updating the Operational Model;
- Updating the Environmental Management Plan and procedures; and
- Integrating the new method or product into the AMF.

5.7.5 Non-compliant New Methods or Products

If, during the adaptation process, any new methods or products are determined to be inconsistent with or exceed the proposed thresholds or have new effects that cannot be avoided or effects above the consented level of effects, they will be considered to be outside of the scope of the proposed consent and cannot be used without obtaining further consents.

5.7.6 Technical Sheets

To guide the adaptation process, each 'effect (air, land, coastal, planning) area has had a technical sheet prepared that sets out the process to be followed. As an indicative example, this process has been tested and applied using the new product 'Termarust'. The technical sheets are contained within the AMF in Appendix A.

5.7.7 EMP and Conditions

The Adaptive Management Process in Appendix A provides a detailed outline of this process and this is complimented by the technical sheets in the same appendix. Proposed conditions 16 and 17 formalise this process. If the adaptive process is used then the outcome would be reported to council if that outcome required a change to the EMP.

5.8 Environmental Management Plan

The current EMP drives operator behaviour and is used to manage day to day operations and resultant environmental effects. The Table of Contents for the EMP is provided below. It is proposed that this and the full EMP be updated following granting of consent. Largely the existing headings are suitable for adding further detail to. There will likely be a new section on the AMF. The EMP is currently being used to effectively manage maintenance activities in accordance with the consent conditions and this is proposed to continue upon granting of this application.

The content and matters for the EMP to address and its purpose it set out in proposed conditions 11-13.

5.8.1 Current EMP Table of Contents

- 1. INTRODUCTION
- 2. OVERVIEW AND CONTEXT
- 3. ROLES AND RESPONSIBILITIES
- 4. MAINTENANCE ACTIVITIES
 - 4.1 Overview
 - 4.2 Maintenance Activities
 - 4.3 Related Activities
 - 4.4 Other Utilities and Services
- 5. ENVIRONMENTAL MANAGEMENT
 - 5.1 Overview
 - 5.2 Environmental Risks
 - 5.3 Environmental Controls 1
 - 5.4 Implementation
- 6. LOGGING, INSPECTIONS AND MONITORING
- 7. SPILLS AND OTHER INCIDENTS
- 8. TRAINING
- 9. RECORD KEEPING
- 10. REVIEW
- 11. REPORTING

6 Assessment of Environmental Effects

Section 3 sets out the existing environment and includes an assessment of the effects on the environment as a result of the discharge of key contaminants within the levels authorised by existing consents 38519, 38835, and 38836.

Three technical reports have been prepared to assess effects on the Marine, Land and Air receiving environments. These reports set out the existing environment and that level of anticipated effects as a result of the consents maintenance discharges.

These reports and assessments have informed the setting of the proposed key contaminant thresholds in Table 3.1. These thresholds enable maintenance discharges to be maintained at the same level as currently consented. The use and the implementation of the AMF (as explained in section 5) will provide a more flexible and cost effective approach to managing maintenance discharges. Critically this approach will result in the same or potentially less environmental effects than what is currently authorised under the existing consents.

This AEE section provides a summary of the existing consent effects thresholds and then an assessment of any actual or potential effects that result from the proposed approach differing from the existing consented approach.

These assessments have been prepared in accordance with s104 of the RMA, as well as within the statutory framework provided by the following planning documents:

- Hauraki Gulf Marine Park Act (HGMPA);
- New Zealand Coastal Policy Statement (NZCPS);
- National Environmental Standard: Air Quality (NES:AQ);
- Auckland Regional Plan: Coastal (ARP:C);
- Auckland Regional Plan: Air, Land, and Water (ARP:ALW);
- Proposed Auckland Unitary Plan (PAUP).

6.1 Positive Effects

The current consents require full containment (generally to 85%) by 2021. This application proposes thresholds to achieve the same level of discharge or level of effect on the receiving environment as the existing consents. As this would provide a framework for managing effects within these thresholds upon the granting of consent, this outcome would be achieved nearly 7 years earlier than anticipated under the current consents. This represents an actual positive effect on the receiving environment.

The thresholds have been set to achieve the same level of discharge or level of effect on the receiving environment so that no worsening of effect on the receiving environment occurs. The flexibility of the AMF also enables discharges to be reduced over time representing a potential positive effect.

AGENC

6.2 Marine Ecology

As discussed above in 3.6.1, the MEA (Appendix B) describes the existing ecological values of the CMA (receiving environment) for the AHB maintenance discharges, as well as the environmental effects authorised under Coastal Permit 38519. The MEA provides a comprehensive overview of the coastal dynamics of the CWH establishes where contaminant discharges are likely to ultimately settle.

The MEA identifies three key contaminants that are discharged to the CMA as a result of the consented maintenance activities and calculates the mass annual loads of the permitted discharges for:

- Particulate (e.g. garnet sand);
- zinc, and;
- paint

Using a robust assessment framework and based on the thresholds, the MEA concludes that:

- the discharge of particulate (sand) results in a deposition depth significantly below that which would cause adverse effects on benthic communities;
- the discharge of zinc will have low to very low effects on marine ecological values;
- paint discharges will have negligible effect on marine ecological values;
- acute and chronic toxicity of current products are practically non-toxic in acute (short term) situations and have negligible chronic toxicity (in the longer term); and
- overall the adverse effects arising from the permitted mass discharge of key contaminants is low to very low, particularly given the large volume of mixing that occurs in the water column.

The existing consents require 100% containment of washwater. The "Contaminants in Waterblasting Washwater" assessment in Appendix E concludes that the effects of washwater discharges to the CMA would be negligible. The requirement to contain washwater is expensive and impracticable to achieve. Full containment as a mitigation method is not commensurate with the level of effect and does not align with the philosophy of the AMF approach that is being applied for.

The reason washwater has negligible effects is due to the limited levels of contaminants discharges and the significant volume of water beneath the bridge which after reasonable mixing dilutes the discharges to well below ANZECC guidelines. The assessment in Appendix E recommends that zinc and particulate discharges (2.4kg and 77kg respectively) are included within the total annual discharges under the key contaminant thresholds.

On this basis, the approach of not containing washwater and instead discharging washwater to the CMA is appropriate and reasonable and is concluded to cause negligible adverse effects on the marine receiving environment.

6.2.1 Summary

The proposed management regime under the AMF and key contaminant thresholds will have less than minor adverse effects on the marine receiving environment and will result in no material change in effects compared to the existing environment as a result of the discharge of washwater.

6.3 Land Discharge

The existing and potential management methods for maintenance discharges are discussed above in section 3.6.2, the "Assessment of Discharge to Soils" report (Appendix C), and the "Contaminants in Waterblasting Washwater Assessment" (Appendix E). These assess the effects of the proposed AMF approach to managing future discharges to land.

Potential discharges of key contaminants to soils are determined to arise from:

- washwater / waterblasting;
- abrasive blasting; and
- spray painting.

Discharges to land from current bridge maintenance activities are minimised as far as practicable. As a result, the effects on soil from the discharge of contaminants are currently minimised through managing, capturing or avoiding discharges through a containment system, or other methods under the EMP. While this applies to the pre-containment phase, in the full containment phase 15% of dry discharges are able to be discharged to land. As this discharge level is provided for by the existing consents it constitutes part of the existing environment.

The proposed approach to managing discharges to land is to continue minimising as far as practicable all discharges of key contaminants to soils by meeting the permitted activity standards. This can be achieved by capturing washwater and wet abrasive blasting discharges, containing dry abrasive blasting over land and containing spray painting or hand applying paint. Under the proposed AMF there is also the flexibility to consider new methods and products that may assist to minimise key contaminant discharges to soils in the future.

To demonstrate maintenance discharges are being minimised as far as practicable the following monitoring is provided as an example of what could be formalised through the EMP:

- visual monitoring during water blasting and wet abrasive blasting to check that discharges are being contained effectively.
- air monitoring, where appropriate, to show that any system (e.g. containment) used to control discharges to air (where there is a risk that may they settle out to land) are working effectively.
- internal audits to show relevant environmental procedures and processes are being followed during both surface preparation activities and paint application.

Based on this approach, discharges over land and to soils can be managed so they comply with the relevant permitted activity standards of the ALWP and PAUP. These standards are set at a level that is accepted as less than minor (and therefore do not require consent).

The assessment concludes that the effects of waterblasting, abrasive blasting and spray painting are negligible as a result of discharges to land and soils and is an improvement from the current consents which anticipate discharges of up to 15% from abrasive blasting and spray painting.

6.3.1 Summary

Current practices under the EMP demonstrate the ability to minimise as far as reasonably practicable discharges of key contaminants to soils and the ability to comply with the permitted activity standards. The proposal is therefore concluded to result in negligible adverse effects on the receiving environment and the effects of the proposal will (based on the technical assessments) be reduced compared to the existing environment where the existing consent allows up to 15% discharge to land of dry discharges.

6.4 Air Quality

As discussed in 3.6.3 above, the Air Discharge Assessment (Appendix D) describes the receiving environment, sources of contaminants from maintenance activities and the nature of key contaminants discharged from these activities. Abrasive blasting, spray painting, and strip painting (by hand) are the activities that generate discharges of key contaminants.

The assessment discusses potential effects of health, odour and nuisance from discharges. Based on a monitoring programme, the assessment discusses how effective the current pre-containment conditions of the existing permit 38519 are at mitigating effects to a level that is less than minor and does not adversely affect any parties (as concluded in the application and consent decision). The conclusion of that monitoring programme is that the conditions are mostly effective in achieving that outcome, but that an additional wind control is required and a buffer zone could be introduced.

Using the Ministry for the Environments "Good Practice Guide for Assessing Discharges to Air from Industry" key contaminant thresholds have been set to enable management of maintenance discharges to the same level of effect as under the existing consents (and therefore resulting in less than minor effects)

The key methods to manage air discharges beneath the thresholds are:

- Wind speed limits;
- Wind direction;
- The use of screens;
- The use of buffer zones.

The potential methods to manage air quality effects within the AMF include the above methods, as they are appropriate for the spray application of paint, as well as dry abrasive blasting. These methods will be expanded and set out in the EMP.

This application proposes draft conditions in section 9 and includes two specific conditions for air discharges. These require controls (the four bullet points above) to be specified in the EMP to achieve the thresholds in Table 3.1.

The Air Discharge Assessment Report (Appendix D) has identified odour, nuisance and human health effects as the key concerns regarding discharge to air. Given the length of the bridge and its location within the Waitemata Harbour, sensitive receivers such as residences, businesses, and recreational users are generally at such a distance that no effects occur. The areas around each bridge abutment have been identified as containing potential sensitive receivers, although monitoring undertaken indicates that maintenance activities can be managed in a way so that adverse effects on these receivers arising from discharges to air can be avoided or minimised.

Based on this approach, discharges to air can be managed so they can remain within or below the key contaminant discharge thresholds proposed. These thresholds have been set so that the resulting discharge causes less than minor adverse effects and do not adversely affect any parties. As the thresholds have been set from the existing consents there is expected to be no change in effects from those anticipated under the existing environment.

6.5 Effects summary

The proposed AMF is expected to deliver a reduction in environmental effects resulting from discharges from maintenance activities on the AHB. On granting of this consent the use of the AMF will achieve the same environmental outcome as full containment which is currently required by 2021.

Actual or potential adverse effects on the marine receiving environment (smothering, ecosystem effects and eco-toxicity) are concluded to be negligible and the change to the existing environment is generally expected to be no different or negligible.

For discharges to land the approach of minimising discharges to soils as far as practicable and complying with Permitted Activity requirements is concluded to result in negligible adverse effects and is an improvement in outcome compared to the existing environment where 15% of dry discharges are anticipated.

Air discharge thresholds have been set so that when achieved the effects on human health, nuisance and odour will be less than minor. This is the same outcome as anticipated under the existing environment.

The proposed AMF provides the flexibility to use alternative methods and/or products while enabling the same environmental outcome and a reduced level of effects over time.

Statutory Framework

7 Statutory Framework

This Assessment of Environmental Effects has been undertaken in accordance with Section 104 of the RMA and within the statutory framework provided by the following planning documents:

- Resource Management Act 1991
- Hauraki Gulf Marine Park Act 2000
- Land Transport Management Act
- New Zealand Coastal Policy Statement
- Auckland Regional Policy Statement
- Resource Management (National Environmental Standards for Air Quality) Regulations 2001
- Auckland Regional Plan: Coastal
- Auckland Regional Plan: Air, Land, and Water
- Proposed Auckland Unitary Plan

The relevant matters of these statutory documents are discussed below.

7.1 Part 2 – Purpose and Principles

This section assesses the proposed AMF against Part 2 of the RMA.

7.1.1 Section 5 – Purpose

The purpose of the RMA, set out in Section 5, is to promote the sustainable management of natural and physical resources, which includes enabling "*people and communities to provide for their social, economic, and cultural wellbeing.*" This must be achieved in the context of Section 5(2), in particular the responsibility of (c) for "*avoiding, remedying, or mitigating any adverse effects of activities on the environment.*"

The proposed thresholds and AMF will enable the NZ Transport Agency to maintain nationally significant infrastructure that promotes the social, economic, and cultural well-being for Auckland and its surrounds. The maintenance is essential to provide for the health and safety of bridge users and the wider State Highway network. The AHB provides a critical function in assisting Aucklanders and New Zealanders provide for their wellbeing through transport, utility and freight functions.

Within the AMF, the Transport Agency has proposed a range of mitigation and avoidance management methods. The proposed threshold will not result in any further adverse effects on the environment than currently consented. The AMF approach will more likely drive operator behaviour to reduce environmental effects over time. In doing so, it is considered that the purpose of the RMA is achieved while also meeting the statutory obligations of the NZ Transport Agency under the LTMA.

7.1.2 Section 6 – Matters of National Importance

Section 6 sets out matters of national importance that must be recognised and provided for. The relevant matters include:

Statutory Framework

- (a) the preservation of the natural character of the coastal environment (including the coastal marine area), wetlands, and lakes and rivers and their margins, and the protection of them from inappropriate subdivision, use, and development;
- (c) The protection of areas of significant indigenous vegetation and significant habitats of indigenous fauna;
- (d) The maintenance and enhancement of public access to and along the coastal marine area, lakes, and rivers;
- (e) the relationship of Maori and their culture and traditions with their ancestral lands, water, sites, waahi tapu, and other taonga:

The consents being sought will enable maintenance activities which generate discharges to the Waitemata Harbour, including the ecologically significant Shoal Bay, and the effects of such discharges to be managed within the thresholds and AMF proposed. The AEE and the MEA accompanying this application have determined that any significant adverse effects on the marine ecological environment are unlikely. Any particulate that is deposited on the foreshore of the harbour is dispersed over an area sufficient enough to be insignificant to ecological habitat and amenity values.

As the majority of activities occur on the AHB's steel frame above the CMA, public access will only be temporarily restricted around the bridge abutments when maintenance occurs over land. Any restrictions will be for the health and safety of the public.

Consultation with Mana Whenua is continuous. The maintenance activities have been undertaken over the past 55 years, and the NZ Transport Agency has developed good relationships with kaitiaki regarding the mauri of the Waitemata.

7.1.3 Section 7 – Other Matters

Section 7 sets out other matters that the Transport Agency must have particular regard to in undertaking bridge maintenance activities. Relevant matters include the following:

- (a) kaitiakitanga:
- (aa) the ethic of stewardship:
- (c) the maintenance and enhancement of amenity values:
- (d) intrinsic values of ecosystems:
- (f) maintenance and enhancement of the quality of the environment:

The NZ Transport Agency promotes an accessible and safe transport system that contributes positively to New Zealand's economic, social, and environmental welfare. Working with stakeholders, including iwi, the Transport Agency is committed to acting in an environmentally responsible manner. As discussed above, the proposed thresholds and AMF will enable the Transport Agency to continue to provide a nationally significant transport link while achieving improvements in environmental outcomes from bridge maintenance activities.

Through a more flexible approach to environmental effects management, the amenity and ecological values of the Waitemata Harbour and Shoal Bay will be maintained and potentially

enhanced compared to the existing environment and will not be degraded from bridge maintenance activities.

7.1.4 Section 8 – Treaty of Waitangi

As a Crown agency, the Transport Agency is partner to the Treaty of Waitangi and actively works towards achieving the treaty's principles, extending the opportunity for Maori to participate in decision making, and consult with Mana Whenua on issues such as this application that is likely to affect their interests.

7.1.5 Section 105 – Matters Relevant to Certain Applications

This application seeks discharge and coastal permits that contravenes s15 of the RMA. As such, the additional matters of s105 have been considered:

- (a) The nature of the discharge and the sensitivity of the receiving environment to adverse effects; and
- (b) The applicant's reasons for the proposed choice; and
- (c) Any possible alternative methods of discharge, including discharge into any other receiving environment.

As discussed in the assessments of effects, the discharges from AHB maintenance to air, land, and the CMA generate less than minor effects on the environment. In particular, when compared to the existing environment the level of effects permitted by current consents relating to the maintenance discharges will be maintained or potentially improved.

As discussed in section 2.0 above, the Transport Agency has considered a range of alternatives. The feasibility report (August 2014) and the AEE supporting this application conclude that the proposed AMF approach will enable improved management of the discharge effects. Consequently it is considered by the Transport Agency to be the best practicable option.

7.2 Hauraki Gulf Marine Park Act 2000

The purpose of the Hauraki Gulf Marine Park Act 2000 (the HGMPA), set out in Section 3, includes the integration of "management of the natural, historic, and physical resources of the Hauraki Gulf, its islands, and catchments". The HGMPA enables the management of the Hauraki Gulf as a nationally significant environment, and sets out management objectives in Section 8. The Waitemata Harbour is within the Hauraki Gulf, and is therefore subject to the HGMPA.

Matters of particular relevance to this application include:

- Section 8(a) the protection and, where appropriate, the enhancement of the lifesupporting capacity of the environment of the Hauraki Gulf, its islands, and catchments
- Section 8(f) the maintenance and, where appropriate, the enhancement of the natural, historic, and physical resources of the Hauraki Gulf, its islands, and catchments, which contribute to the recreation and enjoyment of the Hauraki Gulf for the people and communities of the Hauraki Gulf and New Zealand.

Under Section 9 of the HGMPA, territorial authorities must ensure that the objectives and policies of regional and district plans give effect to the HGMPA. In this respect, the proposed maintenance activities are considered to be consistent with the objectives and policies of the relevant plans, as discussed in detail below.

It is noted that the HGMPA constitutes a national policy statement under the RMA.

7.3 Land Transport Management Act 2003

The purpose of the Land Transport Management Act 2003 (LTMA) is to "contribute to an effective, efficient, and safe land transport system in the public interest". The LTMA provides the Transport Agency with a mandate under Section 95 to achieve the purpose of the LTMA, providing for the State Highway Network in particular.

The proposed maintenance activities on the AHB directly contribute to the achievement of the purpose of the LTMA through:

- increasing the operational lifespan of the AHB;
- repairing and protecting the steel structure to maintain the bridge's safety; and
- undertaking maintenance activities in a way that permits continued use of the AHB.

The application of the AMF will enable the Transport Agency to undertake such activities in an efficient manner and with the ability to adopt new methods to deliver improved environmental outcomes over time.

7.4 Resource Management (National Environmental Standards for Air Quality) Regulations 2004

The NES:AQ requires that discharges to air do not exceed thresholds that are specific to individual contaminants, including PM_{10} . As such, the Air Discharge Report (Appendix D) and this application has proposed a set of 'key contaminant' discharge thresholds that will meet the NES:AQ regulations.

7.5 New Zealand Coastal Policy Statement 2010

The New Zealand Coastal Policy Statement (NZCPS) is applied to the assessment of any resource consent application with effects within the CMA and is a specific matter set out in section 104 of the RMA. As such, the proposed AMF has been developed in accordance with the relevant objectives and policies of the NZCPS.

Objectives under the NZCPS

Objective 1 – To safeguard the integrity, form, functioning and resilience of the coastal environment and sustain its ecosystems, including marine and intertidal areas, estuaries, dunes and land, by:

> maintaining or enhancing natural biological and physical processes in the coastal environment and recognising their dynamic, complex and interdependent nature;

- protecting representative or significant natural ecosystems and sites of biological importance and maintaining the diversity of New Zealand's indigenous coastal flora and fauna; and
- maintaining coastal water quality, and enhancing it where it has deteriorated from what would otherwise be its natural condition, with significant adverse effects on ecology and habitat, because of discharges associated with human activity.
- Objective 3 -To take account of the principles of the Treaty of Waitangi, recognise the role of tangata whenua as kaitiaki and provide for tangata whenua involvement in management of the coastal environment by:
 - recognising the on-going and enduring relationship of tangata whenua over their lands, rohe and resources;
 - promoting meaningful relationships and interactions between tangata whenua and persons exercising functions and powers under the Act;
 - incorporating mātauranga Māori into sustainable management practices; and
 - recognising and protecting characteristics of the coastal environment that are of special value to tangata whenua.
- Objective 6 -To enable people and communities to provide for their social, economic, and cultural wellbeing and their health and safety, through subdivision, use, and development, recognising that:
 - the protection of the values of the coastal environment does not preclude use and development in appropriate places and forms, and within appropriate limits;
 - some uses and developments which depend upon the use of natural and physical resources in the coastal environment are important to the social, economic and cultural wellbeing of people and communities;
 - functionally some uses and developments can only be located on the coast or in the coastal marine area;
 - the coastal environment contains renewable energy resources of significant value;
 - the protection of habitats of living marine resources contributes to the social, economic and cultural wellbeing of people and communities;
 - the potential to protect, use, and develop natural and physical resources in the coastal marine area should not be compromised by activities on land;
 - the proportion of the coastal marine area under any formal protection is small and therefore management under the Act is an important means

7-42

by which the natural resources of the coastal marine area can be protected; and

 historic heritage in the coastal environment is extensive but not fully known, and vulnerable to loss or damage from inappropriate subdivision, use, and development.

Policies under the NZCPS

- Policy 23 Discharge of contaminants
 - 1. In managing discharges to water in the coastal environment, have particular regard to:
 - a. the sensitivity the sensitivity of the receiving environment;
 - b. the nature of the contaminants to be discharged, the particular concentration of contaminants needed to achieve the required water quality in the receiving environment, and the risks if that concentration of contaminants is exceeded; and
 - *c.* the capacity of the receiving environment to assimilate the contaminants; and:
 - d. avoid significant adverse effects on ecosystems and habitats after reasonable mixing;
 - e. use the smallest mixing zone necessary to achieve the required water quality in the receiving environment; and
 - *f. minimise adverse effects on the life-supporting capacity of water within a mixing zone.*

<u>Comment</u>

The coastal environment of the Central Waitemata Harbour is influenced by a range of physical, social, and cultural values. The harbour is:

- completely surrounded by urban development;
- used as a source of food, transportation, recreation, and economic gain;
- the discharge point of several significant catchments with widely varying land uses; and
- culturally significant.

The bridge maintenance activities will be undertaken within an effects envelope set by the proposed thresholds within the proposed AMF that will achieve the same outcomes or be an improvement over the existing environment. Monitoring has shown that the activities undertaken since the construction of the AHB in 1959 have not resulted in any significant adverse ecological effects, and are therefore consistent with the NZCPS.

Given that implementation of the proposed thresholds and AMF is able to demonstrate no change in effects from that which is already consented, the objectives and policies of the NZCPS will continue to be achieved by this the activities proposed under this consent application.

7.6 Auckland Regional Policy Statement 1999

The Auckland Regional Policy Statement (ARPS) sets in place the policy for promoting the sustainable management of the natural and physical resources of the Auckland Region in accordance with the RMA. The AMF has been developed in accordance with the relevant objectives and policies of the ARPS, including those discussed below.

Objectives under Chapter 7 – Coastal Environment

Objective 1 –	To preserve the natural character of the coastal environment and to protect it from inappropriate subdivision, use and development.
Objective 2 –	To protect outstanding natural features and landscapes, areas of significant indigenous vegetation and significant habitats of indigenous fauna, and significant historic and cultural places and areas in the coastal environment.
Objective 3 –	To enable appropriate subdivision, use and development to be undertaken in the coastal environment.
Objective 4 –	To enable the use of the coastal environment for appropriate port purposes, other water-related industrial and commercial activities and network utilities.

Objectives under Chapter 10 – Air Quality

Objective 1 – To avoid, remedy, or mitigate deterioration of air quality within the Region.

Comment

The coastal environment and air quality surrounding the AHB will not be adversely affected by maintenance activities on the AHB undertaken in accordance with the AMF and by managing discharges within the key contaminant thresholds proposed. Such works will be able to be undertaken while achieving the objectives and policies of the ARPS.

As for the achievement of the objectives and policies of the NZCPS discussed in 7.3 above, the proposed thresholds and AMF will not result in any more than a negligible change in effects compared to the existing environment, and will likely result in improvements over time. The objectives and policies of the ARPS will be achieved by the proposal, as the natural character of the coastal environment, outstanding natural features, and significant ecological habitats will not be adversely affected. The proposal also enables communities to provide for their well-being through the maintenance of a critically important transportation and utility link for the region and New Zealand.

As discussed in 7.4 above, the proposal is consistent with the NES:AQ.

7.7 Auckland Regional Plan: Coastal

The purpose of the Auckland Regional Plan: Coastal (ARP:C) is to provide a framework to promote the integrated and sustainable management of Auckland's coastal environment. The AMF has been

AGENC

developed in accordance with the objectives and policies of Chapter 20 of the ARP:C, as discussed below.

Objectives under Chapter 20 – Discharges of Contaminants

- Objective 20.3.1 To maintain appropriate water quality and sediment quality and quantity in the coastal marine area and to enhance water and sediment quality where practicable in the parts of the coastal marine area where water and sediment quality is degraded.
- Objective 20.3.2 To adopt the Best Practicable Option for preventing or minimising the adverse effects from stormwater and wastewater discharges in the coastal environment.

Policies under Chapter 20 – Discharges of Contaminants

- Policy 20.4.1 The discharge of contaminants within the coastal marine area shall be avoided where it will result in more than minor modification of, or damage to, or the destruction of:
 - a. the values of any Coastal Protection Area 1 or Tangata Whenua Management Area; or
 - b. any site, building, place or area scheduled for preservation in Cultural Heritage Schedule 1.

Policy 20.4.3 – Any proposal to discharge contaminants or water into the coastal marine area (unless the discharge is prohibited) shall be considered appropriate only if it can be demonstrated that it is the Best Practicable Option in terms of preventing or minimising the adverse effects on the environment having considered whether:

- a. it is practicable or appropriate to discharge to land above Mean High Water Springs;
- b. there is a reticulated wastewater system in place that should be utilised;
- c. the receiving environment is able to assimilate the discharged contaminants and water after reasonable mixing, with any adverse effects being avoided where practicable, or remedied or mitigated particularly within:
 - i. the areas identified in Tables 8.1 and 8.2 and Map Series 5, Sheets 1-4 (Degraded and Susceptible Areas and Areas of High Ecological Value Susceptible to Degradation) of the Auckland Council Regional Policy Statement;
 - *ii.* those Coastal Protection Areas, set out in this Plan, which are based upon ecological rather than geological values;
- d. the adverse effects on the present and foreseeable use of the receiving waters after reasonable mixing have been avoided where practicable, or remedied or mitigated, particularly in areas where there is:
 - *i.* high recreational use;

- ii. relevant initiatives by Tangata Whenua (established under regulations relating to the conservation or management of fisheries) including Taiapure, rahui or Whakatupu areas;
- iii. the collection of fish and shellfish for consumption;
- *iv.* areas of maintenance dredging;
- e. any adverse effects on people or communities have been avoided where practicable, or remedied or mitigated;
- f. cleaner production methods which would result in the volume and level of contamination of the discharge being minimised, to the greatest extent practicable have been adequately investigated, and where practicable put in place;
- g. the discharge after reasonable mixing, does not either by itself or in combination with other discharges, give rise to any or all of the following effects:
 - *i.* the production of any conspicuous oil or grease films, scums or foams, or floatable or suspended materials;
 - *ii.* any conspicuous change in the colour or visual clarity;
 - iii. any emission of objectionable odour;
 - iv. any significant adverse effects on aquatic life;
 - v. any significant adverse effects on aesthetics and amenity value;
- *h.* the discharge complies with relevant, appropriate and accepted codes of practice and environmental guidelines.

<u>Comment</u>

Water and sediment quality within the Waitemata Harbour and its embayments is susceptible to the cumulative effects of discharges from surrounding land catchments. Auckland Council has identified a range of contaminants that are the most significant contributors to water and sediment quality reduction, including lead, zinc, and chromium. These contaminants may also be released to the environment during bridge maintenance.

The proposed thresholds and AMF seek to enable the best practicable measures to manage the discharge of these key contaminants and the effects to the environment. Applying the thresholds and AMF to the AHB maintenance activities will achieve the same or better environmental outcomes as currently consented and as a result will maintain, or overall contribute to the improvement in water and sediment quality of the Waitemata Harbour and its embayments.

The AMF approach has been assessed to be the 'Best Practicable Option' for managing AHB maintenance discharges, as it provides for a range of management methods for numerous maintenance activities and situations, as discussed in 2.4 above. The AMF allows for the inclusion of new products and methods to be used which would provide not only greater efficiencies to the Transport Agency, but also potentially reduce the mass of contaminants discharged to the CMA and their resulting environmental effects.

It is relevant to consider that the mass of contaminants and sediment discharged to the Waitemata Harbour and its embayments as a result of the AHB maintenance discharges will be insignificant in contrast to the volume of water within the harbour and its natural hydrological processes.

Given the above, the proposal is consistent with the objectives and policies of the ARP:C.

7.8 Auckland Regional Plan: Air, Land, and Water

Discharges to Air are subject to the provisions in the Auckland Regional Plan: Air, Land, and Water (ARP:ALW). The following objectives and policies have been considered in the development of the AMF.

7.8.1 Air Quality

Objectives under Chapter 4 – Air Quality

- Objective 4.3.1 To maintain air quality in those parts of the Auckland Region that have excellent or good air quality and enhance air quality in those parts of the Region where it is poor or unacceptable.
- Objective 4.3.2 To avoid, remedy or mitigate significant adverse effects from the discharge of contaminants into air on human health, amenity and the environment. In particular:
 - a. To achieve the National Environmental Standards for Ambient Air Quality and the Auckland Regional Air Quality Targets (given in Tables 4.1 and 4.2);
 - b. To maintain or enhance existing amenity within the Urban Air Quality Management Areas; and
 - c. To maintain existing levels of amenity within Industrial and Rural Air Quality Management Areas and the Coastal Marine Air Quality Management Area.

Policies under Chapter 4 – Air Quality

- Policy 4.4.3 Significant adverse effects from the discharge of contaminants into air from any source shall be avoided; where this is not practicable for the cumulative effects from small sources, the effects of such discharges shall be minimised.
- Policy 4.4.9 The Best Practicable Option shall be employed in accordance with the definition in Section 2 of the RMA to avoid or minimise significant adverse effects from the discharge of contaminants into air.
- Policy 4.4.15 In assessing the effects of discharges of contaminants into air, particular regard shall be had to:
 - a. Adverse effects on the environment, including amenity, human health and property;
 - b. The methods to avoid or minimise adverse effects on the environment;

- *c.* The location of the activity and the proximity of other activities sensitive to the discharges;
- d. Any cumulative adverse effects on the environment;

Comment

The Air Discharge Assessment (Appendix D) describes the air quality within the area of the AHB as characteristic of an urban/coastal environment. The discharge of airborne particles and contaminants resulting from bridge maintenance activities are to be managed in ways that will comply with the air quality standards within the NES:AQ, the ARP:ALW, and other relevant standards and guidelines. Where discharges to air would otherwise fail to meet those standards and guidelines, the AMF identifies methods (wind speed and directional controls and buffer zones (via the EMP) that result in less than minor effects on sensitive receivers.

As discussed in 6.0 above, the Air Discharge Assessment Report (Appendix D) has identified odour, nuisance and human health effects as the key concerns regarding discharge to air. Given the length of the bridge and its location within the Waitemata Harbour, sensitive receivers such as residences, businesses, and recreational users are generally at such a distance that no effects occur. The areas around each bridge abutment have been identified as potential sensitive receivers, although monitoring undertaken indicates that maintenance activities can be managed in a way so that adverse effects arising from discharges to air are avoided or minimised

The proposed approach is concluded to be the best practicable option and the AMF approach along with the proposed conditions will enable the activity to be undertaken in a way that avoids adversely affecting any parties. Given this and the above, the proposal is consistent with the air quality objectives and policies in the ARP:ALW Chapter 4.

7.8.2 Discharges to Land

Objectives under Chapter 5 – Discharges to Land and Water and Land Management

Objective 5.3.1 – To protect, maintain, or enhance the quality of land and water in the Auckland Region by:

- (a) Maintaining areas of high environmental quality;
- *(b) Minimising adverse effects on degraded natural and physical resources where these cannot be avoided; and*
- (c) Enhancing degraded areas where practicable.

Policies under Chapter 5 – Discharges to Land and Water and Land Management

Policy 5.4.44 – Reuse of washwater will be encouraged. Washwater disposal to land will be acceptable where it will not result in contaminant runoff or the accumulation of contaminants, such as hydrocarbons and heavy metals, above acceptable levels in the receiving environment. Washwater should only be discharged to water where other options including disposal to the sanitary sewer are impractical, and a thorough evaluation of the assimilative capacity of the receiving

environment has been carried out proving the discharge will not give rise to any significant adverse effects.

<u>Comment</u>

Key contaminant discharges to land from maintenance activities are proposed to be minimised as afar as reasonably practicable. Abrasive blasting discharges, and washwater discharges will be managed to meet Permitted Activity criteria. Considering this, and the expectation that overall contaminant discharge levels are likely to be reduced from the authorised 15% dry discharge under the existing consents, the proposal is consistent with the objectives and policies of the APR:ALW Chapter 5.

7.9 Proposed Auckland Unitary Plan

7.9.1 Discharges to the Coastal Marine Area

Objectives under C.5.1.10 – Discharges to the General Coastal Marine Zone

Objective 1 –	Water and sediment quality in the CMA is maintained and degraded areas enhanced.
Objective 2 –	The mauri of coastal water is maintained and, where possible, restored to enable traditional and cultural use of the coast and its resources by Mana Whenua.
Objective 3 –	The life-supporting capacity and natural resources, including kaimoana, of the Hauraki Gulf, are protected and, where appropriate, enhanced.
Objective 6 –	Other discharges, including those from boats and land, are managed to minimise adverse effects on coastal water quality and ecosystems.
Policies under C.5.1	.10 – Discharges to the General Coastal Marine Zone
Policy 1 –	Allow discharges that are consistent with the best practicable option (BPO) approach for preventing or minimising the adverse effects from stormwater and

Policy 3 – Avoid the discharge of contaminants where it will result in significant modification of, or damage to any areas identified as having significant values.

wastewater discharges in the coastal environment.

- Policy 4 Require any proposal to discharge contaminants or water into the CMA to adopt the BPO to prevent or minimise adverse effects on the environment, having regard to whether:
 - a. it is practicable or appropriate to discharge to land above MHWS
 - b. there is a reticulated wastewater system in place that should be used

AGENCY

c. contaminants in the discharge are minimised

- d. the receiving environment has the capacity to assimilate the discharged contaminants after reasonable mixing, particularly within areas identified as having significant ecological value
- e. the adverse effects on the present and foreseeable use of the receiving waters after reasonable mixing have been avoided, remedied or mitigated, particularly in areas where there is:
 - i. high recreational use
 - *ii.* relevant initiatives by Mana Whenua established under regulations relating to the conservation or management of fisheries
 - iii. the collection of fish and shellfish for consumption
 - *iv.* areas associated with maintenance dredging.
- *f.* cleaner production methods would result in the volume and level of contamination being reduced to the greatest extent practicable
- *g.* the discharge after reasonable mixing results in any of the following effects:
 - *i. oil or grease films, scums or foams, or floatable or suspended materials*
 - *ii.* conspicuous change in the colour or visual clarity
 - iii. any emission of objectionable odour
 - iv. any significant adverse effects on aquatic life
 - v. any significant effects of aesthetic or amenity values.
 - vi. the discharge complies with relevant, appropriate and accepted codes of practice and environmental guidelines.

Comment

The proposal is consistent with the above objectives and policies. The objectives and policies of the PAUP relevant to discharges to the CMA are similar or identical to those within the RPS and the ARP:C. As such, the reasons why the proposal meets the relevant objectives and policies of the PAUP are described in detail in 7.6 and 7.7 above.

7.9.2 Air Quality

Objectives under C.5.1 – Air Quality

- Objective 1 Air quality is maintained in those parts of Auckland that have excellent or good air quality, and air quality is enhanced in those parts of Auckland where it is poor.
- Objective 2 Air discharges, including PM10 and PM2.5 (particle pollution, or particulate matter), are reduced to protect public health and amenity, and to meet national and Auckland Ambient Air Quality Standards (AAAQS) in Table 1.
- Objective 3 Human health, amenity values, property and environment are protected from significant adverse effects of air contaminants.

Policies under C.5.1 – Air Quality

Policy 1 –	Protect human health by requiring that air discharges do not cause air quality to exceed the AAAQS in Table 1 for the specified contaminants, and manage the discharge of other contaminants so that the adverse effects on human health, including cumulative adverse effects, are minimised.		
Policy 4 –	 Manage the air quality amenity in the CMA and urban areas by: a. avoiding offensive or objectionable odour, dust, particulate, ash, smoke, fumes, overspray and visible emissions b. avoiding any significant adverse effects from industrial or rural activities air discharges c. having adequate separation distances and best management practices for industrial or rural activities d. minimising adverse air quality effects from urban and marine activities. Retain soil and sediment on the land, and not discharge it to water bodies and coastal water by use of best sediment and erosion control practices 		
Policy 12 –	 Avoid or minimise air discharges by: a. using best management practices b. adopting a precautionary approach where there is uncertainty and a risk of serious effects or irreversible harm to the environment from air discharges c. using best practicable option emissions control at the source of the discharge d. avoiding air discharges that will cause significant adverse effects. 		
Policy 13 –	 Avoid significant adverse effects from air discharges beyond the boundary of the premises where the discharge is occurring, including: a. Noxious or dangerous effects on human health, property, or the environment from hazardous air pollutants b. offensive or objectionable effects on amenity values from odour, dust, particulate matter, smoke, ash, fumes and visible emission c. Overspray effects on human health, property or the environment 		
Policy 14 –	 Require individual sources of any discharge to air to demonstrate where relevant to the discharge type and reasonably practicable: a. Low-emission fuels are used b. Energy is efficiently used c. Best practicable option is used d. fugitive emissions are minimised e. risk and adverse effects on people, property and the environment from hazardous air pollutants are avoided f. the amenity provisions of any zone where the discharge is having an 		

effect are met g. recognised best-practice management and emission control standards are met

7

- *h.* there are adequate separation distances to activities sensitive to air discharges
- *i.* significant adverse effects on flora and fauna, particularly where they are food sources or in areas identified as SEAs both on land and in the CMA are avoided.

<u>Comment</u>

As discussed in 6.0 above, effects of discharges from maintenance activities on the AHB will not adversely affect the ambient air quality when works are undertaken in accordance with the proposed AMF and remain within the thresholds and concentrations proposed for the key contaminants. In particular buffer zones will be set in the EMP for certain contaminants to achieve this outcome and avoid effects on sensitive receivers. In addition it is likely that a form of containment under the EMP will be used to manage overspray on neighbouring properties to avoid this type of nuisance effects and therefore avoid triggering any adversely affected parties.

The proposal is considered to be the best practicable option and proposed conditions can enable the activity to be undertaken in a way that is consistent with the Air Quality objectives and policies of the PAUP.

8 Mana Whenua Consultation

In the process of preparing this application, the Transport Agency has undertaken engagement with Iwi. Initially groups that were known to have Mana Whenua status and had previously engaged with the agency over AHB matters were directly communicated with, informed of the proposal and invited to comment.

Subsequently groups that have identified Mana Whenua status identified by local board area were sent emails explaining the proposal using Auckland Council's Mana Whenua Consultation Database. Table 8.1 below summarises all communications with iwi and their responses. A complete record of email communications is provided in Appendix F.

An onsite hui was schedule for 14 October 2014 with invitations extended to representatives from Ngati Whatua, Ngai Tai ki Tamaki, Te Kawerau a Maki and Ngati Paoa. All invitees were either unable to attend or did not respond. A hui for a proposal relating to the AHB is scheduled for November and the NZ Transport Agency will use that forum to continue keeping mana Whenua briefed and engaged on this consent application.

lwi	Contact Person	Communication	Response
Te Runganga o Ngāti Whātua	Tame Te Rangi	Emails – 25/07/2014 09/09/2014 1/10/14	Email 29/07/2014 – Deferred to Ngati Whatua o Orakei . Invited to Hui. No response received.
Ngati Whatua o Kaipara	Glen Wilcox, then Michele ?	Emails – 25/07/2014 09/09/2014	No response received
Ngāti Whātua o Ōrākei	Pani Gleeson	Emails – 27/05/2014 25/07/2014 09/09/2014 1/10/14	No response received
Te Kawerau a Maki	Edward Ashby	Emails – 27/05/2014 25/07/2014 09/09/2014 1/10/14	Email 28/05/2014 - Positive response to an application that would maintain or reduce discharges. Sought a meeting. Invited to hui. Unable to attend but asked to be kept informed.

Table 8.1. Summary of iwi consultation - communication and responses.

Mana Whenua Consultation

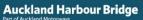
Ngāi Tai ki Tāmaki Ngāti Tamaoho	David Beamish Ted Ngataki	Emails – 27/05/2014 25/07/2014 09/09/2014 1/10/14 Emails – 25/07/2014 09/09/2014	Email 25/7/2014 - Seeks best environmental outcome while acknowledging this is not always possible. Sought information on how long consent is for and whether the new consent would preclude future improvements in technology, techniques or methods. Invited to Hui. No response received. No response received
Te Patukirikiri	David Williams	Emails – 25/07/2014 09/09/2014	No response received
Ngāti Te Ata Waiohua	Karl Flavell	Emails – 25/07/2014 09/09/2014	No response received
Te Akitai Waiohua	Nigel Denny	Emails – 25/07/2014 09/09/2014	No response received
Ngāti Paoa	Lucy Tukua	Emails – 27/05/2014 25/07/2014 09/09/2014 7/10/2014	No response. Invited to Hui. Could not attend. Provided with the MEA for understanding of eco-toxicity effects.
Ngāti Whanaunga	Nathan Kennedy	Emails – 25/07/2014 09/09/2014	No response received
Ngāti Maru	Geoff Cook William Peters Nikky Fisher	Emails – 25/07/2014 09/09/2014	Email 08/09/2014 – Confirmed interest in area and that they are not opposed to this application and no further consultation or CIA is required.
Ngāti Tamaterā	Liane Ngamane	Emails – 25/07/2014 09/09/2014	No response received

9 Proposed Draft Conditions

Conditions applying to Permits 38519, 38835, and 38836 have been used as a basis to develop draft conditions for this consent application. Overall, any changes made in the existing conditions reflect the proposed replacement of the prescribed discharge containment methodology with the proposed AMF. The conditions are proposed as a draft for discussion with Council.

Proposed General Conditions

A. GENERAL


- Pursuant to section 36 of the Resource Management Act 1991, consents XXXXX and XXXXX (or any part thereof) shall not be exercised until such time as all charges in relation to the receiving, processing and granting of these resource consents are paid in full.
- The consents referenced XXXXX and XXXXX shall expire on XX Month 2040 unless they have lapsed, been surrendered or been cancelled at an earlier date pursuant to the Resource Management Act 1991.
- 3. Access to the relevant parts of the AHB shall be available at all reasonable times to enable the servants or agents of the Auckland Council to carry out inspections, surveys, investigations, tests, measurements or take samples whilst adhering to the Consent Holder's health and safety policy.

Review Condition

- 4. The activities granted under these consents shall be operated in accordance with the documentation submitted to the Auckland Council, particularly the Auckland Harbour Bridge Adaptive Management Framework (AMF), as part of applications numbered XXXXX and XXXXX, where not amended by the conditions of this resource consent. The conditions of this consent may be reviewed by the Major Infrastructure Team Manager pursuant to Section 128 of the Resource Management Act (1991), by the giving of notice in accordance with Section 129 of the Act, on XX Month 2016 and annually thereafter in order to:
 - a. Deal with any significant adverse effect on the environment arising from the exercise of the consent that was not foreseen at the time that the application was considered;
 - b. Consider the adequacy of conditions that prevent nuisance beyond the boundary of the site, particularly if complaints have been received on a frequent basis and which have been validated by an enforcement officer; and
 - c. To take into account any act of parliament, regulation, national policy statement or relevant regional plan that relates to limiting, recording or reducing emissions authorised by this consent.

Documentation

- 5. The documentation below, submitted in support of the application, forms part of this consent and supplies reference information for these permits:
 - a. Report: 'Auckland Harbour Bridge Maintenance Discharge Assessment of Environmental Effects' prepared by Beca dated August 2014 including appendices A-F.

Navigation and Safety

- 6. The Consent Holder shall notify the Harbourmaster's Office in writing 10 (ten) working days prior to commencing any maintenance works within the main navigation span of the AHB specifying the duration, nature and location of works. The consent holder shall advise the Harbourmasters Office a minimum of 24 hours prior to any change in works duration, nature or location.
- 7. The Consent Holder shall notify the Harbourmaster's Office and the Pollution Response Team in the case of any spill of hydrocarbons which enters the Waitemata Harbour from the AHB and, in which event, the Spill Response Plan will immediately be deployed as required by the provision of the Spill Response Plan required by Condition 13.

B. ADAPTIVE MANAGEMENT FRAMEWORK (AMF)

- 8. The consents shall be implemented in accordance with the AMF. Where there is conflict between the consent conditions and the AMF, the consent condition shall prevail unless alternative agreement is reached between the Consent Holder and the Major Infrastructure Team Manager.
- 9. The purpose of the AMF is to enable maintenance activities on the Auckland Harbour Bridge in a flexible and practicable way and to provide for discharges to the environment that avoid remedy or mitigate significant adverse effects by maintaining or reducing discharges within prescribed thresholds. To achieve this purpose the Consent Holder shall undertake the maintenance activities following the process as set out in the AMF (Appendix A of the application documents listed in condition 5 above).

Key Contaminant Thresholds

10. In achieving the purpose of the AMF the Consent Holder shall not exceed the following thresholds:

Contaminant	Recommended Thresholds
PM ₁₀ / Total Suspended Particulates	PM10 total: 31 kg/annum (2011 consent baseline for abrasive blasting) PM10 (acute - 24hr): 50µg/m ³ (MfE) TSP (acute - 24hr): 80µg/m ³ (MfE)
Garnet Sand / Dust	Coastal: 14,679 kg/annum (2011 consent baseline)
Zinc	Air (acute 1hr): 20μg/m ³ (TCEQ ESL) Coastal: 223 kg/annum (2011 consent baseline)
Lead	Air (acute 0.5hr): 1.5g/m ³ (Ontario Ministry for the Environment)
Chromium	Air (acute 1hr): 3.6µg/m ³ (TCEQ ESL)
Iron	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Volatile Organic Compounds (VOCs)	Xylene: Air (odour 1hr): 350µg/m ³ (TCEQ ESL) Toluene; Air (odour 1hr): 640µg/m ³ (TCEQ ESL) Naptha: Air (odour 1hr): 3500µg/m ³ (TCEQ ESL) Ethylbenzene; Air (odour 1hr): 740µg/m ³ (TCEQ ESL) Methyl Isobutyl Ketone: Air (odour 1hr): 820µg/m ³ (TCEQ ESL)
Diisocyanates	Air (acute 1hr): 50μg/m ³ (TCEQ ESL)
Paint	Coastal: 646kg/annum (2011 consent baseline)

Environmental Management Plan

- 11. To demonstrate how the thresholds in Condition 11 shall be achieved the Consent Holder shall submit an updated EMP to the Major Infrastructure Team Manager for written approval within 60 (sixty) working days of the commencement of this consent. The Manager shall have 20 working days from receipt of the EMP to seek changes otherwise the EMP shall be considered to be endorsed by the Manager.
- 12. The EMP is a 'live' document. At any time across the duration of this consent, the consent holder shall be entitled to resubmit modifications to the content to change or improve the processes used to give effect to this consent. The Manager shall have 20 working days from receipt of a revised EMP to seek changes otherwise the EMP shall be considered to be endorsed by the Manager.
- 13. The EMP shall provide for, but not be limited to, addressing the following matters:
 - a. Methodologies (including work instructions / site audit forms / buffer zones and similar processes) designed to manage discharges within the thresholds including but not limited to the following maintenance activities:

Proposed Draft Conditions

- Washdowns
- Waterblasting
- Dry abrasive blasting
- Wet abrasive blasting
- Exterior steelwork painting (including priming, inhibitors, and paints)
- b. Implementation of continuous improvement processes to modify the EMP performance in pursuit of the AMF purpose;
- c. A Spill Response Plan and measures to ensure the Spill Response Plan is operational at all times;
- d. Confirmation that any plant or equipment will meet applicable noise controls in the coastal environment ;
- e. Any conditions when maintenance works will cease or not be carried out (e.g. wind speed, wet weather) within certain areas (e.g. buffer zones);

Monitoring

- 14. To enable summary reporting on compliance with the annual discharge thresholds the EMP shall identify methods and frequency of monitoring which shall include the following;
 - a. Activity carried out: waterblasting, wet abrasive blasting, dry abrasive blasting, or spray painting;
 - b. Location where work was carried out: Coast or land;
 - c. Surface area the activity was carried out on (m2);
 - d. If abrasive blasting, the amount of agent used (kg), lead content at that location;
 - e. If painting, the amount of paint used (L), and an estimate of the overspray (%) (and guidance on how to estimate this);
 - f. If containment has been used, an estimate of the percentage of containment achieved (and guidance on how to estimate/ determine this); and
 - g. If working within Buffer Zones, the wind speeds and direction.

Reporting

15. The Consent Holder shall submit to the Major Infrastructure Team Manager an annual report containing a summary of the results of the monitoring data collected in accordance with condition 14 to demonstrate compliance with condition 10 (contaminant thresholds). The annual monitoring report shall also include details of any new method or product that has been trailed using the adaptive process within the AMF under conditions 16 and 17 and outline how the steps of this process have been satisfied and any recommended

amendments to the EMP. The Manager shall have 20 working days from receipt of the report to seek changes or clarifications otherwise the report shall be considered to be endorsed by the Manager.

Adaptive Process

- 16. To achieve the AMF purpose the consent holder may utilise the adaptation process within the AMF. This process can be used to test and trial new products and methods to demonstrate satisfaction of the 4 step adaptation process that is guided by the supporting technical sheets that prescribe the testing and trial methodology. Field trailing of new products shall be limited to a maximum area of 100m² unless alternative agreement is reached between the Consent Holder and the Major Infrastructure Team Manager.
- 17. Any future amendments to the EMP or plans therein resulting from the implementation of the consent or from the implementation of the adaptation process within the AMF under condition 12 shall be forwarded to the Major Infrastructure Team Manager. The Manager shall have 20 working days from receipt of a revised EMP to seek changes otherwise the EMP shall be considered to be endorsed by the Manager..

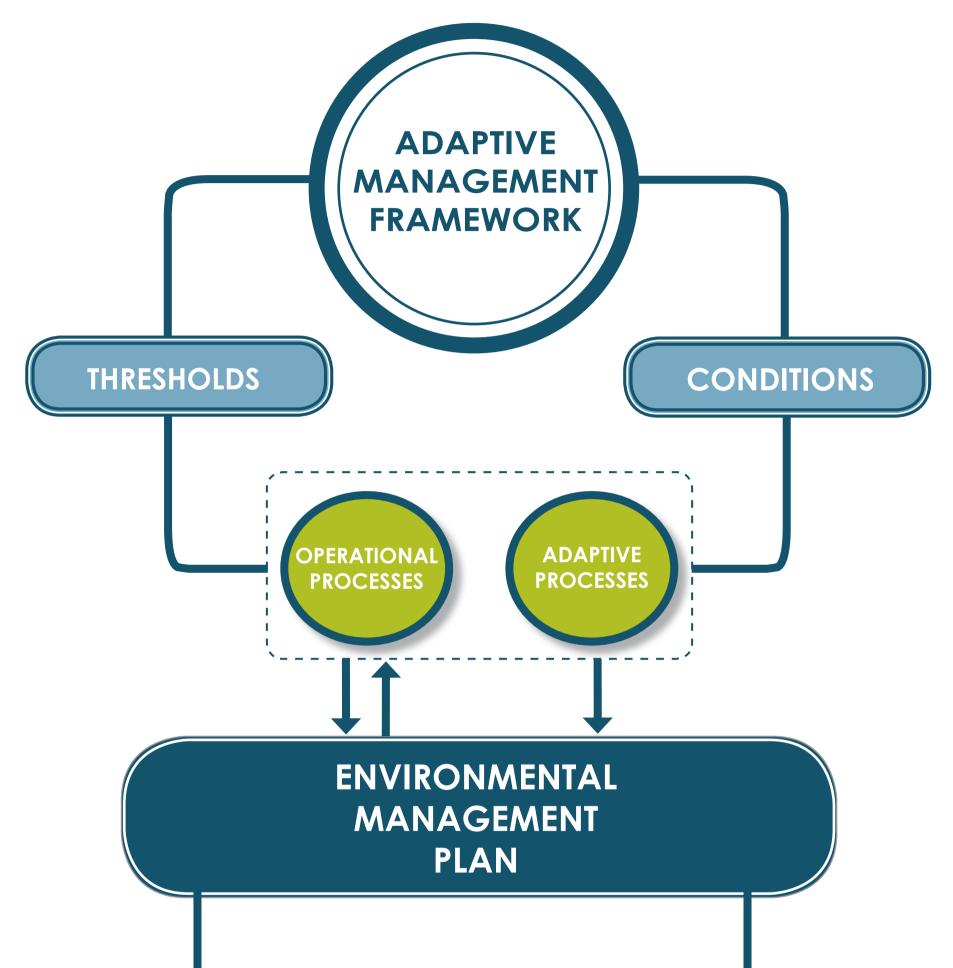
C. DISCHARGE SPECIFIC CONDITIONS

Air

- 18. Air discharges from maintenance activities, including but not limited to, abrasive blasting and painting, shall be managed by controls, including but not limited to, buffer zones, wind speed, wind direction and containment to meet all the relevant thresholds.
- 19. Controls for air discharges from maintenance activities are to be detailed in the Environmental Management Plan (EMP).

Appendix A

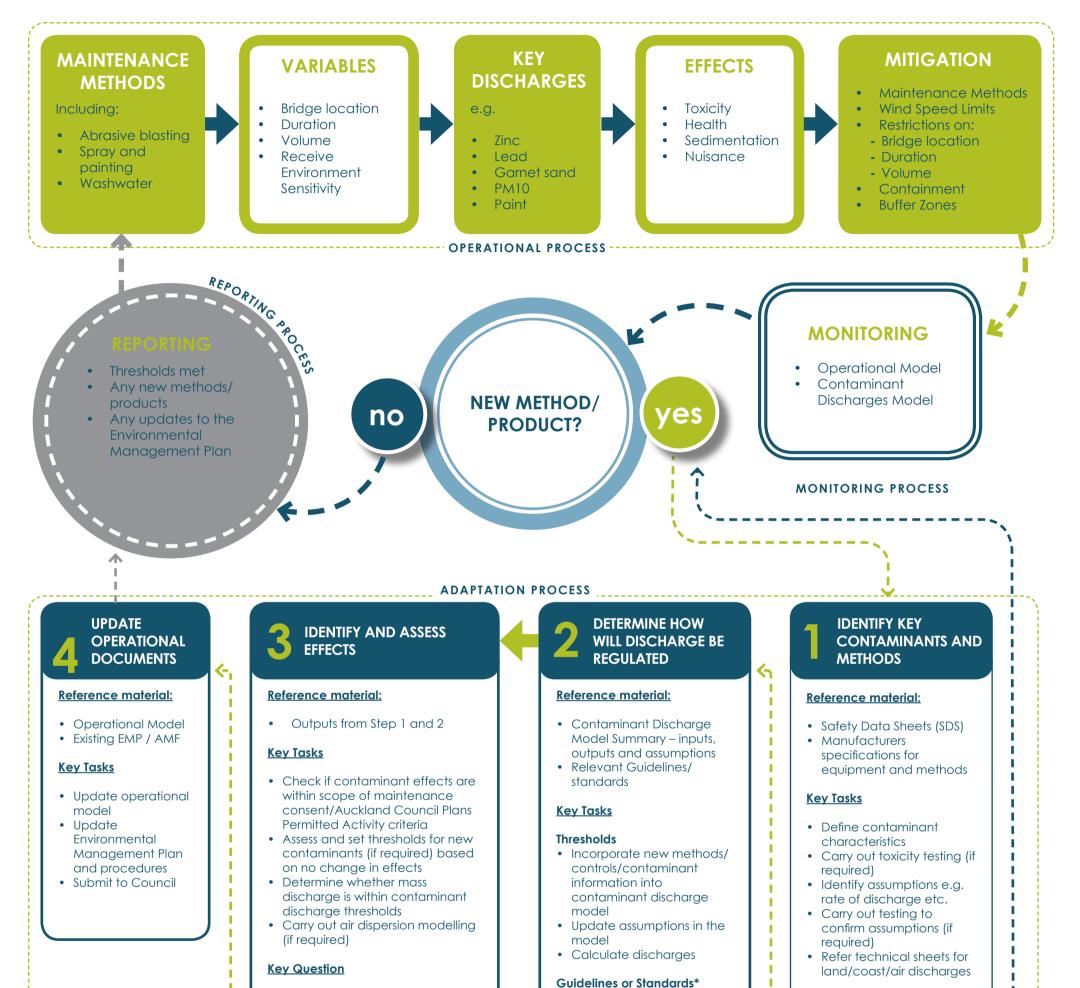
Adaptive Management Framework

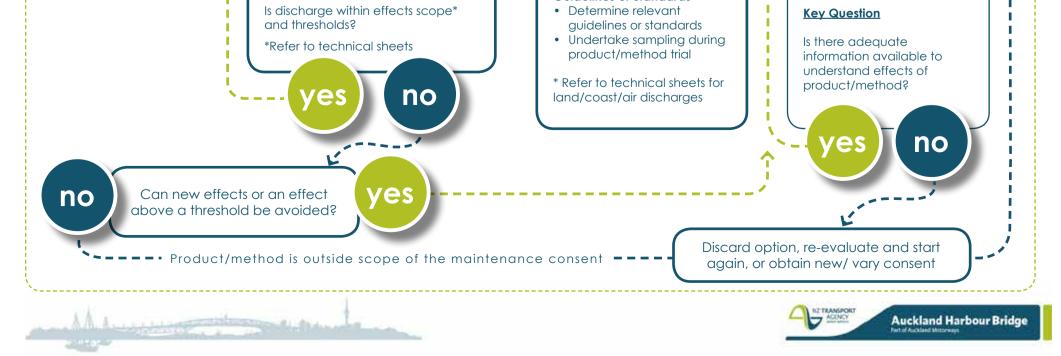


08.10.14 Rev G

NAM ANA

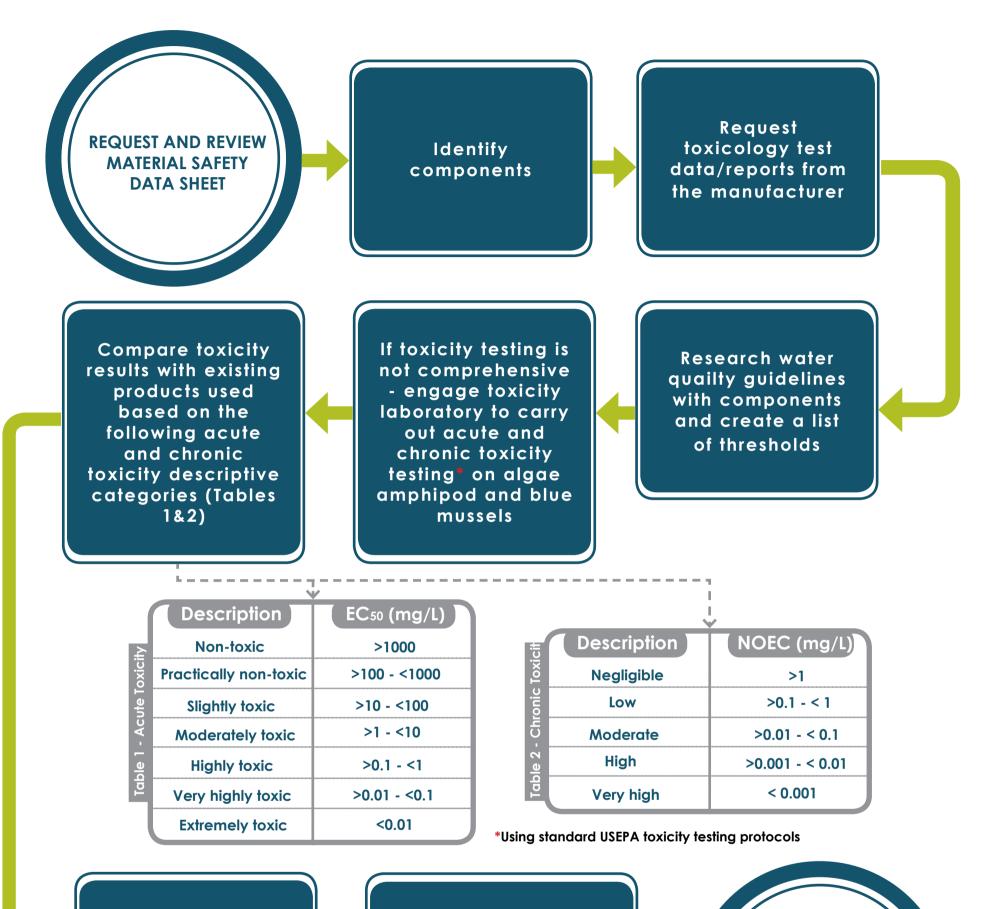
ADAPTIVE MANAGEMENT FRAMEWORK





08.10.14

Rev G



08.10.14 Rev G

ADAPTIVE MANAGEMENT PROCESS - COASTAL TECHNICAL SHEET

Compare contaminants to consented If product meets consented contaminant thresholds and

contaminant thresholds where appropriate toxicity characteristics of existing products, update Environmental Management Plan or model to include new product

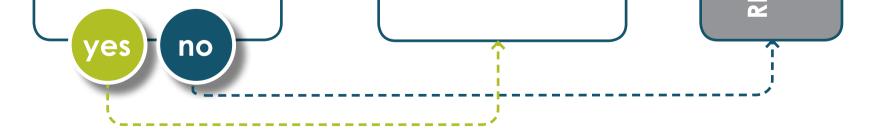
Consented Effects:

Eco-toxicity

- Practically non-toxic from acute toxicity testing;
- Negligible effects from chronic toxicity testing;

Smothering - Garnet Sand

- Up to 3mm accumulative layer of abrasive material



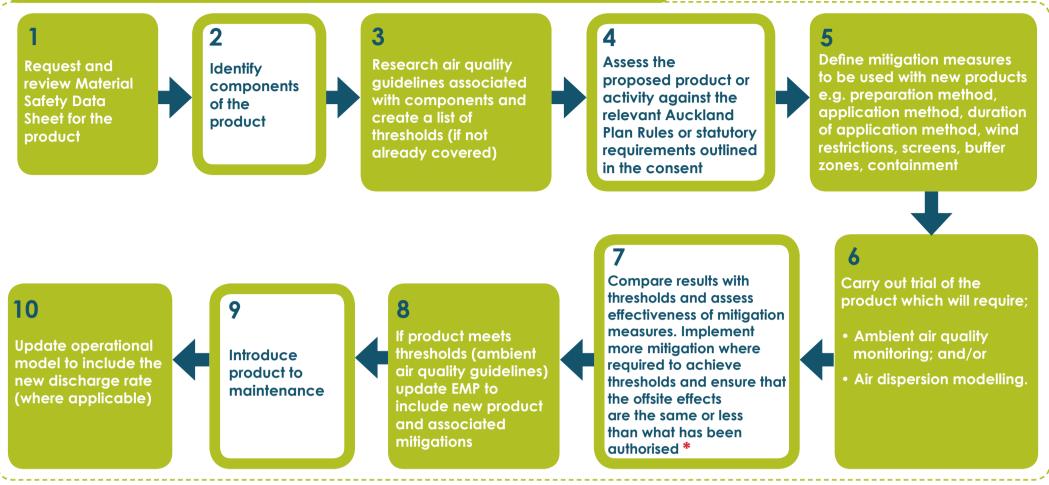
AUCKLAND HARBOUR BRIDGE ADAPTIVE MANAGEMENT PROCESS - LAND TECHNICAL SHEET

08.10.14 Rev G

STEP 2 STEP 3 **STEP** Is the product/ method Doe the product/ method Can the product/ method substantially the same as dispearse contaminants into be used as Permitted Activity existing product/ method? the air that could deposit onto under the relevant council (e.g. new brand of the same type of plans? land? coating system) <u>Key Tasks</u> Check product and method <u>Key Tasks</u> against the Auckland Council • Check SDS for any new Regional Plan: Air Land and contaminants Water and Proposed Auckland • Check SDS for proportion of key Unitary Plan rules to determine if it contaminants can meet the PA requirements. Check manufacturer • Determine whether any new specification for details of controls are needed to meet PA application method requirements. no no no 193 STEP 5 ST Y Can the discharge from New product/ method **ESOURCE CONSENT** the product/ method be approved for use, update controlled or contained to operational documents. ensure the discharge to land and any effects are REQUIRED <u>Key Tasks</u> negligible? • Add new controls to EMP • Add new product/ method into operational model <u>Key Tasks</u> • Determine whether any new controls are needed to ensure the discharge is negligible.

Consented Effects:

Less than minor effects from discharges that meet permitted activity standards / controls in the relevant regional plan.



08.10.14 Rev G

ADAPTIVE MANAGEMENT PROCESS - AIR TECHNICAL SHEET

When a new product is to be used the following is process shall be followed:

When a new method is to be used the following is process shall be followed:

Review the methodology and determine discharges to air Assess the proposed activity against the relevant Auckland Plan Rules or statutory requirements outlined in the consent

Research air quality guidelines associated with components and create a list of thresholds (if not already covered)

4

Define mitigation measures to be used with new method, e.g. wind restrictions, screens, buffer zones and containment

8

If method meets thresholds (ambient air quality guidelines) update EMP to include Introduce method to maintenance

6

3

Compare results with thresholds and assess effectiveness of mitigation measures. Implement more mitigation where required to achieve thresholds and ensure that the offsite effects are the same or less than what has been authorised *

5 c

Carry out trial of the methodology which will require;

 Ambient air quality monitoring; and/or

• Air dispersion modelling

*Consented Effects:

Human Health

- Thresholds in accordance with the most relevant national standards or international or national best practice guidelines that result in discharge concentrations that do not cause adversly affected parties or human health effects.

Appendix B

Marine Ecology Assessment (Boffa Miskell, September 2014)

11.11

AUCKLAND HARBOUR BRIDGE

Marine Ecology Assessment – Maintenance Discharges Prepared for Total Bridge Services

3 September 2014

Boffa Miskell

Document Quality Assurance

Bibliographic reference for citation:

Boffa Miskell Limited 2014. AUCKLAND HARBOUR BRIDGE: Marine Ecology Assessment – Maintenance Discharges. Report prepared by Boffa Miskell Limited for Total Bridge Services.

Prepared by:	Dr Sharon De Luca Principal / Ecologist Boffa Miskell Limited	Bladure
Reviewed by:	Dr Leigh Bull Principal / Ecologist Boffa Miskell Limited	Bull
Status: FINAL	Revision / version: [D]	Issue date: 3 September 2014

Template revision: 20140327 0000

File ref: T13076_Marine_Ecology_Assessment_3rd_Draft_20140807_Revised_BTM.docx

© Boffa Miskell Limited 2014

CONTENTS

1.0	Intro	duction	3
	1.1	Waitemata Harbour	3
	1.2	Central Waitemata Harbour (CWH)	3
	1.3	Hydrodynamic Environment of CWH	4
2.0	Mari	ne Ecological Values	5
	2.1	Sediment Quality	5
	2.2	Saline Vegetation	6
	2.3	Benthic Invertebrate Community Composition	6
	2.4	Fish	7
	2.5	Assessment of Ecological Values	8
3.0	Asse	essment of Effect of Currently Consented Regime	10
	3.1	Approach to Assessment and Significance of Effect	10
	3.2	Deposition of sediment	11
	3.3	Discharge of contaminants	11
	3.4	Ecotoxicity of Existing Products	13
	3.5	Summary of Assessment of Effects of Currently Consented Regime	14
4.0		osed Activity – Adaptive Management of Bridge Itenance	15
	4.1	Adaptive Management Framework (AMF)	15
	4.2	Contaminants	15
	4.3	Toxicity of Products	17
	4.4	Example of New Product Tested under AMF	18
5.0	Asse	essment of Effects	18
6.0	Refe	rences	19
Арре		A: Assessment of Potential New Product – Mainanence harges	
Appe	ndix E	8: Adaptive Management Framework Summary	
Appe	ndix C	C: Termarust MSDS Report	
Appe	ndix E	2: Termarust Manufacturer's Toxicity Report	
Appe	ndix E	: NIWA Toxicology Report	

1.0 Introduction

The Auckland Harbour Bridge (AHB) is located within the Central Waitemata Harbour, Auckland. During routine maintenance of the AHB some contaminants are discharged to the Coastal Marine Area (CMA) (i.e. Waitemata Harbour). The mass of the existing consented discharges are converted to thresholds. This report assesses the effects of those currently consented discharges, based on these thresholds, on the marine ecological values that are present based on information that is currently available in the scientific literature and Auckland Council's monitoring reports.

1.1 Waitemata Harbour

The Waitemata Harbour is located on the east of the Auckland isthmus on the Hauraki Gulf and is described as a drowned river valley and extends from Riverhead in the north-west to Tamaki River in the east (Swales et al. 2008). The total surface area of the harbour is approximately 80 km^2 , making it the largest estuary on the Auckland region east coast (Swales et al. 2008).

The harbour comprises a main channel with a depth of approximately 17 metres, with a large number of tidal creeks, bays and inlets (Swales et al. 2008). A wide range of marine habitats are present within the harbour, including intertidal flats, sandy beaches, deep channels, and sandstone and basalt reefs (Auckland Council 2011).

The harbour can be divided into the Central Waitemata Harbour (CWH) extending from the harbour mouth to Catalina Bay, and Upper Waitemata Harbour (UWH) from the bay to Riverhead. The AHB and surrounding marine environment is located within the CWH.

Maritime traffic within the Waitemata Harbour includes both recreational and commercial vessels.

1.2 Central Waitemata Harbour (CWH)

The CWH contains a number of large intertidal embayments including Hobson Bay on the southern shore, and Shoal Bay and Ngataringa Bay on the northern shore (Figure 1). Extensive intertidal flats and mangrove (*Avicennia marina* subsp. *australasica*) stands are present in the central basin and western areas.

Meola Reef (Te Tokaroa) extends 2.5 km across the central part of the harbour and is located approximately 3 km west from the AHB. Close to shore the reef is covered in mangroves and saltmarsh, and intertidal rocky habitats are exposed at low tide (Shears 2010).

The Motu Manawa (Pollen Island) marine reserve occurs to the west of the central basin and includes intertidal mud flats, mangroves, saltmarsh and shell banks.

Shoal Bay incorporates shellbanks, landforms, saline vegetation (saltmarsh and mangroves), and intertidal flats that are important feeding and roosting grounds for resident and migratory shorebirds. The Proposed Auckland Unitary Plan recognises a mosaic of Significant Ecological Areas (both category 1 and 2) within the Coastal Marine Area (CMA) of Shoal Bay. These ecological areas are the same as the Coastal Protection Areas 1 and 2 identified in the Operative Auckland Regional Plan: Coastal.

The Department of Conservation (DOC) recognises Shoal Bay as an Area of Significant Conservation Value (ASCV). The Bay is also classified as a Site of Ecological Significance (SES), a Site of Significant Wildlife Interest (SSWI), and a Significant Natural Heritage Area (SNHA).

1.3 Hydrodynamic Environment of CWH

The CWH has strong tidal currents (Swales et al. 2008) and small waves due to the narrow, enclosed form of the harbour (Auckland Council, 2011).

Hydrodynamic modelling carried out by Green (2008) suggests that the ultimate fate of most of the discharges originating from the AHB is the wider Hauraki Gulf, with approximately a quarter of the discharges on the northern side of the bridge being retained in Shoal Bay.

Green (2008) modelled the sources and accumulation of stormwater contaminants and sediment within subcatchments of the CWH (Figure 2).

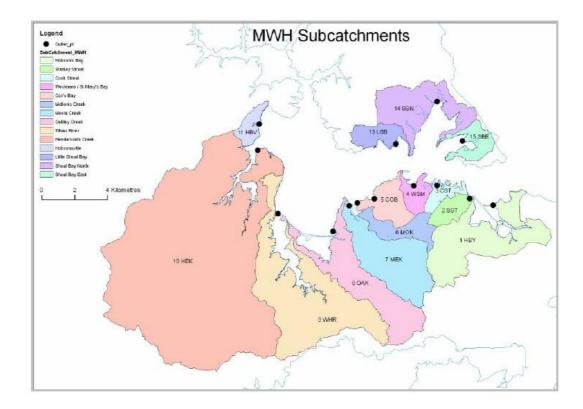


Figure 2: Division of the Central Waitemata Harbour into subcatchments (from Green, 2008, Figure 2, page 19).

Of relevance to the AHB and assessment of effects relating to maintenance discharges to the CMA, the modelling indicates the following:

- Henderson Creek (HEK) and Whau River (WHR) subcatchments were the primary sources of zinc and copper in the harbour, followed by Oakley Creek (OAK) and Shoal Bay North (SBN).
- 95% of sediment discharged from Westmere / St Mary's (WSM) (i.e. the catchment containing the southern AHB abutment) discharges to the wider Hauraki Gulf and 1% to Shoal Bay.

- Very little of the sediment from the four subcatchments that drain the southern shore of the harbour throat ultimately deposits in Shoal Bay due to the natural constriction which is spanned by the AHB.
- Shoal Bay receives sediment and metals from every subcatchment, excluding the four on the southern shore.
- Sedimentation rates in Shoal Bay are high.
- 67% of sediment discharged from Little Shoal Bay (i.e. the catchment containing the northern AHB abutment) discharges to the wider Hauraki Gulf, with 24% retained in Shoal Bay.
- Of the zinc load in Shoal Bay:
 - o 23% from Henderson Creek catchment;
 - o 18% from Shoal Bay North (SBN) catchment;
 - o 11% from Whau River (WHR) catchment;
 - o 10% from Oakley Creek (OAK);
 - 10% from Motions Creek (MOK);
 - o 10% from the upper Waitemata Harbour (UWH);
 - o 7% from Meola Creek (MEK); and
 - Remainder from Coxs Bay (COB), Hobsonville (HBV), Little Shoal Bay (LSB) and Shoal Bay East (SBE).

2.0 Marine Ecological Values

Marine ecological values for the areas adjacent to the AHB and Shoal Bay, within the Central Waitemata harbour, are discussed in the following sections.

2.1 Sediment Quality

Mills et al. (2012) investigated the current contamination status of Auckland's estuaries, including the Waitemata Harbour, in addition to temporal trends between 1998 and 2010. The authors observed that the highest contaminant concentrations were generally in the muddy upper reaches of the CWH, which receive runoff from highly urbanised and industrialised catchments. Contaminant concentrations at sites surveyed adjacent to the AHB (see Figure 2.1, page 8, TR2012/041) were typically in the green Environmental Response Criteria (ERC) threshold range. The exceptions are an elevated lead concentration at Shoal Hillcrest (amber) and HMW-PAHs at Chelsea (red) (Table 1).

Contaminant (mg\kg)	ERC Green	ERC Amber	ERC Red	Chelsea	Shoal Hillcrest	Shoal Lower	Shoal Upperr	Coxs Creek	Meola Reef
Copper (Cu)	<19	19-34	>34	7.0	17.0	5.4	4.6	5.0	9.6
Lead (Pb)	<30	30-50	>50	15.3	32.0	11.0	12.0	14.1	21.0
Zinc (Zn)	<124	124-150	>150	53.0	113.0	46.0	44.0	75.0	90.0
HMW-PAH	<0.66	0.66-1.68	>1.68	2.36	-	-	-	-	0.46

Table 1: Sediment quality adjacent to the AHB (Mills et al., 2012).

2.2 Saline Vegetation

Large stands of mangroves are present along most sheltered margins of the CWH to Shoal Bay. The mangroves in Shoal Bay cover approximately 140 hectares range in stature from 0.5 m to 3 m tall (Auckland Regional Council 1999).

Since December 2004, patches of seagrass (*Zostera capricorni*) have been detected at Meola Reef. Temporal trends show a gradual increase in the number and size of these patches. Seagrass has not been detected adjacent to the AHB nor within Shoal Bay (Halliday et al., 2006).

2.3 Benthic Invertebrate Community Composition

2.3.1 Subtidal Channel

Subtidal benthic soft sediment fauna was analysed by Hayward et al. (1997)¹. These researchers concluded that seaward of the wharves and marinas, the soft-bottom fauna within the central Waitemata Harbour remains remarkably rich and diverse (compared to the survey carried out in 1930). The dominant organisms within these areas were grouped into faunal associations as follows:

- N6 Theora lubrica / Nucula spp / Macrophthalamus hirtipies
- N3 Limaria orientalis / Ruditapes largillierti / Tawera spissa
- N2 Maoricolpus roseus / Limaria orientalis / Nucula spp.

Hayward et al. (1997) concluded that these associations occurred in horizontal bands across the main subtidal channel with N6 on the northern and southern edges, and N3 and N2 in the centre. Other common organisms present in the subtidal channel included polychaete worms, the chiton *Leptochiton inquinatus*, the crab *Paguristes pilosus*, brittle stars (*Amphiocnida pilosus* and *Amphiopolis squamata*), gastropods (*Cominella quoyana, Sigapatella novaezelandiae* and *Zegalerus tenius*) and the bivalves *Pleuromeris zelandica* and *Dosina zelandica*. Hayward et al. (1997) also noted the arrival of three exotic species since the 1930 survey, including *Limaria orientalis, Theora lubrica* and *Musculista senhousia*. Sediment comprised mud, fine sand and shell.

¹ Hayward, B.W., Stephenson, A.B., Morley, M., Riley, J.L., Grenfell, H.R., 1997. Faunal changes in Waitemata Harbour sediments 1930s-1990s. Journal of the Royal Society of New Zealand, 27(1): 1-20.

On the sides of the main channel under the AHB the community structure was found to be dominated by the bivalves *Theora lubrica*², and nut shells (*Nucula hartivigiana*) and *Nucula nitidula*, occurring in mud, shell and fine sand sediment.

2.3.2 Shoal Bay

This ecologically sgnificant embayment is largely intertidal and comprises estuarine muds, sandflats and sand/shell banks. It is valued for the extensive areas of mangrove, saltmarsh vegetation, adjacent saline wetlands and the habitat and feeding areas that the bay provides for coastal bird species (including the *Threatened* wrybill and northern New Zealand dotterel) (PAUP, Appendix 6.1, 2014).

Surveys carried out by Boffa Miskell Ltd (BML) in 2001, 2007 and 2009 provide information on the intertidal marine invertebrate communities present Benthic invertebrates that inhabit the mangrove stands include mudsnail (*Amphibola crenata*), mud crabs (*Helice crassa* and *Macrophthalmus hirtipes*), cat's eye (*Lunella smaragdus*), and whelks including *Cominella glandiformis* and *Zeacumantus* spp. The 2001 surveys undertaken in the intertidal mudflats adjacent to the northern motorway (see Figure 1), revealed a diversity of both sensitive and tolerant invertebrate organisms with the more abundant organisms being cockles (*Austrovenus stutchburyi*), nut shell (*Nucula hartvigiana*), wedge shell (*Macomona liliana*) and at least ten species of polychaete worms (including *Boccardia polybranchia*, *Orbinia papillosa* and Nereidae).

The BML surveys carried out in 2007 and 2009 within the intertidal habitat adjacent to the Onewa Interchange and to the south towards the northern abutment of the AHB, revealed a high diversity of organisms. Species richness was highest at the site closest to the AHB where, in addition to the same species of gastropods, bivalves and polychaete worms that were found at the northern sites, abundant isopods, amphipods, anemones, nematode worms, sipunculid worms, oliochaete worms, mysid shrimps, cumaceans, ostracods, barnacles, chaetognathan worms, and both red and green algae were also detected.

In recent years, bivalves (e.g. cockle (*Austrovenus stuchburyi*), wedge shell (*Macomona liliana*), and nut shell have declined in Shoal Bay, while silt-tolerant polychaete worms (e.g. *Heteromastus filiformis, Prionospio sp., Aricidea sp.*) have increased in abundance. Mud content has also increased at Shoal Bay. Other common species in Shoal Bay include segmented worms (*Aonides sp. and Macroclymenella sp.*) and the estuarine limpit (*Notoacmea helsmii*) (Halliday et al., 2012).

2.4 Fish

Typical fish species in the central and upper Waitemata Harbour include snapper (*Chrysophrys auratus*), kahawai (*Arripis trutta*), koheru (*Decapterus koheru*), yellow-eyed mullet (*Aldrichetta forsteri*), gurnard (*Chelidonichthys kumu*), John Dory (*Zeus faber*), terakihi (*Nemadactylus macropterus*), trevally (*Caranx georgianus*), rig (*Mustelus lenticalatus*), yellow-belly flounder (*Rhombosolea leporina*), sand flounder (*Rhombosolea plebeian*), parore (*Girella tricuspidata*), jack mackerel (*Trachurus symmetricus*), grey mullet (*Mugil cephalus*), school shark (*Galeorhinus australis*), anchovy (*Engraulidae spp.*), common sole (*Peltorhamphus novaezeelandiae*), eagle ray (*Aeotobatus narinari*) (Morrison, pers. com.). Species of fish that occupy channels include snapper, rig, jack mackerel, school shark and rays, whereas grey mullet, juvenile kahawai, yellow eyed mullet and anchovies are found in the shallows. Flounder and parore can be present through the central and upper Waitemata Harbour.

² Introduced species.

2.5 Assessment of Ecological Values

Our assessment of estuarine ecological value is guided by the following characteristics and determining on balance which of the low, medium or high ecological characteristics apply to a specific habitat or marine area, in this instance Shoal Bay and the benthic habitat beneath the Auckland Harbour Bridge (Table 2).

ECOLOGICAL VALUE	CHARACTERISTICS				
LOW	Benthic invertebrate community has low species diversity.				
	• Benthic invertebrate community dominated by organic enrichment tolerant and mud tolerant organisms with few/no sensitive taxa present.				
	 Marine sediments dominated by silt and clay grain sizes. 				
	Surface sediment predominantly anoxic (lacking oxygen).				
	• Elevated contaminant concentrations in surface sediment, above ISQG- high or ARC-red effects threshold concentrations ³ .				
	Invasive, opportunistic and disturbance tolerant species dominant.				
	Saline vegetation provides minimal/limited habitat for native fauna.				
	Habitat highly modified.				
MEDIUM	Benthic invertebrate community typically has moderate species diversity.				
	• Benthic invertebrate community has both (organic enrichment and mud) tolerant and sensitive taxa present.				
	• Marine sediments typically comprise less than 50-70% silt and clay grain sizes.				
	Shallow depth of oxygenated surface sediment.				
	• Contaminant concentrations in surface sediment generally below ISQG- high or ARC-red effects threshold concentrations.				
	Few invasive opportunistic and disturbance tolerant species present.				
	Saline vegetation provides moderate habitat for native fauna.				
	Habitat modification limited.				

Table 2: Marine ecological value characteristics.

³ ANZECC (2000) Interim Sediment Quality Guideline (ISQG) High contaminant threshold concentrations or Auckland Regional Council's Environmental Response Criteria Red contaminant threshold concentrations (Auckland Regional Council, 2004).

ECOLOGICAL VALUE	CHARACTERISTICS
HIGH	Benthic invertebrate community typically has high species diversity.
	• Benthic invertebrate community contains many taxa that are sensitive to organic enrichment and mud.
	• Marine sediments typically comprise <50% smaller grain sizes.
	Surface sediment oxygenated.
	• Contaminant concentrations in surface sediment rarely exceed low effects threshold concentrations.
	Invasive opportunistic and disturbance tolerant species largely absent.
	Saline vegetation provides significant habitat for native fauna.
	Habitat largely unmodified.

The two primary marine receiving environments for maintenance discharges from the AHB are the benthic environment immediately beneath the bridge itself and Shoal Bay. Discharges that are large grained particulates (e.g. garnet) will settle beneath and adjacent to the bridge and may be dispersed further with the current, whereas other contaminants that are more readily moved by physical coastal processes (e.g. those contained in overspray, paint flakes and washwater) will be transported to and accumulate in Shoal Bay.

The benthic habitat beneath the AHB is likely to comprise:

- a mix of fine and coarse grained sediment;
- low to moderate species diversity;
- both sensitive and tolerant species;
- both exotic and native species; and
- low concentrations of contaminants.

The benthic habitat within Shoal Bay comprises:

- sediment which is a mixture of sand and mud;
- moderate to high species diversity;
- tolerant and sensitive taxa;
- the depth of oxygenated sediment is likely to be shallow;
- contaminant concentrations typically below ISQG-high and ARC-red thresholds;
- invasive species do not dominate;
- saline vegetation provides moderate habitat for native fauna (e.g. wading birds); and
- habitat modification is moderate.

Thus, based on the criteria in Table 2 above and the ecological information available, it is considered that the benthic habitat beneath the AHB has medium ecological values, whereas Shoal Bay has medium to high ecological values.

3.0 Assessment of Effect of Currently Consented Regime

3.1 Approach to Assessment and Significance of Effect

We assess the magnitude of ecological effects using the following criteria⁴:

Magnitude	Description
Very High	Total loss or very major alteration to key elements/ features of the baseline conditions such that the post development character/ composition/ attributes will be fundamentally changed and may be lost from the site altogether.
High	Major loss or major alteration to key elements/ features of the baseline (pre-development) conditions such that post development character/ composition/ attributes will be fundamentally changed.
Moderate	Loss or alteration to one or more key elements/features of the baseline conditions such that post development character/composition/attributes of baseline will be partially changed.
Low	Minor shift away from baseline conditions. Change arising from the loss/alteration will be discernible but underlying character/composition/attributes of baseline condition will be similar to pre-development circumstances/patterns.
Negligible	Very slight change from baseline condition. Change barely distinguishable, approximating to the "no change" situation.

Table 3: Criteria for describing potential effect magnitude.

We then assess the significance of ecological effects using ecological value (determined in Table 2) and effect magnitude (Table 3 above) as shown in the following matrix:

adverse ecological	effects.	U	Ū	
SIGNIFICANCE			Ecological &/or Conservation Value	

Table 4: Matrix combining magnitude and value for determining the significance of

SIGNIFICANCE		Ecological &/or Conservation Value				
210111	FICANCE	High Medium Low				
	Very High	Very High	High	Moderate		
apr	High	Very High	Moderate	Low		
Magnitude	Moderate	High	Moderate	Very Low		
Mag	Low	Moderate	Low	Very Low		
	Negligible	Low	Very Low	Very Low		

⁴ Regini, K. (2002). *Draft Guidelines for Ecological Evaluation and Impact Assessment*. Institute of Ecology and Environmental Management (IEEM).

3.2 Deposition of sediment

The annual deposition of garnet beneath and adjacent to the bridge was previously estimated by Tonkin & Taylor (2011) to cover an area of 12,000 m² at a depth of 2.5mm, in addition to a depth of 0.02 mm over a wider area, due to dispersal patterns, of 480,000 m². These calculations were based on an annual mass of sand discharge of 62,500 kg/annum. The currently consented regime under full containment, which forms the basis of the AMF, is for up to 14,679 kg of sand to be discharged per annum.

Assuming the same sand characteristics (e.g. grain size range, density, and fall velocity), the same current velocity and width of channel beneath the bridge as used in the 2011 calculations, and that the maintenance works are spread somewhat evenly over the year, the current proposal would result in an average deposition depth of 0.6 mm of sand over 12,000 m² of benthic habitat beneath the bridge, and 0.09 mm over a 480,000 m² area adjacent to the bridge. Over time, some sand will be redistributed within the benthic environment, which will result in the sand being spread in thinner layers over a wider area.

Lohrer et al. (2004 and 2006) reported that benthic marine invertebrate communities can be adversely affected when >3mm of silt and mud is deposited on coarse grained sediment. Because the benthic sediment is a mixture of sand and mud, and the material that will be deposited is sand, the community present is likely to be able to tolerate sediment deposition >3mm. However, the annual deposition depth estimated to arise from AHB maintenance works is significantly below that which would cause adverse effects on benthic invertebrate communities (i.e. approximately 0.6mm).

With reference to Tables 2 and 3 above, it is considered that the magnitude of effect arising from the deposition of sand would be barely distinguishable from the baseline and therefore negligible. Thus, combining ecological value (moderate) and magnitude of effect (negligible), we determine (based on Table 4 above) there would be an adverse effect of very low significance.

3.3 Discharge of contaminants

3.3.1 Zinc

The contaminant discharge modelling that has been undertaken, provides estimates of contaminant loads arising from maintenance works on an annual basis. The primary contaminant of concern in regards to maintenance discharges is zinc. An annual threshold of 223 kg discharged from the AHB is assessed below.

Simplistically, it is assumed that half of the zinc load is discharged to the northern side of the bridge and half to the southern. The subcatchment modelling carried out by Green (2008) can be used as an estimate for the ultimate fate of contaminants. The modelling indicates that 95% of sediment and contaminants discharged from the southern side of the bridge from the Westmere / St Mary's catchment is discharged to the wider Hauraki Gulf, with the ultimate fate of 1% of discharges being Shoal Bay. The load of zinc discharged from the southern side of the bridge to Shoal Bay can be estimated to be 1.1 kg/annum. The 95% (or 105.9 kg) of zinc that is discharged to the wider Hauraki Gulf is expected to be widely distributed and significantly diluted in this high energy environment.

Approximately 67% of the sediment and contaminants discharged from the northern side of the bridge (from Little Shoal Bay) is discharged to the wider Hauraki Gulf where it is diluted and widely distributed, whereas 24% is retained within Shoal Bay. Of the annual zinc load discharged on the northern half of the bridge, approximately 26.8 kg of zinc is retained

within Shoal Bay. The total annual load of zinc retained in Shoal Bay from the AHB is therefore approximately 27.9kg (i.e. 26.8kg plus 1.1 kg).

It is estimated that Shoal Bay covers an area of approximately 6,465,000 m². Contaminants accumulate in surface sediment layers, which are often referred to as the top 2-3cm. The volume of sediment in the top 2cm within Shoal Bay can be estimated to be 129,300 m³. Assuming an even distribution of zinc discharged to Shoal Bay within the top 2cm of sediment, the concentration of zinc would be 215 mg/m³. Further assuming that 1 m³ of marine sediment weighs between 2000 - 2500kg, the contribution of zinc (relating to the maximum threshold in the existing AHB maintenance consent) in surface sediment would be 0.09-0.1 mg/kg of zinc of sediment per year. In addition to other discharges of contaminants from the contributing catchments, it is predicted that 227,000 tonnes of sediment will deposit in Shoal Bay over the next 100 years (Green, 2008), or 2,270 tonnes per year. This sediment dilutes discharged contaminants.

Auckland Council's ERC amber threshold concentration for zinc is 124 mg/kg. The average concentration of zinc in sediment in Shoal Bay is 68 mg/kg (Mills et al., 2012), of which the AHB contribution is small proportion. The concentration of zinc in Shoal Bay at sites monitored by Auckland Council has increased over recent years e.g. at the Upper Shoal Bay site the concentration of zinc was 35 mg/kg in 2004 and 46 mg/kg in 2009.

Modelling by Green (2008) indicated that Shoal Bay receives sediment and metals from every subcatchment in the CWH, excluding the four on the southern shore. The concentration of zinc remains significantly below Auckland Council's ERC amber threshold. The amber threshold is conservative, being developed by Auckland Council to enable time to respond to emerging trends in stormwater contaminants in marine sediment. ANZECC's interim sediment quality guideline for Low zinc concentration is 200 mg/kg.

More recent stormwater contaminant source modelling work carried out by Dr Green for Auckland Council (unpublished⁵) estimates the total zinc load from a variety of land use activities discharged into the CWH is 18,623 kg/annum. The zinc load from the AHB maintenance activities forms approximately 1.2% of that total annual load.

The ecological values of Shoal Bay have been assessed as medium to high. The impact magnitude for the discharge of zinc from the AHB maintenance work is considered to be negligible i.e. the change in sediment concentration of zinc arising from the discharge would be barely discernible, approximately to the "no change" situation. The character / composition / attributes of baseline condition would be unchanged. Combining the ecological values and impact magnitude indicates that the significance of adverse effect is very low to low (refer to Tables 2, 3 and 4).

3.3.2 Paint

The currently consented regime, under full containment, assumes a discharge of 646 kg of paint from 15% overspray per annum. Overspray of paint is expected to be diffuse, relatively insoluble and redistributed by current flows under the AHB.

Given the negligible acute and chronic toxicity of the products used, the magnitude of adverse effects on marine ecological values is assessed as negligible (based on Table 3 above). If we conservatively assume moderate to high ecological values in the receiving environment, the significance of the potential adverse is low to very low.

⁵ Approved for use for this assessment by Judy Anson at Auckland Council.

3.4 Ecotoxicity of Existing Products

The current products that are used are MC Ferrox, MC M10 and zinc. The acute (short term exposure to contaminants) and chronic (longer term exposure to contaminants) toxicity of the water available fraction (WAF) of these products have been tested by NIWA⁶ using standard United States Environmental Protection Agency (USEPA) guidelines.

Tests were carried out on standard marine organisms i.e. alga (*Minutocellus polymorphus*), an amphipod (*Chaetocorophium* c.f. *lucasi*) and blue mussels embryos (*Mytilus galloprovincialis*). These organisms are routinely used by NIWA as test organisms because they represent a range of life histories, habitats and feeding types, and are successfully reared or held in laboratory conditions (see the standard operating procedures referenced on page 7 of the NIWA report). The ecotoxicological response tested in alga was cell growth (48 hr), whereas survival over 96 hr was the test for the amphipod and development of embryo over 48 hrs was the test for blue mussel.

The general descriptive categories for toxicity are based on acute EC_{50}^{7} values (for acute toxicity, Table 5) and NOEC⁸ values (for chronic toxicity, Table 6) as follows:

Description	EC ₅₀ (mg/L)
Non-toxic	>1000
Practically non-toxic	>100 - <u><</u> 1000
Slightly toxic	>10 - <u><</u> 100
Moderately toxic	>1 - <u><</u> 10
Highly toxic	>0.1 - <u><</u> 1
Very highly toxic	>0.01 - <u><</u> 0.1
Extremely toxic	<u><</u> 0.01

Table 5: Acute Toxicity

Table 6: Chronic Toxicity

Description	NOEC (mg/L)
Negligible	>1
Low	>0.1 - <u><</u> 1
Moderate	>0.01 - <u><</u> 0.1
High	>0.001 - <u><</u> 0.01
Very High	<u><</u> 0.001

Acute test results indicated⁹:

⁶ See report in Appendix A.

⁷ Effect concentration - 50%

⁸ No observable effect concentration.

⁹ See page 4 of NIWA report, Appendix A.

- MC Ferrox was non-toxic to all three organisms;
- MC M10 was practically non-toxic to algae and non-toxic to amphipods and blue mussels; whereas
- Zinc was non-toxic to algae and amphipods and practically non-toxic to blue mussels.

Chronic testing indicated all products had negligible toxicity to the three organisms.¹⁰

3.5 Summary of Assessment of Effects of Currently Consented Regime

The effects of current discharges of sediment and contaminants arising from maintenance of the AHB have been assessed above in terms of marine ecological values. No significant adverse effects on marine ecological values have been identified from the discharge of garnet sand, zinc nor paint.

The annual discharge of 14,679 kg of garnet sand from works on the bridge is estimated to result in the deposition of 0.6 mm deposition of sand over 12,000m² of benthic habitat beneath the bridge. This deposition depth is significantly below that which would cause adverse effects on benthic invertebrate communities. It is considered that the deposition of sand would not result in significant adverse effects on marine ecological values.

It is estimated that maintenance works will results in an annual discharge of 223 kg of zinc per annum to the CWH, which is 1.2% of the load of zinc discharged to the CWH from other land use activities (i.e. 18,623 kg per annum).

The average concentration of zinc in sediment in Shoal Bay is currently 68 mg/kg. AHB maintenance works is estimated to contribute less than 1 mg per year. The contribution of zinc from AHB maintenance works on marine ecological values within Shoal Bay would result in low to very low significance of adverse effects.

The discharge of paint from overspray is considered to have negligible effects on marine ecological values based on the low toxicity and diffuse distribution once entering the CMA.

The acute and chronic toxicity of current products used on marine organisms has been assessed, with all products being practically non-toxic in the acute situation or having negligible toxicity in longer term tests (i.e. chronic exposure).

In conclusion under the currently consented regime, with full containment, the significance of adverse effects on marine ecological values is considered to be very low to low.

¹⁰ NIWA conclude on page 6 of their report that "care must be taken when extrapolating these results for protection of organisms present in a particular receiving water environment". Dr Hickey confirmed that this sentence and the "moderate degree of confidence" stated in the preceding sentence are standard phrases they include at the end of the toxicology reports as they do not know the context of the receiving environments when undertaking such tests. Dr Hickey confirmed that it does not mean that they consider there is a risk to the receiving environment (pers. comm).

4.0 Proposed Activity – Adaptive Management of Bridge Maintenance

4.1 Adaptive Management Framework (AMF)

The purpose of the Adaptive Management Framework (AMF) is to enable the maintenance of the AHB, while managing the effects of discharges to the environment below agreed upon thresholds, based on the existing consents for containment, with the aim of reducing contaminant discharges over time.

The AMF provides for the same environmental outcomes as the existing resource consent with full containment, with the flexibility for improved environmental outcomes. The environmental management approach enables this flexible approach to be taken and allows for adaptation and innovation without requiring amendments to the resource consent.

The AMF comprises¹¹:

- operational processes selection of the most appropriate tools for maintenance while considering the potential environmental effects;
- monitoring processes tracking contaminant discharges;
- reporting processes standardised recording of monitoring results and outcomes of the adaptation process;
- adaptation processes enabling the consideration and potential incorporation of new methods and products with a view to achieving improved environmental, cost or maintenance period outcomes;
- The Environmental Management Plan; and
- The proposed conditions (which will evolve through the consent process to become the conditions of consent).

4.2 Contaminants

The bottom line for the discharge of contaminants used in the proposed adaptive management of the maintenance works is the load of contaminants that would have arisen if full containment was installed¹². The AMF establishes the load of contaminants that would have been discharged under full containment as the new consented baseline (Table 7), with flexibility to reduce these contaminants as the opportunity arises.

Table 7:	Consented	Baseline	Contami	inant	∟oads

Contaminant	Annual Threshold
Garnet	14,679 kg
Zinc	223 kg

¹¹ Refer to Appendix A of the application.

¹² Refer section 3.5 in the AEE.

Paint	646 kg

Therefore, based on the existing consent, with full containment, the following contaminant load thresholds have been calculated for discharges to the CMA.

4.2.1 Garnet

The coastal annual discharge limit for garnet has been calculated as 14,679 kg/annum. This has been calculated from the limits permitted under the 2011 consent:

- Annual amount of garnet discharged: 92,000 kg.
- Required containment: 0% containment for lower overarch (3.72% of the bridge), 85% containment of discharges to air for remainder of bridge over coast (81.60%).
- Assumptions:
 - 1. Contaminants from maintenance work undertaken over the coast are discharged to the coast.

4.2.2 Zinc

The coastal annual discharge limit for zinc has been calculated as 223 kg/annum. This has been calculated from the limits permitted under the 2011 consent:

- 10% bridge maintained per year (water blasting, abrasive blasting and painting).
- Required containment: 0% containment for lower overarch (3.72% of the bridge), 85% containment of discharges to air and 100% containment of washwater discharges for remainder of the bridge over the coast (81.60%) of bridge.
- Sampling results: Mass of zinc discharged from waterblasting (based on washwater sampling results¹³).
- Assumptions:
 - 1. Mass of zinc discharged from abrasive blasting (based on semi-quantitative assessment in 2011 consent application).
 - 2. 15% overspray of paint.
 - 3. Contaminants from maintenance work undertaken over the coast are discharged to the coast.
 - 4. An additional 0.58 kg/annum may be discharged (via existing stormwater system) to the CMA from washwater from the areas of AHB over land. This additional load, whilst a point source discharge, is negligible in terms of the load discharged to the CMA directly from maintenance works (0.26%) and from other sources within the CWH (0.003%). Comparing the washwater contaminant load that may be discharged to stormwater, if we assume 50% is discharged to western side¹⁴ and 50% to the eastern side¹⁵ of the peninsula,

¹³ Refer Appendix E of the application.

¹⁴ Auckland Council Stormwater Management Unit 29.

the load forms 0.4% and 0.6% of the annual zinc load discharged from the subcatchments as modelled by Green (2008).

4.2.3 Paint

The coastal annual discharge limit for paint (including 'non-contaminant' components) has been calculated as 646 kg/annum. This has been calculated from the limits permitted under the 2011 consent:

- 10% bridge maintained per year (abrasive blasting and painting).
- Required containment: 0% containment for lower overarch (3.72% of the bridge), 85% containment of discharges to air, remainder of the bridge over the coast (81.60%).
- Assumptions:
 - 1. 15% overspray of paint.
 - 2. Contaminants from maintenance work undertaken over the coast are discharged to the coast.

4.3 Toxicity of Products

4.3.1 Current Products

As discussed above in section 3.4, the acute and chronic toxicity of existing products used are practically non-toxic or non-toxic for acute tests and of negligible toxicity for chronic tests.

4.3.2 Proposed Products

The approach to considering new products is to firstly examine the reference material of the product in order to characterise contaminants and toxicity. Such reference material could include materials safety data sheets (MSDS) and manufacturers toxicity test information.

Contaminants will also be assessed against relevant toxicity guidelines (e.g. ANZECC).

Where information on acute and chronic toxicity to marine organisms is not provided by the manufacturer, the supplied data is not considered relevant to New Zealand's marine organisms or where the information is not sufficiently detailed, testing of potential new products shall be carried out. In this situation, both acute and chronic toxicity testing of the water available fraction, using a standard loading factor¹⁶, would be carried out on the same species of alga, amphipods and blue mussels as used in the tests discussed in section 3.4^{17} .

The toxicity of proposed products would inform whether products would be considered for use; new products would have to have similar or less toxicity than those currently used under the existing consent.

¹⁵ Auckland Council Stormwater Management Unit 39.

¹⁶ The USEPA Loading Factor of 50 g/L should be applied.

¹⁷ Toxicity tests should be undertaken by an appropriately qualified and experienced ecotoxicologist.

4.4 Example of New Product Tested under AMF

Appendix A contains an assessment of a potential new paint product, as a case study, as per the AMF methodology detailed in section 4.1 above.

The conclusions from assessment of the product following the 9 steps detailed in 3.1 of the Termarust report in Appendix A are that the toxicity of Termarust to marine organisms is practically non-toxic in the acute situation and has negligible toxicity from chronic exposure. In addition, the assessment indicated that Termarust does not contain key contaminants of concern, nor additional contaminants that present a risk to marine organisms for which additional thresholds need to be developed. It is confirmed that the threshold for "paint" will not be exceeded in use of this product. Therefore, the existing contaminant thresholds remain appropriate.

Under the current consented regime, adverse effects on marine ecological values fall within that previously assessed (i.e. minor to negligible). It is concluded in the Termarust report that the AMF process proposed is robust and provides appropriate protection of marine ecological values whilst enabling a flexible approach to maintenance of the AHB.

5.0 Assessment of Effects

This report summarises the findings from two separate, but critically linked, assessments:

- 1. Assessment of effects on marine ecological values of the existing consented maintenance discharges from the AHB under containment.
- Assessment of the framework for determining if new maintenance products and/or methods would have the same level of effects as that already consented under the full containment scenario.

Section 3.5 above summarises the effect on marine ecological values from the existing consented discharges under the full containment scenario. The significance of adverse effects from smothering (garnet sand), the discharge of potentially toxic paint products and the discharge of key contaminants (garnet sand, zinc and paint) were found to be very low to low.

Section 4.2.1-4.2.3 and section 4.3.1-4.3.2 above summarise the key contaminant thresholds already consented and the toxicity of products currently in use. These thresholds and toxicity characteristics form the baseline against which any proposed alteration to methods or products would be tested against. Before any proposed method or product changes could be implemented compliance with (as a minimum) the key contaminant discharge thresholds and toxicity characteristics would need to be demonstrated. That is, the same level of effects (or less) as assessed in section 3 above (under the full containment regime) would need to be demonstrated (using the methodology in section 4 above) in order to change AHB maintenance methodology or products.

The approach proposed for identifying key contaminants and methods, regulation and monitoring of discharges, identification of effects and operational processes proposed to manage AHB discharges in this consent application are robust and provide appropriate protection to the marine environment and ecological values present.

Managing discharges of contaminants within the thresholds established from the existing consented level of discharge under a full containment scenario will results in no change to

adverse ecological effects on the marine environment identified in the previous resource consent application. The use of the AMF approach proposed provides for improved environmental outcomes through reduced discharges of contaminants over time and the ability to modify methods and products where these thresholds will not be exceeded and effects on marine ecological values remain low to very low significance.

6.0 References

ANZECC (2000) Interim Sediment Quality Guideline (ISQG) High contaminant threshold concentration

Auckland Regional Council's Environmental Response Criteria Red contaminant threshold concentrations (Auckland Regional Council, 2004).

Auckland Council, 2011. State of the Auckland Region Marine Report Card: Central Waitemata Harbour, prepared by Research, Investigations and Monitoring Unit for Auckland Council.

Green M, 2008. Central Waitemata Harbour Contaminant Study. Predictions of Sediment, Zinc and Copper Accumulation under Future Development Scenario 1, prepared by NIWA for Auckland Regional Council, Technical Report 2008/043.

Halliday J, Hewitt J and Lundquist C, 2006, Central Waitemata Harbour Ecological Monitoring: 2000 – 2006, prepared for Auckland Regional Council Environmental Research.

Halliday, J.; Townsend, M.; Lundquist, C., 2012. Central Waitemata Harbour Ecological Monitoring: 2000-2012. Prepared by NIWA for Auckland Council. Auckland Council Document Type 2012/027.

Hayward, B.W., Stephenson, A.B., Morley, M., Riley, J.L., Grenfell, H.R., 1997. Faunal changes in Waitemata Harbour sediments 1930s-1990s. Journal of the Royal Society of New Zealand, 27(1): 1-20.

Lohrer, A.M., Thrush, S.F., Hewitt, J.E., Berkenvbusch, K., Ahrens, M., Cummings, V.J., 2004. Terrestrially derived sediment: response of marine macrobenthic communities to thin terrigenous deposits. Marine Ecology Progress Series, 273, 121-138.

Lohrer, A.M., Thrush, S.F., Lundquist, C.J., Vopel, K., Hewitt, J.E., Nicholls, P.E., 2006. Deposition of terrigenous sediment on subtidal marine macrobenthos: response of two contrasting community types. Marine Ecology Progress Series, 307, 115-125.

Mills, G., Williamson, R.B., Cameron, M. and Vaughan, M., 2012. Marine sediment contaminants: Status and trends assessment 1998 to 2010, prepared by Diffuse Sources Ltd for Auckland Council, Technical Report 2012/041.

Proposed Auckland Unitary Plan, Appendix 6.1, Schedule of Significant Ecological Areas – Marine, 2014.

Regini, K. (2002). Draft Guidelines for Ecological Evaluation and Impact Assessment. Institute of Ecology and Environmental Management (IEEM).

Shears, N.T., 2010. Meola Reef ecological monitoring program: 2001-2010. Prepared by Auckland UniServices for Auckland Regional Council. Auckland Regional Council Technical Report 2010/031.

Swales, A., Stephens, S., Hewitt, J., Ovenden, R., Hailes, S., Lohrer, D., Hermansphan, N., Hart, C., Budd, R., Wadhwa, S., Okey, M.J., 2008. Central Waitemata Harbour Contaminant Study. Harbour Sediments. Prepared by NIWA for Auckland Regional Council, Technical Report 2008/034.

Tonkin & Taylor, 2011. Letter to NZTA, Maintenance discharges from Auckland Harbour Bridge: Coastal.

Appendix A: Assessment of Potential New Product – Maintenance Discharges

AUCKLAND HARBOUR BRIDGE

Assessment of Potential New Product – Maintenance Discharges Prepared for Total Bridge Services

9 September 2014

Boffa Miskell

Document Quality Assurance

Bibliographic reference for citation: Boffa Miskell Limited 2014. *AUCKLAND HARBOUR BRIDGE: Assessment of Potential New Product – Maintenance Discharges.* Report prepared by Boffa Miskell Limited for Total Bridge Services.

Prepared by:	Dr Sharon De Luca Principal / Ecologist Boffa Miskell Limited	Bladure
Reviewed by:	Dr Leigh Bull Principal / Ecologist Boffa Miskell Limited	Bull
Status: FINAL	Revision / version: D	Issue date: 9 September 2014

Template revision: 20140327 0000

File ref: T13076_Marine_Ecology_Assessment_Draft_20140508_SD.docx

© Boffa Miskell Limited 2014

CONTENTS

4.0	Conclusions		6
	3.1 Review of Termarust based on A	AMF methodology	4
3.0	Methodology for Adaptive Manageme	nt Framework Assessment	3
2.0	Potential New Product - Termarust		2
1.0	Introduction		2

1.0 Introduction

The purpose of this report is to demonstrate and test the Adaptive Management Framework (AMF) through a case study which assesses a potential new paint product (Termarust) for use on the Auckland Harbour Bridge (AHB), in terms of potential adverse effects on marine ecological values that may arise from discharges to the CMA. The AMF and this assessment of Termarust have been developed in parallel through an iterative process.

2.0 Potential New Product - Termarust

The Termarust system is based on a proprietary formulation of high-ratio calcium sulfonate alkyd (HRCSA) that consists of a penetrating sealer (TR2200LV) for use on crevices and a high-build coating product (TR2100) that is used as caulking or stripe coat on crevices or fasteners, and as a self-priming topcoat.

Termarust can be applied over various levels of surface preparation ranging from a hot water wash at 6,000 psi to remove loosely adherent material and salt contamination when used as an encapsulation coating, through to abrasive blast cleaning to a SSPC SP7 (Brush off) or SP14 (Industrial) finish. It has a "volume solids" of 63% and is thinned or cleaned with mineral spirits. It is usually applied as two "wet on wet" coats (i.e. caulk and stripe coat immediately followed by a full coat)

Termarust is particularly suitable for use on riveted steel work with crevices and has been used to successfully treat many bridges where de-icing salt has been used and the bridge structure has developed pack rust. It has also been used as an encapsulating coating to avoid the costs associated with the removal of lead-based paint.

The principal disadvantage of this product is that it may take several days to harden enough to walk on. Even when fully cured, Termarust has low abrasion resistance, so is not recommended on surfaces subject to impact or that are accessible to the public.

It is envisaged that Termarust could be a useful option to coat the inside of lattice posts and diagonals of the original bridge, and similar elements where it is difficult to access for abrasive blasting or painting, and to treat any joints with rust bleed. Termarust could also be used in enclosed spaces where the elimination of odour and hazards from conventional solvents may be desirable. Its main benefit could be from extending the life of the existing coating system without the use dry abrasive blasting and negative pressure containment of chromate dust.

3.0 Methodology for Adaptive Management Framework Assessment

Termarust will be assessed based on the protocol developed as part of the Adaptive Management Framework (AMF) for new products and methods utilised for bridge maintenance. The procedural methodology is:

- 1) Request and review Material Safety Data Sheet for the product;
- 2) Identify components of the product;
- 3) Request toxicology test data/reports from the manufacturer;
- Research water quality guidelines associated with components and create a list of thresholds (if not already covered);
- 5) If manufacturer's toxicity testing of the product is considered insufficient engage an ecotoxicology expert to carry out acute and chronic toxicity testing, based on USEPA standard protocols, on algae (*Minutocellus polymorphus* 48 hr cell growth), an amphipod (*Chaetocorophium* c.f. *lucasi* 96 hr mobility survival) and blue mussels (*Mytilus galloprovincialis* 48 hr embryo development);
- Compare toxicity results with existing products used to ensure toxicity is similar or better than that of existing products (see Tables 1 and 2 containing USEPA characterisation for acute and chronic toxicity);

Description	EC ₅₀ (mg/L)
Non-toxic	>1000
Practically non-toxic	>100 - <u><</u> 1000
Slightly toxic	>10 - <u><</u> 100
Moderately toxic	>1 - <u><</u> 10
Highly toxic	>0.1 - <u><</u> 1
Very highly toxic	>0.01 - <u><</u> 0.1
Extremely toxic	<u><</u> 0.01

Table 1: Acute Toxicity

Table 2: Chronic Toxicity

Description	NOEC (mg/L)
Negligible	>1
Low	>0.1 - <u><</u> 1
Moderate	>0.01 - <u><</u> 0.1
High	>0.001 - <u><</u> 0.01
Very High	<u><</u> 0.001

- 7) Compare contaminants to consented thresholds to determine whether contaminant type and loads are within consented thresholds;
- 8) If product meets consented contaminant thresholds and toxicity characteristics of existing products, update Environmental Management Plan or model to include new product; and
- 9) Introduce product to maintenance regime.

3.1 Review of Termarust based on AMF methodology

Termarust Series Organic Coating 2100/2200 and Termarust thinner (TRT01) (see Appendix 1).

2) Material Safety Data Sheet (MSDS)

The MSDS for Termarust Series Organic Coating 2100/2200 and Termarust thinner (TRT01) identifies mineral spirits (CAS# 64742-88-7) at 10-30% in the coating and 60-100% in the thinner. Mineral spirits is also known as solvent naptha and is identified as a general petroleum solvent with a boiling range of 130° to 220°C. The mineral spirits used in Termarust has a boiling point of 150°C.

Mineral spirits is a complex mixture of saturated aliphatic and aromatic C_7 to C_{13} hydrocarbons. The literature defines mineral spirits as having 80-86% aliphatic (straight chain) hydrocarbons and 14-20% aromatic hydrocarbons which includes such things as xylene and ethylbenzene. However, it will contain only very low levels of the more toxic aromatics such as benzene and naphthalene.

The product can be applied in various ways, strip coated by hand or sprayed coated. From assessments of other coating products used on the bridge, spray painting is the only application method that contributes significant solvents and particulate to the air. Total suspended particulate (TSP) in the form of overspray is identified as a contaminant of concern where spray painting is carried out. Spray painting also produces a certain amount of fine particulate PM₁₀ (up to 50% depending on nozzle size etc).

3) Toxicology data/report from manufacturer.

The acute toxicity of Termarust to rainbow trout was tested by EVS Environment Consultants in Canada in 2005 (see Appendix 2). The report indicated that the concentration that caused a lethal effect on 50% of the test organisms was 41,017 mg/L, with 95% confidence limits of 33,414 mg/L and 50,349 mg/L.

4) Threshold values for the key contaminants of Termarust.

The contaminants identified in Termarust are naphtha, xylene, trimethylbenzene, ethylbenzene, and methyl isobutyl ketone. These contaminants readily volatilise and are unlikely to remain present in overspray of the product or in cured paint.

The product can be included under the paint threshold. Confirmation that this threshold will not be exceeded needs to be provided by the AHB Operational Team.

5) Decision to engage toxicology laboratory to test product.

As only one species of freshwater fish was used as a test organism in the testing carried out by the manufacturer, and only acute testing was carried out, NIWA was engaged to test Termarust on three standard marine organisms used in toxicity testing (see Appendix 3).

6) Compare toxicity with existing products.

Acute toxicity testing of Termarust indicated it was practically non-toxic to algae (*Minutocellus polymorphus* 48 hr cell growth test), and non-toxic to an amphipod (*Chaeocorophium* c.f. *lucasi* 96

hr survival and mobility test) and blue mussels (*Mytilus galloprovincialis* 48 hr embryo development test). Chronic toxicity testing indicated negligible toxicity. These toxicity results are similar/identical to the results for the existing products that are used (Table 1).

	Existing products (MC Ferrox, MC MIO, Zinc)		Proposed nev (Termarust)	Is toxicity of new product	
	Acute Toxicity	Chronic Toxicity	Acute Toxicity	Chronic Toxicity	the same or less than existing products?
Algae cell growth	Non-toxic, practically non-toxic	Negligible	Practically non-toxic	Negligible	Yes
Amphipod survival	Non-toxic	Negligible	Non-toxic	Negligible	Yes
Amphipod mobility	Non-toxic	Negligible	Non-toxic	Negligible	Yes
Blue mussel embryo development	Non-toxic, practically non-toxic	Negligible	Non-toxic	Negligible	Yes

Table 1: Toxicity description of existing products and proposed new product

The alga used in the toxicity testing is the most sensitive of the three organisms tested. The lowest concentration (EL₅₀) of Termarust that induced a 50% effect on algae cell growth was 900 mg/L. In order to provide some context regarding dilution, 972,000 tonnes of Termarust would need to be discharged into the neap tidal prism¹ of the Central Waitemata Harbour (CWH) to produce the same EL₅₀ concentration. If a smaller area of the CWH is considered, say 10,000m² around the bridge itself, then approximately 135,000 kg of Termarust would need to be discharged to achieve the EL₅₀ concentration². It is noted that under the existing consent 646 kg per annum of paint is the current threshold. If the entire annual load of paint was discharged at one time the concentration in the smaller 10,000m² area immediately adjacent to the bridge would be 4.3 mg/L, which is significantly less than the 900 mg/L that induced a 50% effect on the most sensitive laboratory species tested.

Given that the tested toxicity of Termarust is the same as the existing products, on the basis of toxicity to marine organisms Termarust would be acceptable to use on the AHB.

7) Compare contaminants to consented thresholds

The contaminants identified in point 4 above are not key contaminants of concern and given that they volatilise rapidly and would not accumulate in the marine environment it is not necessary to develop thresholds for these. Contaminants arising from surface preparation of the bridge structure are unchanged and therefore within the consented thresholds.

8) The model can be updated to incorporate the new product.

¹ 108,000,000 m³ (Tonkin and Taylor, 2011).

² Based on an average water depth of 15m (Tonkin and Taylor, 2011).

9) Product can be introduced to maintenance regime.

4.0 Conclusions

- This case study shows the steps that will be taken under the AMF if a product or maintenance process is proposed to be changed.
- The assessment of Termarust clearly indicates that the toxicity of Termarust to marine organisms
 is practically non-toxic in the acute situation and has negligible toxicity from chronic exposure. In
 addition Termarust does not contain key contaminants of concern, nor additional contaminants that
 present a risk to marine organisms for which additional thresholds need to be developed. It is
 confirmed that the threshold for "paint" will not be exceeded in use of this product. Therefore, the
 existing contaminant thresholds remain appropriate.
- Under the current consented regime, adverse effects on marine ecological values fall within that previously assessed (i.e. minor to negligible).
- It is concluded that the AMF process proposed is robust and provides appropriate protection of marine ecological values whilst enabling a flexible approach to maintenance of the AHB.

Appendix B: Adaptive Management Framework Summary

Adaptive Management Framework

Assessment of potential new product use with respect to discharges to the CMA.

The process that will be followed to assess whether a potential new maintenance product fits within the consented contaminant thresholds and toxicity characteristics with respect to discharges to the marine environment is as follows:

- 1) Request and review Material Safety Data Sheet for the product;
- 2) Identify components of the product;
- 3) Request toxicology test data/reports from the manufacturer;
- Research water quality guidelines associated with components and create a list of thresholds (if not already covered);
- 5) If manufacturer's toxicity testing not sufficiently comprehensive, engage toxicology laboratory to carry out acute (short-term) and chronic (long-term) toxicity testing¹ on algae (*Minutocellus polymorphus* 48 hr cell growth test), amphipod (*Chaetocorophium* c.f. *lucsi* 96 hr survival and mobility test) and blue mussels (*Mytilus galloprovincialis* 48 hr embryo development test);
- 6) Compare toxicity results with existing products used based on the following acute and chronic toxicity descriptive categories (Tables 1 and 2);

Description	EC₅₀ (mg/L)
Non-toxic	>1000
Practically non-toxic	>100 - <u><</u> 1000
Slightly toxic	>10 - <u><</u> 100
Moderately toxic	>1 - <u><</u> 10
Highly toxic	>0.1 - <u><</u> 1
Very highly toxic	>0.01 - <u><</u> 0.1
Extremely toxic	<u><</u> 0.01

Table 1: Acute Toxicity

¹ Using standard USEPA toxicity testing protocols.

Table 2: Chronic Toxicity

Description	NOEC (mg/L)
Negligible	>1
Low	>0.1 - <u><</u> 1
Moderate	>0.01 - <u><</u> 0.1
High	>0.001 - <u><</u> 0.01
Very High	<u><</u> 0.001

- 7) Compare contaminants to consented contaminant thresholds where appropriate;
- 8) If product meets consented contaminant thresholds and toxicity characteristics of existing products, update Environmental Management Plan or model to include new product²; and
- 9) Introduce product to maintenance regime.

² Assuming that the same process for assessing discharges to air meets the corresponding thresholds.

Appendix C: Termarust MSDS Report

Products 2100 series

Other branches in this section

v

TERMARUST SERIES 2100

Please note that there are three options: [Stealth Grey] [Grey] [Green]

MATERIAL SAFETY DATA SHEET

Section I - Material identification and use

Product code :	032TR2100		Health :	Moderate	Whmis	B3 D2B
					Class :	
Product	Termarust	Stealth	Fire	Moderate	TDG Class :	3
name :	Grey					
Chemical	Organic coa	ting	Reactivity :	Minimal	TDG UN :	1263
family :	57	10	10			
Product use :	Protective c	oating				

Section II - Hazardous ingredients of material

Hazardous	Concentration %	C.A.S.	LD50 Oral rat &	LC50 Inhalation rate
ingredients		Num.	dermal rabbit	PPM/H
Mineral spirits	10.0 - 30.0	64742-88-7	5600 mg/kg 3160	51000/4
			mg/kg	

Section III - Physical data for material

Physical state :	Liquid	Specific gravity	ł	1.118-1.168	Vapor pressure (mm):	7.00 Boiling point (°C) : 150.00
Odor :	Hydrocarbon	Solubility water :	in	0.09/20°C	Vapor density :	4.80 Freezing point (°C) : N/A
		%		30.0 - 60.0	Heavier than	PH: N/A
		Volatile/Volume	•		air:	
Coefficient o	f water/oil distribu	tion : N/A				

Evaporation rate (nBu Ac=1) : 0.10

Section IV - Fire and explosion hazard of material

Flammability : Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition. *Note* : Vapor may travel some distance to a source of ignition and flash back along the vapor trail. *Means of extinction :* Dry chemical, carbon dioxide, foam, water fog.

Special procedures : Do not enter confined fire space without adequate protective clothing and an approved positive self contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers.

Explosion : Vapor forms explosive mixture with air between upper and lower flammable limits. **Flash point :** (c) and method : 42.00 **Upper explosion limit (% by volume) :** 5.00 **Auto-ignition** (c) : N/A **Lower explosion limit (% by volume) :** 0.80 **Sensitivity to mechanical impact :** None **Sensitivity to static discharge :** Yes

Section V - Toxicological properties of material

Exposure limits (TVL ppm) : 100.00 Irritancy of material : Slight to moderate skin irritant CARINOGENICITY, REPRODUCTIE EFFECTS, TERATOGENICITY and MULTAGENICITY No adverse affects are anticipated.

Emergency telephone number: Canutec (613) 996-6666, Termarust technical department (514) 351-7600

Section VI - Toxicological properties of material (cont'd)

Route of entry : Skin contact, skin absorption, inhalation acute, ingestion

Effects of acute exposure to material : Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material : Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII - Reactivity data

Chemical stability : Yes

Incompatibility with other substances : Yes, with strong Oxidizing agents, mineral acids Reactivity and under what conditions : Avoid excessive heat, open flame, spark and all ignition sources

Hazardous decomposition products : Carbon monoxide and Carbon dioxide when heated

Section VIII - Preventive measures, Personal protective equipment

Gloves : Impervious (Nitrile, PVC) Eyes : Chemical safety goggles of full face shield Respiratory : Wear a CSA approved respirator

Other : Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls : Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure : Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by dyking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills : Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal : Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment : Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement : Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources.

Special shipping information : Handle as flammable liquid.

Section IX - First aid measures

Inhaled : Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact : Flush affected areas with mild soap and water. Remove contaminated clothing Eye contact : Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately.

Ingestion : Do not induce vomiting. Obtain medical attention immediately.

Additional information : If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X - Preparation of M.S.D.S.

Additional notes or references :

N/A = not or none available OSHA = Occupational Safety and Health Administration IARC = International Agency for Research on Cancer ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

MATERIAL SAFETY DATA SHEET

Section I – Material identification and use

Product code :	200TR2100	Health :	Moderate	Whmis	B3 D2B
				Class :	
Product	Termarust 501-212	Fire :	Moderate	TDG Class :	3
name :	Grey				
Chemical	Organic coating	Reactivity :	Minimal	TDG UN :	1263
family :		100			
Product use :	Protective coating				

Product use : Protective coating

Section II - Hazardous ingredients of material

Hazardous	Concentration %	C.A.S.	LD50 Oral rat &	LC50 Inhalation rate
ingredients		Num.	dermal rabbit	PPM/H
Mineral spirits	10.0 - 30.0	64742-88-7	5600 mg/kg 3160	51000/4
			mg/kg	

Section III - Physical data for material

Physical state :	Liquid	Specific gravity :		1.114-1.164	Vapor pressure (mm):	7.00 point 150.00	Boiling (°C) :
Odor :	Hydrocarbon	Solubility water :	in	0.05/20°C	Vapor density :	4.80 point (°	Freezing C): N/A
		% Volatile/Volume		30.0 - 60.0	Heavier than air :	PH : N/	A

Coefficient of water/oil distribution : N/A Evaporation rate (nBu Ac=1) : 0.10 Appendix D: Termarust Manufacturer's Toxicology Report

Golder Associates Ltd.

195 Pemberton Avenue North Vancouver, British Columbia, Canada V7P 2R4 Telephone 604-986-4331 Fax 604-662-8548

July 25, 2005

E/05/0298 05-1424-009

ICI Canada Inc. 1609 Boundary Road Vancouver, BC V5K 4X7

Attention: Peter Roberts

RE: TOXICITY TESTING ON THE SAMPLE IDENTIFIED AS TR2100 RAVCS. WORK ORDER 0500213

Dear Mr. Roberts:

We have conducted one rangefinder and a 96-h LC50 toxicity test using rainbow trout on the above sample, received at EVS/Golder on May 31, 2005. The test was performed according to the Environment Canada protocol for conducting acute toxicity tests using rainbow trout (EPS 1/RM/13, Second Edition, 2000). The results of the 96-h LC50 test are based on the appended data and are presented in Table 1 on the following page.

If you wish to schedule additional testing or have any questions regarding the data presented in this report, please do not hesitate to contact me by e-mail (rharrison@evsenvironment.com) or telephone.

Yours very truly, EVS ENVIRONMENT CONSULTANTS A Member of the Golder Group of Companies

Robert Harrison, B.Sc.Hons Laboratory Biologist

Verified By:

QAVQC Committee: Cathy McPherson, B.Sc. Julianna Kalocai, M.Sc. John Wilcockson, M.Sc.

Attachment: Table 1 RH/ljk 2.40ATAVFINAL/2005/1424405-1424-009/LET 0725 2005 TON TEST WO 0500213.00C

ICI Canada		July 25, 2005
Peter Roberts	- 2 -	05-1424-009
	TABLE 1	
	96-H TOXICITY TEST RESULTS	li internet interne

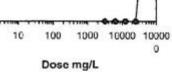
Sample Identification	Sample Collection Date (Time)	96-h LC50 (95% Confidence Limits) [mg/L]
TR2100 RAVCS	n/a (n/a)	41,017 (33,414 and 50,349)

Note: The paint sample was observed to be not readily soluble to our laboratory dilution water even after thorough mixing of the sample test treatments. Paint material was observed to settle at the bottom of test vessels during testing and, therefore, the full extent of sample toxicity may not have been properly measured by this particular toxicity test.

)

		INT CONSULTANTS XICITY TEST DATA SUMMARY
Grolde	Client Cl Canada F. EVS Project No. 05-1424-009 EVS Work Order No. 0500213	EVS Analysts M56, REA Test Type 96-6 LC50 Test Initiation Date Jane 10 (05 @ 1730
	SAMPLE Identification TR 2100 Amount Received 1 × 41 Date Collected 1/2 41/05 Rozz Date Received Mary 31/05	D RAUCS
5	Other Image: Constraint of the second system o	TEST SPECIES INFORMATION SourceSourceSurveCollection Date/Batch $OSO9OS$ Control Fish Size (mean, SD and range measured at end offest)Date Measured $Surve [4(05)]$ Fork Length (mm) $3622(31-46)$ Wet Weight (g) $0.5220.(1(0.37-0.69))$ Reference ToxicantSDS
)	Other $$ TEST CONDITIONS Dissolved Oxygen Range (mg/L) $$ $$ $$ Temperature Range (°C) $\underline{14}$ pH Range $\underline{6.3} - 7.2$ Conductivity Range (μ S/cm) $\underline{30} - \underline{62}$ Aeration Provided? (give rate) $\underline{6.51}$ $\underline{6.51}$ \underline{M} Photoperiod (L:D h) $\underline{6.58}$ No. Organisms/Volume $\underline{10}$ $\underline{10}$ $\underline{12L}$ Loading Density (g/L) $\underline{0.43}$ Acclimation Before Testing (days) $\underline{32}$ Mortality In Previous Week of Acclimation (%) $\underline{0}$ Other $\underline{0}$	Current Reference Toxicant Result Reference Toxicant Test Date <u>June 3/05</u> Duration of Acclimation (days) <u>ZS</u> <u>96</u> 96-h LCS0 (and 95% CL) <u>42.(32.and 32)</u> 357 (28) Reference Toxicant Warning Limits (mean ± 2SD) and CV <u>29 ± 12 Mg/L SDS</u> <u>CU : 21%</u>
	TEST RESULTS The 96th LCSO 5 ce 95% CL of 33,414 and 50,3 Data Verified By Qalfify Formellabilitatives United UMMARY DOC February 13, 2003	Angle, Date Verified
	and the second	

$\begin{tabular}{ litial litial litial $	Project No. NS - 1424 - OCH	
Total Pre-Acration Time M/Q min Mumber of Survivors Dissolved Oxygen (mg/L) Temperation total Pre-Acration Time M/Q Mumber of Survivors Dissolved Oxygen (mg/L) Temperation Mumber of No 10 <th cols<="" th=""><th>EVS Work Order No. 0500213 Trout Batch No. and 7-4 Acclimation Mortality 050405/C</th></th>	<th>EVS Work Order No. 0500213 Trout Batch No. and 7-4 Acclimation Mortality 050405/C</th>	EVS Work Order No. 0500213 Trout Batch No. and 7-4 Acclimation Mortality 050405/C
Total Prc-Acration Title M_{a} Total Prc-Acration Title M_{a} min recorder (f used) under "Commerci. Total Prc-Acration Title M_{a} min recorder (f used) under "Commerci. Total Prc-Acration Title M_{a} min Number of Survivors Dissolved Oxygen (mg/L) Temperation (L) 1 24 48 72 96 0 24 48 (L) 1 2 4 3 7 96 0 24 48 72 96 0 24 48 (L) 1 2 2 2 96 0 24 48 79 67 74 74 74 (D) 10	No. Fish/Volume	
Total Pre-Acration Time M_{c} Disolved Oxygen (mg/L) Temperatulation tion Number of Survivors Disolved Oxygen (mg/L) Temperatulation tion 1 2 4 48 72 96 0 24 48 tion 1 2 4 24 48 72 96 0 24 48 72 96 0 24 48 72 96 0 24 48 72 96 0 24 48 79 96 0 24 48 79 96 79 19 19 19 10	Collected 0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time 3.	
[L] 1 2 4 24 48 72 96 0 24 48 72 96 0 24 48 72 95 0 24 48 72 10 10 10 10 10 10 10 10 10 10 10 10 10	rre (°C) pH Conductivity (uS/cm)	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	72 96 0 24 48 72 96	
INTERPORT OF TO 10 10 10 10 10 10 10 10 10 10 10 10 10	14 7.0 69 6	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	14 69	
10 13 10 10 14 10 14 14 14 14 14 14 14 14 14 14 14 14 14	14 6.9 68 65 6.31	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	1	
10 6 4 30 102 9.6 8.7 8.2 6.2 14 14 14 14 14 14 14 14 14 14 14 14 14	-	
MUMULERSCORPERTUTIONA PURCHAR, 71, 100	1 14 14 6.6 2. 63 6.7 6.4 33	
	Libre look and more murau laudeur land	
sed: Temperature The Day	3 Conductivity U - A - 030363	
sample Description Unerviced - where the great oney comments () fish swither upside descurs if periodic spacenes		
Test Set Up By Lond Data Verified By Qally	Date Verified July 11/05	


-	an and the set		Acute	Fish Test-96-h	
Start Date:	10/06/2005	Test ID:	500213	Sample ID:	TR2100 RAVCS
End Date:	14/06/2005	Lab ID:	BCEVS-EVS Enviro	nment CcSample Type:	OC-Other Chemical
Sample Date: Comments:		Protocol	: EPS1/RM/13-EC 20	00 (Raint Test Species:	OM-Oncorhynchus mykiss
Conc-mg/L	1				
control	1.0000				
3125	1.0000				
6250	1.0000				
12500	1.0000				
25000	1.0000				
	0.3000				

	100		and a state	Not		1.1	Fisher's	1-Tailed	Number	Total
Conc-mg/L	Mean	SD	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
control	1.0000	0,0000	0	10	10	1			0	10
3125	1.0000	0.0000	0	10	10	1	1.0000	0.0500	0	10
6250	1.0000	0.0000	0	10	10	1	1.0000	0.0500	0	10
12500	1.0000	0.0000	0	10	10	1	1.0000	0.0500	0	10
25000	1.0000	0.0000	0	10	10	1	1.0000	0.0500	0	10
*50000	0.3000	0.0000	7	3	10	1	0.0015	0.0500	7	10

Hypothesis Te		0.05)	NOEC	LOEC	ChV	TU		
Fisher's Exact	Test		25000	50000	35355.3			
				100	Trimmed	Spearman-Karbo	er	
Trim Level	EC50	95%	CL					
0.0%								
5.0%								
10.0%						1.0		
20.0%							-	
Auto-30.0%	41016.8	33414.4	50348.8	mg/L		0.9	4	
					- 11	0.8	1	
						0.7		+
						2 0.6		
						0.5	-	
						9.0.6 9.00 9.0 9.0 9.0		
						0.3		
						0.2	4	11
						0.1	1	
							1	

0.0 7

1

Reviewed by Jal 105

DALAN Carefort Anti- and Control Anti- and Control Anti- and Control Contre Control Control Control </th <th>Address: 16</th> <th>ancou</th> <th>WINDLAN WULPHONE</th> <th>604</th> <th>-63</th> <th>3-11</th> <th>126 SG</th> <th>2</th> <th>-34</th> <th></th> <th>11</th> <th>Fax: (304) address www.avsenvitonment.com</th>	Address: 16	ancou	WINDLAN WULPHONE	604	-63	3-11	126 SG	2	-34		11	Fax: (304) address www.avsenvitonment.com
1 1 Titles Table to fample of annual sum build		YOY	TXF Sam	pled by:				Ath:			Shipping Date:	
Bar Rust 331 X X 1 Devthane 389 2 2 1 Devthane 389 2 2 1 Devthane 389 2 2 1 TR2100 RAVCS 2 2 1 Y355 5 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 <td< td=""><td>Collection Date (DD/MMM/YYYY)</td><td>2003</td><td></td><td></td><td>Malerial Safety Data Sheet</td><td>Sample Collection Method</td><td>Volume of Sample Container</td><td>w aboD</td><td></td><td>cat(s) Requested</td><td>(e.g. preserved, saftwa</td><td>4 Sample Notes ater, freshwater, may contain sewage)</td></td<>	Collection Date (DD/MMM/YYYY)	2003			Malerial Safety Data Sheet	Sample Collection Method	Volume of Sample Container	w aboD		cat(s) Requested	(e.g. preserved, saftwa	4 Sample Notes ater, freshwater, may contain sewage)
Devilhane 383 × 2744 Devilhane 373 × 1244 TR23100 RAVCS 1244 0 YZSC Series × 2244 0 Ormentintuotics × 2244 0 Internation 2244 0 0 Internation 2804 0 0 Internation 1 0 Internation 0	1	۱	Bar Rust	231	>		TAXE					
Deuthane 3730 1334 1334 1783100 2400 1234 1234 1955C 560165 1234 1234 168 560165 1234 1234 178 100 200 200 178 1234 1234 100 178 123 1234 100 178 123 1234 100 178 123 123 113 178 131 100 100 178 178 118 113 178 178 178 100 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 <td></td> <td></td> <td>hane</td> <td>389</td> <td>></td> <td></td> <td>1 toxt</td> <td></td> <td></td> <td></td> <td></td> <td></td>			hane	389	>		1 toxt					
TR2100 RMCS 1344 $4755C$ Series 4242 $4755C$ Series 4242 $4755C$ Series 4242 68 Series 4242 68 Series $4255C$ Series 1000 2242 1000 2242 1000 2242 1000 2242 1000 2242 1000 2242 1000 2442 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000			Deuthane	379	د	1	1775					
YZSC Series YZSL YSSC Series YZSL PSSC Series YZSL Delt ZXSL Delt ZXSL PSSC Series YZSL Comments interactions ZXSL Delt ZNS Delt ZNS Delt ZNS Delt ZNS Delt ZNS Delt Znster Delt			TRAIDO RA	HCS	2		THAT					
YSC Series Y Y 68 Series V Z×11 1000 GB Series V 1100 Conmentatinatuctores All Conmentatinatuctores 1100 Conmentatinatuctores All Conmentatinatuctores 1100 Contractions All Contractions 1100 Contentions All Contentions 1100 Contentions All Contentions 1100 Contentions Time Contentions 1100 Contentino <td></td> <td></td> <td>475C Ser</td> <td>ries</td> <td>2</td> <td>1</td> <td>17XT</td> <td></td> <td></td> <td></td> <td></td> <td></td>			475C Ser	ries	2	1	17XT					
68 Service V Twitter V 0 0 0 0 0 1 2 0 0 0 1 0 0			1	ries	7		TX41					
Image: Second			S	Sal	\rightarrow		75-5		≽			
Date:												
Comments/instructions: All Supples Aux. Late Date: Date: Date: Date: Aux. Late Time: Date: Date: Date: Date: Aux. Late Time: Date: Date: Date: Date: Evs Project No. M Date: Date: Date: Date: Evs Project No. Muthor Date											COC Geni	Y
Contraction Contraction Time: Date: Time: Date: Time: Company: Date: EVS Project No. Oate: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Contract work order (wo) No. Distribution Contract (MC): Sites and the compositing period. Receipt Sample: the sample: the sample (CHEM): Stormwaler (SW); Other (Please Specity) VKVI; Effluent (E): Elutriate (EU): Sediment (SED); Chemical (CHEM); Stormwaler (SW); Other (Please Specity) VCC: Sites date of (C): Sites and of the compositing period.	VReference No.:						Comments/Inst	ructions:		N	2	Converter
Date: Date: Date: Sharked area to be completed by EVS to Sharked area to be completed by EVS to Company: Time: Company: Time: Date: Direction: Company: Time: EVS Work Order (NO) No. Direction: Date: Direction: EVS Work Order (NO) No. Direction: Date: Direction: EVS Work Order (NO) No. Direction: Date: Direction: EVS Work Order (NO) No. Direction: Direction: E	oject Title:								exter	thar T	0018	ics.
Date: Date: Date: Date: Sharled area to be completed by EVS La Time: Company: Time: EVS Project No. Date: Date: Name EVS work order (wo) No. N Date: Date: Date: N Date: Date: EVS work order (wo) No. N Date: Date: Date: N Time: Date: EVS work order (wo) No. N EVS work order (wo) No. Distribution Reset N Time: Date: EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (wo) No. N EVS work order (Scilitoria) EVS work order (WO) No. N EVS work order (Scilitoria) EVS work order (Scilitoria) N EVS work order (Scilitoria) EVS work order (Scilitoria) N EVS work order (Scilitoria) EVS work order (Scilitoria)	esuits Needed By:								-			
Time: Time: Evs Project No. Date: Date: Counter name: Evs Work Order (WO) No. Date: Date: Date: Evs Work Order (WO) No. Diff: Time: Date: Evs Work Order (WO) No. Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (WO) No. Diff: Diff: Enthern (E): Evs Mork Order (E): Evs Mork Order (E): Distribution (E): <td>Released by:</td> <td></td> <td>Date:</td> <td>2) Release</td> <td>:Aqp</td> <td></td> <td></td> <td>Date:</td> <td></td> <td>Shaded area to be</td> <td>completed by EVS Laboratory u</td> <td>pou semple receipt.</td>	Released by:		Date:	2) Release	:Aqp			Date:		Shaded area to be	completed by EVS Laboratory u	pou semple receipt.
Date: Manual Distance Date: Date: Condition Upon Receipt Marcine Time: Og MS Company: Time: Date: Condition Upon Receipt Marcine Time: Og MS Company: Time: Date: Condition Upon Receipt Marcine Time: Og MS Company: Time: Receipt Sample Receipt Sample Mix Effluent (E): Ellutriate (ELU): Sediment (SED): Channical (CHEM): Stomwalter (SW); Other (Please Specify) Distribution of copics: Distribution of copics: Mix Effluent (E): Classific and solution expected prices Stomwalter (SW); Other (Please Specify) Distribution of copics:	company: Counier name:		1.10	Courtier	ny: name:			Time:		EVS Project No. EVS Work Order (M	1	
Ing period. Ier (SW); Other (Please Specify)	Received: 33	10 Mar	Date: 31 Man	Company	d by: 'y:			Date: Time:		Condition Upon Rns Receipt Sample Ter		o.0
	For composite el Receiving Water Collapsible Carbo Please nole any o	Ruent or water s (RWI); Effluent (y (CC); Glass Ja oncitions the lat	amples, the sample collection data (E) Elutriate (ELU); Sediment (SEI ar (GJ); Jerry Can (JO); Plastic HD b should be event of for safety and	e/time is the en D); Cherrical (C DPE (P); Other (d storage conce	d of the col DHEM); Stol (Please Spt hms	mpositing p rmwater (S ecity)	w); Other (Plea	e Specify)		Det	1.001	tow - accompany the shipment t by consignor (e.g., shipper) apt by consignee (e.g., receiver) trunned to conscrinct for consistence

Appendix E: NIWA Toxicology Report

Taihoro Nukurangi

	T i Dideo Conicos	Project Code:	TBS14201
Client:	Total Bridge Services PO Box 56416	Sampling Date	N/A
	Dominion Rd Auckland 1446	Sample Received:	19/11/13 31/1/14
Attention:	Alex Ingram	Report Date:	31/1/14

Project Outline: Undertake an aquatic ecotoxicity assessment of rust-proof paints and topcoats using a marine alga (*Minutocellus polymorphus* – 48 h cell growth), a marine amphipod (*Chaetocorophium* c.f. *lucasi* – 96 h survival) and blue mussel embryos (*Mytilus galloprovincialis* – 48 h embryo development).

Sample Preparation: A water available fraction (WAF) of each sample was prepared from the supplied samples using a 1:20 ratio of the sample (50 g sample + 1.0 L offshore water, mixed in a 1 L glass jar on a rotary tumbler (16 rpm) for 24 h at 20 °C. The WAF was then cold settled (4°C) for 24 h, decanted and the supernatant used for the toxicity assessments.

RESULTS: Sample ID:	Total Bridge Services		Sample Type: Sample Method:	Paint N/A	
Collected by:	Not dated EC ₅₀ 1(95%Cl) % WAF	EC20 ¹ % WAF	NOEC ²	LOEC ² % WAF	TEC ² % WAF
Algae	/6 11/3			9	6.4
MC Ferrox	53.1(58.8-43.7)	22.5	4.5	The second	0.8
Termarust 210		0.9	0.56	1.1	0.8
MC MI0	1.5(1.7-1.3)	0.8	0.56	1.1	
Zinc	5.2(7.1-3.6)	1.1	2.25	4.5	3.2
Amphipods -	survival	24.0	25	57.1	37.8
MC Ferrox	38.0(44.0-33.0)	31.0	6.25	25.0	12.5
Termarust 210	0 29.0(35.0-25.0)	_3		25.0	12.5
MC MI0	23.0(29.0-19.0)	_3	6.25	25.0	12.5
Zinc	21.0(27.0-17.0)	_3	6.25	20.0	
Amphipods -	mobility	04.0	25	57.1	37.8
MC Ferrox	38.0(44.0-33.0)	31.0	6.25	25.0	12.5
Termarust 21	20.0(25.0-17.0)	_3	6.25	25.0	12.5
MC MIO	13.0(16.0-9.7)	_3	6.25	25.0	12.5
Zinc	14.0(17.0-12.0)	_3	6.20	20.0	0.00000000
Blue mussel	<u>s</u>	40.0	6.25	25.0	12.5
MC Ferrox	29.0(31.0-27.0)	18.0	1.56	6.25	3.1
Termarust 21	00 3.0(3.1-2.9)	_3	1.56	6.25	3.1
MC MIO	3.1(3.2-3.0)	_3	0.39	1.56	0.78
Zinc	1.1(1.2-1.0)	_3	0.59	t organisms re	

¹ EC_N: The percentage effluent concentration causing an N% effect to the test organisms relative to the controls.

A lower value indicates greater toxicity. ² NOEC: no observed effect concentration, LOEC = lowest observed effect concentration, TEC: threshold effect ² NOEC: no observed effect concentration, LOEC and LOEC).

concentration (geometric mean of NOEC and LOEC). ³ Trimmed Spearman Karber method used to calculate EC₅₀ values, EC₂₀ value not calculated with this method.

Taihoro Nukurangi

Water available fractions (50 g L⁻¹; 1:20) were extracted from four paint and surface coating formulations (MC Ferrox, Termarust 2100, MC M10, Zinc) and tested for aquatic toxicity using three marine species. Based on the most sensitive EC_{50} (acute) and NOEC (chronic) values which were converted to equivalent loading rates, the test substances would be classified as:

GESAMP (2002) aquatic toxicity classification

	Acute	Chronic
MC Ferrox	Non-toxic	Negligible
Termarust 2100	Practically non-toxic	Negligible
MC MIO	Practically non-toxic	Negligible
Zinc	Non-taxic	Negligible

COMMENTS

Proposed maintenance of the Auckland Harbour Bridge involves the use of rust-proof paints and topcoats. Details of the sample composition and active ingredients are confidential and were not supplied. Chemical analysis of the WAF was not included in the project scope.

In the likelihood of significant product loss during the application process, either from spraydrift or from accidental spillage, toxicity testing using marine organisms would be beneficial for assessing the potential for adverse effects of these coating formulations on marine biota. The four test substances are complex mixtures of chemicals, including thinners, sterilisers fillers, solvents, and pigments. Aquatic toxicity data is not available for the mixtures, but some data for individual components were available from MSDS reports supplied by Boffa Miskell. The products supplied for toxicity testing were:

Product ID	Description
Termarust 2100	Co-polymerized calcium sulfonate HR CSA (with thinners)
MC Ferrox	Micaceous iron oxide (MIO) enriched, matte-finish, aliphatic moisture cure urethane topcoat
Zinc	Zinc-pigmented, one-component, moisture-cure polyurethane primer
MC MI0	A blend of micaceous iron oxide (MIO) and corrosion inhibiting pigments

A 500 mL sample of each formulation was received on 19/11/13. The samples were mixed using a plastic spatula and the WAFs were prepared on 2/12/13, mixed for 24 hours (rotary tumbler 16 rpm) and cold settled for 24 hours before the toxicity tests were initiated (USEPA 1992). The WAFs had the following characteristics after settling:

100% WAF	рНª	Dissolved oxygen mg L ⁻¹	Salinity ppt
MC Ferrox	7.95	7.5	35.7
Termarust 2100	7.82	7.5	35.5
MC MI0	6.10	6.5	35.8
Zinc	6.77	7.3	35.6

* Initial pH of the WAF before the test initiation.

A WA

Taihoro Nukurangi

The initial pH of MC M10 and Zinc WAFs were slightly acidic, but in the test dilutions pH ^O values at the blue mussel test termination were 7.7 to 8.0. Testing was undertaken on an "as supplied" basis using clean offshore seawater from the Chatham Rise for the WAF preparation, and for the algal and blue mussel test dilutions and controls. For the amphipod test, nearshore seawater from Manu Bay¹ was used for the test dilutions and controls.

Alga

Algal cell growth in the offshore seawater controls achieved the minimum acceptability criteria (at least 16x increase after 48 hours). There was about a 35-fold range of the EC₅₀ values, MC MIO had the greatest adverse effect on algal growth (EC₅₀ = 1.5% WAF), and MC Ferrox had the least effect (EC₅₀ = 53.1% WAF). The highest tested concentration of the WAF was 72%, due to salinity adjustment for optimum algal growth. At this concentration algal growth was reduced by 62% (MC Ferrox), 44% (Termarust 2100), 72% (MC MIO) and 43% (Zinc) relative to the seawater controls. Algae were the most sensitive test species for Termarust 2100 and MC MIO.

Amphipods

Mean amphipod survival in the Manu Bay nearshore seawater control (100%) achieved the minimum test acceptability criterion (>90% survival). The EC₅₀ values were from 21% WAF (Zinc) to 38% WAF (MC Ferrox). The highest tested concentration was 57.1% WAF due to salinity adjustments. At this concentration survival was reduced by 97% (MC Ferrox), 100% (Termarust 2100, MC MIO and Zinc) relative to the control.

The mobility (morbidity) endpoint measures the ability of the test organisms to swim when stimulated by a jet of clean seawater2. This sub-lethal endpoint is more sensitive than survival, and organisms that are immobile are considered to be adversely affected by the test substance. There was no difference between survival and mobility for MC Ferrox. However, some surviving amphipods in Termarust 2100, MC MIO and Zinc test solutions were immobile at the test conclusion. The immobility EC50 values were 31% (Termarust 2100), 43% (MC MIO) and 33% (Zinc) lower than the respective survival EC₅₀ values.

Blue Mussels

Normal embryo development in the controls achieved the test acceptability criterion (at least 80% normal development). MC Ferrox had the lowest adverse effect on embryo development (EC₅₀ = 29.0% WAF), and Zinc the greatest adverse effect (EC₅₀ = 1.1% WAF). Salinity adjustments were not required for the blue mussel test, and for undiluted WAF (i.e., 100%) embryo development was 100% abnormal for each test substance. Blue mussels were the most sensitive test species for MC Ferrox and Zinc.

Hazard classification

GESAMP (2002) considers acute toxicity test data the most practical measure available to rate the hazard posed by chemical substances to aquatic organisms. The rating scheme is based on the effect loading (EL) rate for 50% effect to the test organisms (EL₅₀). The hazard evaluation procedure classifications are provided in Appendix 1. The EC₅₀ values for the WAFs were used to calculate the EL₅₀ values for each organism, and the lowest value was

¹ NIWA seawater collected from Manu Bay, Raglan.

² Organisms is considered immobile if it is unable to swim after 10 seconds when it is stimulated with a jet of clean seawater.

NIWA

Taihoro Nukurangi used to classify the test substances. MC Ferrox and Zinc would be classified as 'nontoxic', Termarust 2100 and MC M10 would be classified as 'practically non-toxic'.

		A	cute classifi	cation (GES	AMP 2002	2)
		EC ₅₀ % WAF ^a	Dilution factor ^b	EL ₅₀ ° mg/L	Rating	Description
Algae ^d	MC Ferrox	53.1	1.9	26,550	0	Non-toxic
	Termarust 2100	1.8	55.6	900	1	Practically non-toxic
	MC MIO	1.5	66.7	750	1	Practically non-toxic
	Zinc	5.2	19.2	2,600	0	Non-toxic
Amphipods	MC Ferrox	38.0	2.6	19,000	0	Non-toxic
(survival)	Termarust 2100	29.0	3.4	14,500	0	Non-toxic
	MC MIO	23.0	4.3	11,500	0	Non-toxic
	Zinc	21.0	4.8	10,500	0	Non-toxic
Amphipods	MC Ferrox	38.0	2.6	19,000	0	Non-toxic
(mobility)	Termarust 2100	20.0	5.0	10,000	0	Non-toxic
	MC MIO	13.0	7.7	6,500	0	Non-toxic
	Zinc	14.0	7.1	7,000	0	Non-toxic
Blue Mussels	MC Ferrox	29.0	3.4	14,500	0	Non-toxic
	Termarust 2100	3	33.3	1,500	0	Non-toxic
	MC MIO	3.1	32.3	1,550	0	Non-toxic
	Zinc	1.1	90.9	550	1	Practically non-toxic
 Loading rate 50 	9/L	22	Fin	al rating and de	scriptor usi	and the second se

* (1/BC30)*100

c (Loading rate*1000)/dilution factor

Normally considered a short term chronic toxicity test. The EC_{so} value is therefore considered highly conservative.

			Chronic c	lassification	(GESAM	P 2002)	
		NOEC % WAF [®]	Dilution factor ^b	NOEC-L ^c mg/L	Rating		Description
Algae	MC Ferrox	4.5	22.2	2,250	0		Negligible
	Termarust 2100	0.56	178.6	280	0	3-1-6	Negligible
	MC MI0	0.56	178.6	280	0		Negligible
	Zinc	2.25	44.4	1,125	0		Negligible
Amphipods ^d	MC Ferrox	3.8	26.3	1,900	0		Negligible
(survival)	Termarust 2100	2.9	34.5	1,450	0		Negligible
	MC MI0	2.3	43.5	1,150	0		Negligible
	Zinc	2.1	47.6	1,050	0		Negligible
Amphipods ^d	MC Ferrox	3.8	26.3	1,900	0		Negligible
(mobility)	Termarust 2100	2.0	50.0	1,000	0	22	Negligible
	MC MI0	1.3	76.9	650	0		Negligible
	Zinc	1.4	71.4	700	0		Negligible
Blue Mussels	MC Ferrox	6.25	16.0	3,125	0		Negligible
	Termarust 2100	1.56	64.1	780	0		Negligible
	MC MI0	1.56	64.1	780	0		Negligible
	Zinc	0.39	256.4	195	0		Negligible

* Loading rate 50 g/L

Rating and descriptor using low est NOEC-L

⁴ NOEC estimated using EC_w/10

^b (1/NOEC)*100

^c (NOEC Loading rate*1000)/dilution factor

N-LWA Taihoro Nukurangi

Chronic toxicity addresses the potential impact of longer-term exposures and considers the influence of operational discharges in heavily used shipping lanes, accidental spills where the time-scales involved are longer than expected, such as involving large volumes which may bioaccumulate or slowly degrade (GESAMP (2002).

The algal growth and blue mussel embryo development tests may also be considered as short-term chronic tests as the test exposure is for a relatively long portion of the life stage. However for the acute amphipod survival test an estimate of chronic toxicity can be made by application of an acute to chronic ratio (ACR) of 10-fold to the EC₅₀ value (ANZECC 2000). The supplied substances would each have a **chronic toxicity rating of 'negligible'** indicating little potential for chronic toxicity.

The four test substances are complex mixtures of chemicals, including thinners, sterilisers fillers, solvents, and pigments. Aquatic toxicity data was not available for the mixtures, but some data for individual components were available from MSDS reports supplied by Boffa Miskell. However, they did not contain test details such as sample preparation. A previous toxicity study of Termarust TR2100 using rainbow trout survival in freshwater yielded an LC₅₀ of 41 g L⁻¹. However the authors noted the paint was not readily soluble, settled to the bottom of the test containers, and the LC₅₀ value probably did not accurately reflect toxicity (EVS/Golder 2005).

To adequately the low solubility issue, toxicity of these products was assessed using the water available fraction (WAF), which is prepared using the USEPA (1992) toxicity characteristic leaching procedure (TCLP). This approach is recommended by GESAMP (2002) for poorly soluble substances and estimates the mobility of both organic and inorganic compounds in solid, liquid and multiphasic substances in aquatic environments. In this study the test substances had low solubility, but the WAF extraction method simulated what may occur if any material was introduced to the marine environment from an event like a spill. This assessment method did not simulate input from overspray. The low hazard ratings for acute and chronic aquatic toxicity most likely reflect the low solubility of the test substance ingredients.

With respect to potential toxicity from exposure to cured/dried paint flakes entering the marine environment, we assume that there would probably be low risk to benthic macro-invertebrates. Exposure would only be by ingestion, and we would anticipate that they would have to ingest a large quantity before toxic thresholds were reached. Current flows under the Auckland Harbour Bridge would be expected to result in a wide dispersion of paint flakes prior to this threshold being reached.

Reference toxicant

The amphipod zinc sulphate sensitivity was within the normal and expected range (\pm 2SD of long term mean – NIWA unpublished data). The blue mussel sensitivity for zinc was slightly outside of the expected range, but still within the action limits (\pm 3SD of long term mean). The calculated zinc sensitivity for the alga was outside the action limits, but still two times more sensitive than the lost sensitive organism more sensitive than the most sensitive used to derive water quality criteria for zinc (ANZECC 2000).

N-LWA Taihoro Nukurangi

Nevertheless, by using three test species (*M. polymorphus, C. lucasi,* and *M. galloprovincialis*) which exhibit such sensitivity to zinc, the results from this suite of toxicity tests provide a moderate degree of confidence in assessing the toxic hazard of the sample. However, care must be taken when extrapolating these results for protection of organisms present in a particular receiving water environment.

MA.L. Mary

Michael L Martin Ecotoxicology Services Manager

Reviewed by: Dr Chris Hickey Principal Scientist Ecology & Ecotoxicology

NIWA

Taihoro Nukurangi

REFERENCES

- ASTM (1993) Standard Guide for Conducting Acute Toxicity Tests on Aqueous Effluents with Fishes, Macroinvertebrates and Amphibians E 1192-88. *In*: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, Pa. USA: 853– 865.
- ANZECC (2000) ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand. Canberra.
- Environment Canada (1992) Environmental Protection Series Biological Test Method: Growth Inhibition Using the Freshwater Alga Selenastrum capricornutum. EPS 920922. Test Method. EPS 1/RM/25. Environment Canada. Ontario: 41.
- EVS/Golder (2005) Toxicity testing on the sample identified as TR2100 RAVCS. Environment Consultants/Golder Associates, Vancouver: 5.
- GESAMP (2002) Hazard evaluation procedure for chemical substances carried by ships. GESAMP Reports and Studies No. 64. International Maritime Organization, London: 137.
- NIWA (1995) Standard Operating Procedure Number 4.0. Amphipod 96-h Acute Toxicity Test Procedure. National Institute of Water and Atmospheric Research, Hamilton, New Zealand: 11.
- NIWA (1996) Standard Operating Procedure. 14.1. Marine Algal Microplate Method. National Institute of Water and Atmospheric Research, Hamilton, New Zealand: 13.
- NIWA (2008) Standard Operating Procedure 21.2. Blue mussel embryo (Mytilus galloprovincialis) short-term chronic toxicity test protocol. National Institute of Water and Atmospheric Research, Hamilton, New Zealand: 41.
- USEPA (1992). EPA Test Method 1311 TCLP (Toxicity Characteristic Leaching Procedure), USEPA: 38. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/1311.pdf.
- USEPA (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/600/4-90/027F. USEPA. Cincinnati, Ohio, USA.
- Williams, E.K., Hall, J.A. (1999) Seasonal and geographic variability in toxicant sensitivity of Mytilus galloprovincialis larvae. Australasian Journal of Ecotoxicology, 5: 1–10.

NIWA Taihoro Nukurangi

Appendix 1

HAZARD EVALUATION PROCEDURE

A summary of the GESAMP (2002) hazard evaluation procedure for chemical substances carried by ships. The procedure uses general descriptive categories for toxicity based on acute EC₅₀ values (for acute toxicity) and NOEC values (for chronic toxicity):

Rating	Description	LC/LL _{s0} , EC/EL _{s0} , IC/IL s0 (mg/L)
0	Non-toxic	> 1000
1	Practically non-toxic	>100 - ≤1000
2	Slightly toxic	>10 - ≤100
3	Moderately toxic	>1-510
4	Highly toxic	>0.1-51
5	Very highly toxic	>0.01 - ≤0.1
6	Extremely toxic	≤ 0.01

Table 5 Revised GESAMP rating scheme for acute aquatic toxicity

Table 6 Ratings for chronic aquatic toxicity

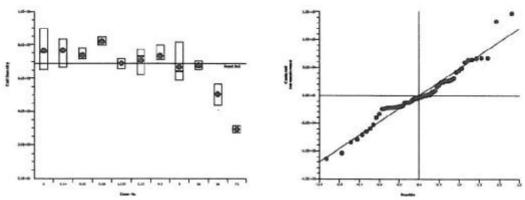
Rating	Description	No Observed Effect Concentration (mg/l)
0	negligible	>1
1	low	> 0.1 - ≤ 1
2	moderate	> 0.01- ≤ 0.1
3	high	> 0.001- ≤ 0.01
4	very high	≤ 0.001

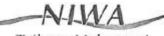
THE PARTY OF THE P				
Project Name:	Total Bridge Services	Project Number	umber T	TBS14201
lest material: Dilution Water:	Paint tormulations WAFS ⁻ Alga and blue mussels - 0.2 um filtered offsh	Paint tormulations YVAF5" Alga and blue mussels – 0.2 um filtered offshore seawater: amphipods – Manu Bay seawater.	Kererence Toxicant: V seawater.	ZING SUIPRATE
	Algae	Amphipod	Bivalve - blue mussel embryos	is el embryos
Test Initiation:	4/12/2013	5/12/2013	6/12//2013	
Reference Method:	USEPA (1987) modified with Environment Canada (1992)	ASTM (1993)	Williams & Hall (1999)	(6)
Test Protocol:	NWA SOP 14.1 - NWA (1996)	NIWA SOP 4.0 NIWA (1995)	NIWA SOP 21.2 - (NIWA 2008)	VIWA 2008)
Test Organisms:	Minutocellus polymorphus	Chaetocorophium cf. lucasi	Mytilus galloprovincialis	ialis
Source:	Lab culture (500), imported from Bigelow Laboratories, USA	Waingaro Landing, Ragian Harbour	Coromandel Harbour	5
Organisms/Container:	10,000 cells mL ⁻¹	10	600 fertilised embryos	05
Test Concentrations	Control, 0.14, 0.28, 0.56, 1.13, 2.25, 4.5, 9.0, 18.0, 36.0, 72.0%	Control, Brine Control, 0.1, 0.39, 1.56, 6.25, 25.0, 57.1%	Cantrol, 0.1, 0.39, 1.	Control, 0.1, 0.39, 1.56, 6.25, 25.0, 100%
Test Duration:	48 hours	96 hours	48 hours	
Replicates:	10 for controls, 5 for treatments	5 for controls, 3 for treatments	10 for controls, 5 for treatments	· treatments
Sample preparation:	50 g sample + 1.0 L offshore water, mixed in a 1 L glass jar on a rotary tumbler (4°C) for 24 h, decanted and the supernatant used for the toxicity assessments.	50 g sample + 1.0 L offshore water, mixed in a 1 L glass jar on a rotary tumbler (16 mm) for 24 h at 20 °C. The WAF was then cold settled (4°C) for 24 h, decanted and the supernatant used for the toxicity assessments.	14 h at 20 °C. The WAF	F was then cold settle
Salinity: Samola protroatmont	26% adjusted with UVNP water	20% adjusted with UVNP water Nii	1200 IIN	
Taet Chambare	Of wall starila mirronistae	55 ml nolvetvrana haakare	16v100mm nises hihas	000
set originates.	an weil statilie Hilciphiates	on IIII poissisierie neavers	The see in the second s	600
Lighting:	Continuous overhead lighting	Complete darkness	16:8h light:dark	
Temperature:	25±1°C	20 ± 1°C	20 ± 1°C	
Aeration:	Nit	NII	EZ.	
Chemical Data:	Initial sample salinity, pH, temperature, dissolved oxygen.	Initial and final salinity, pH, temperature, dissolved oxygen. final conductivity.	Initial and final salini dissolved oxygen.	initial and final salinity, pH, temperature, dissolved oxvoen.
Effect Measured:	Growth inhibition	Survival, mobility	Larvae abnormality a development	Larvae abnommality and retarded embryo development
Zn sensitivity (ECsot2sd) ^b :	0.024(0.041-0.007) mg L-1 Zn ²⁺ (n=16)	2.4(3.9-0.9) mg L ⁻¹ Zn ²⁺ (n=6)	0.19(0.25-0.13) mg L ⁻¹ Zn ²⁺ (n=18)	L-1 Zn ²⁺ (n=18)
Test Acceptability:	Control CV<20%; at least 16x cell growth	At least 90% survival and mobility in control	80% of control embr	80% of control embryos normally developed
Method Detection Limit:	increase in controls 17.3 % reduction relative to controls	11% reduction relative to controls	7.2% reduction relative to controls	ive to controls
Percent Minimum Significant Difference ⁶ (PMSD):	10.2%, 15.7%, 11.0%, 27.1%	6.0%, 4.2%, 5.2%, 11.0%	11.0%, 10.0%, 6.7%, 11.0%	, 11.0%
Test Compliance:	Achieved	Achieved	Achieved	

)

)

9 | P ag e


CETIS Ana	lytical Rep	ort					1000	oort Date: st Code:		an-14 15:4 5-5032/255	
Phytoplanktor	n Growth Inhib	ition Te	st							NIWA Eco	loxicolog
Analysis ID: Analyzed:	15-8928-7900 09 Dec-13 11		Endpoint: Analysis:	Cell Density Parametric-Mu	lbple Compa	rison		TIS Version icial Result		7.0	
Batch ID:	08-7892-9559		Test Type:	Cell Growth			Ana	alyst: A A	Albert		
Start Date:	06 Dec-13 11	00	Protocol:	NIWA (1996)			Dil	uent: Off	fshore seawat	er	
Ending Date:	08 Dec-13 11	00	Species:	Minutocellus po			10.00	ne: No	t Applicable		
Duration:	48h		Source:	CCMP Bigelow	Laboratory	for Ocean 8	Scien Age	e:			-
Sample ID:	00-6140-8991		Code:	2558/OT1 MP5			Cli	ent: To	tal Bridge Ser	vices	
Sample Date:			Material:	Paint WAF			Pro	oject: Sp	ecial Studies		
Receive Date:	04 Dec-13		Source:	Client Supplied							
Sample Age:	83h		Station:	In House							
Batch Note:	Auckland Har	bour Brid	ige Paints D	ats Dec 2013							
Sample Note:	MC Ferrox										
Data Transform		Zeta	Alt H		irlo	NOEL	LOEL	TOEL	TU	PMSD	
Untransformed	1	0	C > T	Not Run		4.5	9	6.4	22	10.0%	
Bonferroni Ad	lj t Tesl										
Control	vs Conc-%	í	Test		MSD	P-Value	Decisio				
SW Control	0.14		-0.06	2.7	78000	1.0000	10.00	nificant Effe			
	0.28		0.96	2.7	78000	1.0000		Non-Significant Effect Non-Significant Effect			
	0.56		-1.9	2.7	78000	1.0000					
	1.125		2.6	2.7	78000	0.0619	Nor-Significant Effect Nor-Significant Effect				
	2.25		2	2.7	78000 78000	0.2668					
	9* 3.4			2.7	78000	0.0073	Non-Significant Effect Significant Effect				
	9° 3.4 18° 3.1			2.7	78000	0.0177	Significant Effect				
	36*		8.9	2.7	78000	<0.0001					
	72"		16	2.7	78000	<0.0001					
Auxiliary Test	5										
Attribute	Test			Test Stat	Critical	P-Value	Decisio	n			
Extreme Value	Grubbs	Single 0	butier	3	32	0.0949	No Outli	ers Detected	j		
ANOVA Table			~~~~								
Source	Sum Sq	uares	Mean	Square	DF	F Stat	P-Value	Decision	n(5%)		
Between	1.14371	5E+12	1.143	716E+11	10	41	<0.0001	Significa	nt Effect		
Error	1.38280	5E+11	28220	52000	49			0			
Total	1.28199	6E+12	1.171	936E+11	59						
ANOVA Assur	nptions										
Attribute	Test			Test Stat	Critical	P-Value	Decisio	n(1%)			
Variances	Bartlett	Equality	of Variance	22	23	0.0145		ariances			
Distribution		Wilk No		0.96		0.0369	Normal	Distribution			
Cell Density S	iummary										
Conc-%	Control Type	Coun	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	7.6E	5 7.4E+5	7.9E+5	6.5E+5	9.0E+5	1.2E+4	6.6E+4	8.7%	0.0%
D.14		5	7.7E-	5 7.4E+5	7.9E+5	6.6E+5	8.3E+5	1.2E+4	6.4E+4	8,3%	-0.23%
0.28		5	7.4E	5 7.3E+5	7.5E+5	7.1E+5	7.8E+5	4.8E+3	2.6E+4	3.5%	3.7%
0.56		5	8.2E*	5 8.1E+5	8.3E+5	8.0E+5	8.4E+5	3.7E+3	2.0E+4	2.4%	-7.1%
1.125		5	6.9E-	5 6.8E+5	7.0E+5	6.5E+5	7.1E+5	4.1E+3	2.2E+4	3.2%	9.9%
2.25		5	7.1E	5 6.8E+5	7.3E+5	6.2E+5	7.7E+5	1.4E+4	7.4E+4	10.0%	7.5%
4.5		5	7.3E	5 7.2E+5	7.5E+5	7.1E+5	8.0E+5	6.9E+3	3.7E+4	5.1%	4.1%
9		5	6.7E-	5 6.3E+5	7.0E+5	5.9E+5	8.1E+5	1.6E+4	8.7E+4	13.0%	13.0%
18		5	6.7E4	5 6.7E+5	6.8E+5	6.6E+5	7.0E+5	4.6E+3	2.5E+4	3.7%	12.0%
		5	5.0E-	5 4.8E+5	5.3E+5	4.4E+5	5.7E+5	1.1E+4	6.1E+4	12.0%	34.0%
36											


N-I-WA

Taihoro Nukurangi

Appendix 3: STATISTICS

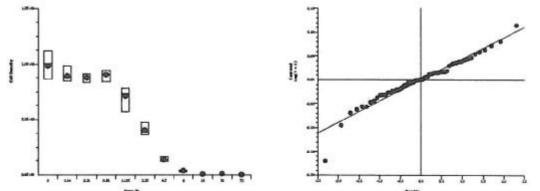
Tran		Y Transform		3.4	samples	Exp 95%		2. 2		_		
.og(X+	1)	Linear	579	51 200	0	Yes	Two-	Point Interpol	ation			
Residu	al Analy	sis										
Attribu	te	Method			Test Stat	Critical	P-Value	Decision(5	%)			
Extreme Value G		Grubbs Ex	Grubbs Extreme Value		3	3.2	0.0949	No Outliers Detected				
Point E	stimates	5										
evel	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
C5	0.89	0.46	6.4	110	16	220						
C10	6	N/A	24	17	4.1	N/A						
C15	19	NIA	22	5.2	4.5	N/A						
C20	23	17	26	4.4	3.8	5.1						
C25	26	21	32	3.8	3.2	4.9						
C40	41	31	47	2.4	2.1	3.2						
C50	53	44	59	1.9	1.7	2.3						
Cell D	ensity D	etail						1				
Conc	% C	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	S	W Control	8.1E+5	6.5E+5	7.7E+5	7.4E+5	7.5E+5	7.6E+5	7.0E+5	8.1E+5	9.0E+5	7.5E+5
0.14			7.7E+5	8.0E+5	6.6E+5	7.7E+5	8.3E+5					
0.28			7.8E+5	7.3E+5	7.3E+5	7.1E+5	7.2E+5					
0.56			8.0E+5	8.1E+5	8.1E+5	8.4E+5	8.3E+5					
1.125			6.9E+5	6.9E+5	6.5E+5	7 0E+5	7.1E+5					
2.25			6.3E+5	7.7E+5	7.3E+5	7.7E+5	6.2E+5					
4.5			7.1E+5	7.1E+5	7.3E+5	8 0E+5	7.1E+5					
9			6.3E+5	6.4E+5	5.9E+5	8.1E+5	6.6E+5					
18			6.5E+5	7.0E+5	6.6E+5	7.0E+5	6.6E+5					
36			4.4E+5	5.6E+5	4.5E+5	5.7E+5	5.0E+5					
72			3.1E+5	2.7E+5	2.9E+5	2.7E+5	3.2E+5					

Taihoro Nukurangi

 p_{π}

J

Appendix 3: STATISTICS


			Test	Code:	: 05-5308-3647/2558/OT2 MP						
Phytoplankton	Growth Inhibitio	n Test							N	IWA Ecoto	kicology
Analysis ID: Analyzed:	11-4531-1835 09 Dec-13 11:20	0.2333		el Density Inparametric-l	Multiple Com	iparison	2,532,85	S Version: al Results:	CETISv1.7. Yes	.0	
Batch ID:	08-7892-9559		t Type: Ce				Analy				
Start Date:	06 Dec-13 11:00			WA (1996)			Dilue		ore seawater	68	
Ending Date:	08 Dec-13 11:00	1000		nutocellus po		223 2	Brine	n Not A	pplicable		
Duration:	48h	Sou	rce: CC	MP Bigelow	Laboratory fo	or Ocean S	cien Age:				
Sample ID:	07-8796-2934	Coc	le: 25	58/OT2 MP5			Clien	t: Total	Bridge Servi	ces	
Sample Date:	03 Dec-13	Mat	erial: Pa	int WAF			Proje	ct: Spec	ial Studies		
Receive Date:		500	rce: Cl	ient Supplied							
Sample Age:	83h	Stat	ion: In	House							
Batch Note:	Auckland Harbou	r Bridge F	Paints Dec 2	2013							
Sample Note:	Termarust 2100										
Data Transform	m 2	Zeta	Alt Hyp	Monte Car	10	NOEL	LOEL	TOEL	TU I	PMSD	
Log(Y+Z)		1	C > T	Not Run		0.56	1.125	0.79	180	16.0%	
Wilcoxon/Bon	ferroni Adj Test			410.000							
Control	vs Conc-%		Test Stat	Critical	Ties	P-Value	Decision(5%)			
SW Control	0.14		22			0.1399		icant Effect			
	0.28		21		0	0.0966	Non-Signif	icant Effect			
	0.56		27		0	0.6460	Non-Signif	ficant Effect			
	1.125*		15		0	0.0033	Significant	Effect			
	2.25*		10		0	0.0100	Significant	Effect			
	4.5*		15		0	0.0033	Significant	Effect			
	9*		15		0	0.0033	Significant	Effect			
	18*		15		0	0.0033	Significant	Effect			
	36*		15		0	0.0033	Significant	Effect			
	72'		15		0	0.0033	Significant	Effect			
ANOVA Table											
Source	Sum Square	es	Mean Sq	uare	DF	F Stat	P-Value	Decision(5%)		
Between	53.12582		5.312582	2	10	2200	<0.0001	Significant	Effect		
Error	0.1177392		0.002452		48						
Total	53,24356		5.315034		58						
ANOVA Assun	nptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision(195)			
Variances	Bartlett Equ	ality of V	ariance	26	23	0.0042	Unequal V	ariances			
Distribution	Shapiro-Wi	k Norma	ity	0.96		0.0434	Normal Di	stribution			
Cell Density	Summary										
Conc-%	Control Type	Count	Mean	95% LC	95% UCI	. Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	9.8E+5	9.5E+5	1.0E+6	8.6E+5	1.1E+6	1.6E+4	8.5E+4	8.7%	0.0%
0.14		5	8.9E+5	8.7E+5	9.1E+5	8.4E+5	9.8E+5	1.1E+4	5.8E+4	6.5%	9.6%
0.28		5	8.7E+5	8.6E+5	8.8E+5	8.3E+5	9.1E+5	5.9E+3	3.2E+4	3.6%	11.09
0.56		5	9.0E+5	8.8E+5	9.2E+5	8.3E+5	9.4E+5	7.7E+3	4 2E+4	4.6%	8.3%
1.125		5	7.1E+5	6.7E+5	7.4E+5	5.6E+5	7.8E+5	1.6E+4	8.7E+4	12.0%	28.09
2.25		4	4.0E+5		4.2E+5	3.6E+5	4.7E+5	9.1E+3	4.9E+4	12.0%	59 09
4.5		5	1.4E+5		1.4E+5	1.2E+5	1.6E+5		1.7E+4	12.0%	86.09
9		5	3.6E+4		3.8E+4	3.1E+4	4.0E+4		3.7E+3	10.0%	96 09
18		5	6.8E+3		7.0E+3	6.4E+3	7.4E+3		3.5E+2	5.1%	99.09
		5	9.6E+3		9.8E+3	8.6E+3	1.0E+4		7.1E+2	7.4%	99.09
36											

Log(Y+Z) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	6	6	6	5.9	6	0.007	0.038	0.63%	0.0%
0.14		5	5.9	5.9	6	5.9	6	0 0051	0.027	0.46%	0.72%
0.28		5	5.9	5.9	5.9	5.9	6	0.0029	0.016	0.27%	0.84%
0 56		5	6	5.9	6	5.9	6	0.0038	0.02	0.34%	0.61%
1.125		5	5.8	5.8	5.9	5.8	5.9	0.011	0.057	0.97%	2.4%
2.25		4	5.6	5.6	5.6	5.6	57	0.0095	0.051	D.91%	6.5%
4.5		5	5.1	5.1	5.2	5.1	5.2	0.0097	0.052	1.0%	14.0%
9		5	4.6	4.5	4.6	4.5	4.6	0.0084	0.045	0.99%	24.0%
18		5	3.0	3.8	3.8	3.8	3.9	0.0041	0.022	0.57%	36.0%
36		5	4	4	4	39	4	0.006	0 032	0.82%	34.0%
72		5	3.4	3.3	3.4	3.2	3.5	0.021	0.12	3.4%	44.0%

X Trans		Y Transform Linear	Seec 5795	_	Resamples 200	Exp 95% Yes		thod o-Point Inter	molation		_	
			3133		200	163		or one me	postion			
	al Analy											
Attribu		Method			Test Stat		P-Value					
Extrem	e Value	Grubbs Ex	dreme Value	1	2.8	3.2	0.2165	No Outli	ers Detecte	d		
Point E	stimates											
Level	96	95% LCL	95% UCL	TU	95% LCL	95% UCL						
IC5	0.071	0.036	0.81	1400	120	2800						
IC10	0.57	N/A	0.75	180	130	N/A						
IC15	0.7	0.5	0.95	140	110	200						
IC20	0.85	0.61	1.2	120	84	160						
IC25	1	0.72	1.3	99	76	140						
IC40	1.5	1.1	1.7	68	58	90						
IC50	1.8	1.5	2.1	56	48	68						
Cell D	ensity D	etail										
Conc.	8. C.	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		W Control	1.0E+6	1.0E+6		8.6E+5	9.1E+5	9.1E+5	9.9E+5	1.1E+6	1.0E+6	1.1E+6
0.14			8.7E+5	8.4E+5		9.8E+5	8.5E+5					
0.28			9.1E+5	9.0E+5	5 8.6E+5	8.3E+5	8.7E+5					
0.56			9.4E+5	9.0E+1	5 9.3E+5	8.3E+5	9.0E+5					
1.125			7.7E+5	7.2E+	5 5.6E+5	7.8E+5	6.9E+5					
2.25			4.7E+5	3.8E+	5 2.4E+5	3.6E+5	3.9E+5					
4.5			1.6E+5	1.3E+	5 1.2E+5	1.3E+5	1.4E+5					
9			4.0E+4	3.1E+4	4 3.6E+4	4.0E+4	3.5E+4					
18			6.4E+3	6.6E+3	6.8E+3	7.4E+3	6.9E+3					
36			8.6E+3	9.1E+3	9.8E+3	9.9E+3	1.0E+4					
72			2.0E+3	1.5E+3	3.0E+3	2.6E+3	2.6E+3					

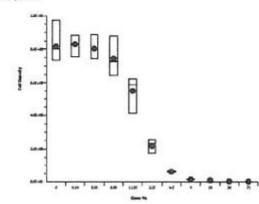
In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

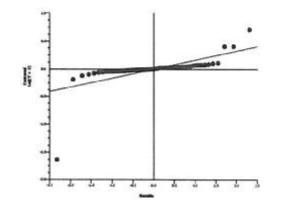
TBS14201: Total Bridge Services

Taihoro Nukurangi

Batch ID: 08-7892-9559 Test Type: Cell Growth Analyst: A Alb Start Date: 06 Dec-13 11:00 Protocol: NIWA (1996) Diluent: Offsh Ending Date: 08 Dec-13 11:00 Species: Minutocellus polymorphus Brine: Not A Duration: 48h Source: CCMP Bigelow Laboratory for Ocean Scien Age: Not A Sample Date: 03 Dec-13 Material: Paint WAF Project: Species: Receive Date: 04 Dec-13 Source: Client Supplied Species: Species: Sample Age: 83h Station: In House Species: Species: Species:	CETISv1.7 Yes ent ore seawate opplicable	IWA Ecolo	xicology
Analyzed: D9 Dec-13 11:22 Analysis: Nonparametric-Multiple Comparison Official Results: Batch ID: 08-7892-9559 Test Type: Cell Growth Analyst: A Alb Start Date: 06 Dec-13 11:00 Protocol: NIWA (1996) Diluent: Offsh Ending Date: 08 Dec-13 11:00 Protocol: NIWA (1996) Diluent: Offsh Duration: 48h Source: CCMP Bigelow Laboratory for Ocean Scien Age: Sample ID: 10-8532-4600 Code: 2558/OT3 MP5 Client: Total Sample Date: 03 Dec-13 Material: Paint WAF Project: Speci Receive Date: 04 Dec-13 Source: Client Supplied Species: Species Sample Age: 83h Station: In House Species Species Species	Yes ent ore seawate opplicable	.0	
Start Date: 06 Dec-13 11:00 Protocol: NIWA (1996) Diluent: Offsh Ending Date: 08 Dec-13 11:00 Species: Minutocellus polymorphus Brine: Not A Duration: 48h Source: CCMP Bigelow Laboratory for Ocean Scien Age: Yes Sample ID: 10-8532-4600 Code: 2556/OT3 MP5 Client: Total Sample Date: 03 Dec-13 Material: Paint WAF Project: Species: Receive Date: 04 Dec-13 Source: Client Supplied Species: Species: Sample Age: 83h Station: In House House House	ore seawate oplicable		
Start Date: 06 Dec-13 11:00 Protocol: NIWA (1996) Diluent: Offsh Ending Date: 08 Dec-13 11:00 Species: Minutocellus polymorphus Brine: Not A Duration: 48h Source: CCMP Bigelow Laboratory for Ocean Scien Age: Sample Date: 03 Dec-13 Material: Paint WAF Project: Species: Receive Date: 04 Dec-13 Source: Client Supplied Species: Species: Sample Age: 83h Station: In House Species: Species:	pplicable		
Duration: 48h Source: CCMP Bigelow Laboratory for Ocean Scien Age: Sample ID: 10-8532-4600 Code: 2558/OT3 MP5 Client: Total Sample Date: 03 Dec-13 Material: Paint WAF Project: Speci Receive Date: 04 Dec-13 Source: Client Supplied Sample Age: 83h Station: In House	<u></u>	r	
Sample ID: 10-8532-4600 Code: 2558/013 MP5 Client: Total Sample Date: 03 Dec-13 Material: Paint WAF Project: Speci Receive Date: 04 Dec-13 Source: Client Supplied Speci Speci Sample Ago: 83h Station: In House Speci Speci			
Sample Date: 03 Dec-13 Material: Paint WAF Project: Special Receive Date: 04 Dec-13 Source: Client Supplied Special Special Sample Age: 83h Station: In House Special Special			
Receive Date: 04 Dec-13 Source: Client Supplied Sample Age: 83h Station: In House	Bridge Servi	ices	
Sample Age: 83h Station: In House	ial Studies		
Batch Note: Auckland Harbour Bridge Paints Dec 2013			
Sample Note: MC M10			
Data Transform Zeta Alt Hyp Monte Carlo NOEL LOEL TOEL	TU	PMSD	
Log(Y+Z) 1 C > T Not Run 0.56 1.125 0.79	180	61.0%	
Wilcoxon/Bonferroni Adj Test			
Control vs Conc.% Test Stat Critical Ties P-Value Decision(5%)			
SW Control 0.14 45 0 1.0000 Non-Significant Effect			
0.28 41 0 1.0000 Non-Significant Effect			
0.56 26 0 0.4962 Non-Significant Effect			
1,125* 15 0 0.0033 Significant Effect			
2.25" 15 0 0.0033 Significant Effect			
4.5° 15 0 0.0033 Significant Effect			
9* 15 0 0.0033 Significant Effect 18* 15 0 0.0033 Significant Effect			
· · · · · · · · · · · · · · · · · · ·			
36* 15 0 0.0033 Significant Effect 72* 15 0 0.0033 Significant Effect			
Auxiliary Tests		- 11 - 11	
Attribute Test Test Stat Critical P-Value Decision			
Extreme Value Grubbs Single Outlier 6.6 3.2 <0.0001 Outlier Detected			
ANOVA Table			
Source Sum Squares Mean Square DF F Stat P-Value Decision(5	546.1		
Between 111.656 11.1656 10 150 <0.0001 Significant			
Error 3.67402 0.07497999 49			
Total 115.33 11.24058 59			
ANOVA Assumptions			
Attribute Test Test Stat Critical P-Value Decision(1%)			
Variances Bartlett Equality of Variance 140 23 <0.0001 Unequal Variances			
Distribution Shapiro-Wilk Normality 0.45 <0.0001 Non-normal Distribution	n		
ell Density Summary			
onc-% Control Type Count Mean 95% LCL 95% UCL Min Max Std Err	Std Dev	CV%	Diff%
SW Cantrol 10 8.1E+5 7.8E+5 8.5E+5 7.3E+5 9.7E+5 1.5E+4	8.2E+4	10.0%	0.0%
.14 5 8.3E+5 8.1E+5 8.5E+5 7.5E+5 8.8E+5 1.0E+4	5.4E+4	6.5%	-1.8%
28 5 8.0E+5 7.8E+5 8.2E+5 7.4E+5 8.9E+5 1.0E+4	5.5E+4	6.9%	1.5%
56 5 7.4E+5 7.1E+5 7.8E+5 6.4E+5 8.8E+5 1.6E+4	8.5E+4	11.0%	8.7%
125 5 5.5E+5 5.2E+5 5.8E+5 4.1E+5 6.2E+5 1.6E+4	8.5E+4	15.0%	33.0%
25 5 2.2E+5 2.0E+5 2.3E+5 1.7E+5 2.6E+5 6.5E+3	3.5E+4	16.0%	73.0%
5 6.1E+4 6.0E+4 6.3E+4 5.6E+4 6.7E+4 8.4E+2	4.5E+3	7.4%	92.0%
5 1.4E+4 1.2E+4 1.5E+4 8.6E+3 1.7E+4 5.9E+2	3.2E+3	23.0%	98.0%
6 5 7.4E+3 7.3E+3 7.6E+3 6.9E+3 7.9E+3 7.4E+1	4.0E+2	5.4%	99.0%
6 5 7.2E+2 6.8E+2 7.6E+2 6.0E+2 8.8E+2 2.0E+1	1.1E+2	15.0%	100.04
	8.2E+1	82.0%	100.09
72 5 9.9E+1 6.8E+1 1.3E+2 0.0E+0 2.2E+2 1.5E+1	0.2E+1	62.0%	100.0

Log(Y+Z) Transformed Summary


Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	5.9	5.9	5.9	5.9	6	0.0079	0.043	0.72%	0.0%
0.14		5	5.9	5.9	5.9	5.9	5.9	0.0053	0.029	0.48%	-0.15%
0.28		5	5.9	5.9	5.9	5.9	5.9	0.0055	0.03	0.5%	0.09%
0.56		5	5.9	5.9	5.9	58	5.9	0.009	0.048	0.83%	0.67%
1.125		5	5.7	5.7	5.8	5.6	5.8	0.013	0.072	1.3%	2.9%
2.25		5	53	5.3	5.4	5.2	5.4	0.013	0.072	1.4%	9.7%
4.5		5	4.8	4.8	4.8	4.8	4.8	0.0059	0.032	0.67%	19.0%
9		5	4.1	4.1	4.2	3.9	4.2	0.021	0.11	2.8%	30.0%
18		5	3.9	3.9	3.9	3.6	3.9	0.0043	0.023	0.6%	34.0%
36		5	2.9	2.8	2.9	2.8	2.9	0.012	0.062	2.2%	52.0%
72		5	1.6	1.3	2	0	2.3	0.17	0.94	57.0%	72.0%


Linear Interpolation Options

X Trans	sform	Y Transform	1 See	đ	Resamples	Exp 95%	CL Met	hod	
Log(X+	1)	Linear	5795	51	200	Yes	Two	Point Interpolation	
Residu	al Analys	sis							
Attribu	te	Method			Test Stat	Critical	P-Value	Decision(5%)	
Extrem	e Value	Grubbs Ex	dreme Valu	8	3.2	3.2	0.0576	No Outliers Detected	
Point E	stimates	6							1
Level	50	95% LCL	95% UCL	TU	95% LCL	95% UCL			
C5	0.38	0.015	0.75	270	130	6500			
C10	0.57	0.21	0.79	180	130	480			
C15	0.68	0.38	0.68	160	110	260			
IC20	0.79	0.51	1	130	99	200			
C25	0.91	0.65	1.2	110	85	150			
C40	1.3	0.96	1.5	78	6 B	100			
IC50	1.5	1.3	1.7	65	59	80			

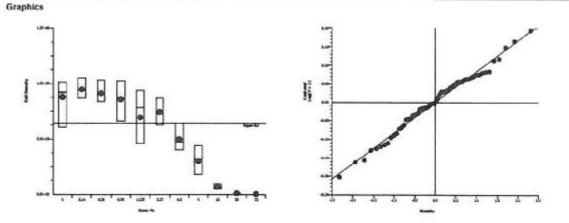
Graphics

)

NIWA

Taihoro Nukurangi

EIIS Alla	lytical Repo	ort							1.00	ort Date: Code:			-3086/255	
hytoplanktor	Growth Inhibi	tion Te	51									M	IWA Ecot	oxicolog)
Analysis ID:	08-4500-0733	. 1	Endpoint:	Cell Der	isity	100.005			CETI	S Versio	n:	CETISv1.7	0.0	
Analyzed:	09 Dec-13 11.2	23	Analysis:	Parame	tric-Mult	iple Compa	ison		offic	ial Resu	its:	Yes		
Batch ID:	08-7892-9559		Test Type:	Cell Gro	wth				Analy	yst: A	Albe	Ine		
start Date:	06 Dec-13 11:0	00	Protocol:	NIWA (1	1996)				Dilue	ent: O	offsho	ore seawate	H.	
Ending Date:	08 Dec-13 11:0	00	Species:	Minutoc	ellus pol	ymorphus			Brine	E N	IOL A	pplicable		
Duration:	48h		Source:	CCMP E	Bigelow	Laboratory 1	or Ocean S	Scien	Age:					
Sample ID:	19-0550-9802		Code:	2558/01	4 MP5	2			Clien	IC T	otal	Bridge Serv	ices	
Sample Date:	03 Dec-13		Material:	Paint W	AF				Proje	et: S	peci	al Studies		
Receive Date:	04 Dec-13		Source:	Client S	upplied									
Sample Age:	83h		Station:	In House										
Batch Note:	Auckland Harb	our Brid	ige Paints D	ec 2013										
Sample Note:	Zinc													
Data Transfor	m	Zeta	Alt H	VD Mo	inte Car	10	NOEL	LOE	EL	TOEL		TU	PMSD	
Log(Y+Z)		1	C > T		Run		2.25	4.5	-	3.2	_	44	27.0%	
Bonferroni Ad	li t Test										-			
Control	vs Conc-%		Test	Stat Cri	tical	MSD	P-Value	Dec	ision(5%)				
SW Control	0.14		-0.72			0.13	1.0000	_		ficant Eff	lect			
	0.28		-0.38	2.7		0.13	1.0000	Non	-Signi	ficant Eff	ect			
	0.56		0.22	2.7	()	0.13	1.0000	Non	Signi	ficant Eff	lect			
	1.125		23	2.7	6	0.13	0.1197	Non	-Signi	ficant Eff	lect			
	2.25		1.5	2.7		0.13	0.7626	Non	Signi	ficant Eff	lect			
	4.5*		5	2.7		0.13	<0.0001	Sigr	nificant	t Effect				
	9*		9.8	2.7		0.13	<0.0001	Sigr	nifican	t Effect				
	18"		23	2.7		0.13	<0.0001	Sec. 1970.		t Effect				
	36*		40	2.7		0.13	<0.0001			t Effect				
	72*		51	2.7		0.13	<0.0001	Sign	nifican	t Effect				
Auxiliary Test	\$													
Attribute	Test				st Stat	and the second se	P-Value		ision					
Extreme Value	Grubbs S	Single C	Outlier	2.5	6	3.2	0.7085	No	Outlier	rs Detect	ed			
ANOVA Table														
Source	Sum Squ	ares	Mear	Square	į	DF	F Stat	P-V	alue	Decisi	on(5	%)		
Between	41,9158		4,191	58		10	510	<0.0	0001	Signific	ant f	Effect		
Error	0.402555	_		215417		49								
Total	42.31835		4.199	795		59					_	_		
ANOVA Assur								_						
Attribute	Test				st Stat	Critical	P-Value		ision		_			
Variances Distribution	Bartlett E Shapiro-		of Variance rmality	17	land the second s	23	0.0690		10111	iances istribution				
Cell Density S	ummary													
Conc-%	Control Type	Cour	nt Mean	n 95	% LCL	95% UCL	Min	Ма	x	Std E	п	Std Dev	CV%	Diff%
0	SW Control	10	8.8E	+5 8.	3E+5	9.2E+5	6.0E+5	1.0	E+6	2.2E+	4	1.2E+5	13.0%	0.0%
0.14		5	9.4E	+5 9	1E+5	9 7E+5	8.7E+5	1.0	E+6	1.5E+	4	7.8E+4	8.3%	-7.8%
0.28		5	9.1E	+5 8.1	8E+5	9.4E+5	8.4E+5	1.0	E+6	1.4E+	4	7.4E+4	8.1%	-3.7%
0.56		5	8.5E	+5 8.	DE+5	9.1E+5	6.6E+5	1.0	E+6	2.5E+	4	1.3E+5	16.0%	2.4%
1.125		5	6.9E	•5 6.	1E+5	7.7E+5	4.6E+5	9.4	E+5	3.8E+	4	2.1E+5	30.0%	21.0%
2.25		5	7.4E	+5 7.	0E+5	7.8E+5	6.2E+5	8.7	E+5	1.8E+	4	9.6E+4	13.0%	16.0%
1.5		5	5.0E	+5 4.	6E+5	5.3E+5	4.0E+5	6.4	E+5	1.7E+	4	9.3E+4	19.0%	43.0%
9		5	3.0E		6E+5	3.4E+5	1.8E+5		E+5	2.0E+		1.1E+5	36.0%	66.0%
		5	6.7E		9E+4	7.4E+4	4.9E+4		E+4	3.6E+		1.9E+4	29.0%	92.0%
18		0.2												
18 36		5	9.6E	+3 8.9	9E+3	1.0E+4	7.3E+3	1.4	E+4	3.8E+	2	2.0E+3	21.0%	99.0%


Log(Y+Z) Transformed Summary

Conc-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	5.9	5.9	6	5.8	6	0.012	0.065	1.1%	0.0%
0.14		5	6	6	6	5.9	6	0.0067	0.036	0.6%	-0.6%
0.28		5	6	5.9	6	5.9	6	0 0064	0.034	D.57%	-0.32%
0.56		5	5.9	5.9	6	5.8	6	0.013	0.071	1.2%	0.18%
1.125		5	5.8	5.8	5.9	5.7	6	0.025	0.14	2.4%	1.9%
2.25		5	5.9	5.8	5.9	5.8	5.9	0.01	0.056	D.96%	1.2%
4.5		5	5.7	5.7	5.7	5.6	5.8	0.015	0.08	1.4%	4.2%
9		5	5.5	5.4	5.5	5.2	5.6	0.03	D.16	3.0%	8.2%
18		5	4.8	4.8	4.9	4.7	5	0.022	0.12	2.5%	19.0%
36		5	4	3.9	4	3.9	4.1	0.017	0.091	2.3%	33.0%
72		5	3.4	3.4	3.4	3,3	3.5	0.015	0.083	2.4%	43.0%

Linear I	nterpol	ation	Options
----------	---------	-------	---------

)

X Tran		Y Transform		-	tesamples	Exp 95%						
Log(X+	-1)	Linear	5795	51 2	00	Yes	Two-	Point Interp	olation	1.1		
Residu	al Analys	is										
Attribu	te	Method			Test Stat	Critical	P-Value	Decision	(5%)			
Extrem	e Value	Grubbs Ex	treme Valu	e.	2.9	3.2	0.1920	No Outlie	rs Detected			
Point E	Estimates											
Level	*	95% LCL	95% UCL	TU	95% LCL	95% UCL						
IC5	0.51	0.095	1	200	99	1100						
IC10	0.69	0.23	1.8	150	57	440						
IC15	0.87	0.28	3.1	120	32	360						
IC20	1.1	0.31	3.4	94	30	320						
IC25	25	0.061	3.2	40	31	1700						
IC40	3.9	2.8	5.4	26	18	36						
IC50	5.2	3.6	7.1	19	14	27						
Cell D	ensity De	etail										
Conc	-% Ce	ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	SI	V Control	9.7E+5	1.0E+6	9.3E+5	9.5E+5	8.4E+5	8.4E+5	6.0E+5	7.8E+5	9.1E+5	9.3E+5
0.14			9.3E+5	8.7E+5	1.0E+6	1.0E+6	8.7E+5					
0.28			1.0E+6	9.1E+5	8.7E+5	9.0E+5	8.4E+5					
0.56			9.0E+5	1.0E+6	8.7E+5	8.3E+5	6.6E+5					
1.125			9.4E+5	7.9E+5	4.6E+5	4.9E+5	7.8E+5					
2.25			7.9E+5	8.7E+5	7.3E+5	6.9E+5	6.2E+5					
4.5			6.4E+5	5.4E+5	4.7E+5	4.4E+5	4.0E+5					
9			4.4E+5	2.1E+5	1.8E+5	3.4E+5	3.2E+5					
18			5.6E+4	9.5E+4	5.6E+4	7.9E+4	4.9E+4					
36			1.1E+4	1.2E+4	7.3E+3	9.1E+3	8.5E+3					
72			2.8E+3	2.9E+3	2.9E+3	2.0E+3	2.0E+3					

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

TBS14201: Total Bridge Services

Taihoro Nukurangi

	lytical Repo								iort Date: t Code:	06-7853	n-14 09:02 -5759/2558/	OT1 AA
Amphipod 96	h survival and n	orbid	lity test							N	IWA Ecoto	xicology
Analysis ID: Analyzed:	06-5262-1663 09 Dec-13 16:2	3	Endpoint: Analysis:	0.735	Survival ametric-Mult	ple Compar	ison	107.73	ris Version: cial Results	1	.0	
Batch ID:	04-5184-2984		Test Type:	Sun	vival morbide	ty		Ana	lyst: MA	Aartin		
Start Date:	05 Dec-13 11:30	0	Protocol:		A (1995)				15021	arshore seawa	ter	
Ending Date:	09 Dec-13 11:30	D	Species:	Cha	elocorophiu	m of lucasi		Brit	ne: Not	Applicable		
Duration:	96h		Source:	Wai	ngaro Landi	ng, Raglan H	larbour	Age	1			
Sample ID:	09-5338-9796		Code:	255	B/OT1			Clie	tot: Tot	al Bridge Serv	res	
	03 Dec-13 09:00	D	Material:		t WAF					cial Studies		
	04 Dec-13 09:00		Source:	Che	nt Supplied				1000			
Sample Age:	50h		Station:	In H	ouse WAF							
Sample Note:	MC Ferrox											
		Zeta		-	Monte Car	10	NOEL	LOEL	TOEL	τυ	PMSD	_
Data Transform Angular (Corre-		0	Alt H	w	Not Run	10	25	57.1	38	4	6.0%	
			0-1		1997 1690							_
Bonferroni Ad	- Merslerensen		Manan		124.000 Mar	1920 E.S. V	1200-1200-1200-1	Harden and	00420000			
Control	vs Conc-%		Test 5	itat	Critical	MSD	P-Value	Decision				_
Dilution Water	0.1		0.087		2.7	0.092	1.0000		hificant Effect			
	0.39		0.087		27	0.092	1.0000		hificant Effec			
	1.56		0.087		27	0.092	1.0000		hificant Effect			
	6.25		0.014		27	0.092	1.0000		nificant Effect			
	25 57.1*		1.7		2.7	0.092	0.3459		hificant Effect	A		
Augiliant Tort	0.52550	-	90	-	2.1	0.002	0.0001	argininea	A LINEA			
Auxiliary Test					-							
Attribute	Test	a arta d		_	Test Stat		P-Value	Decision				
Extreme Value	Grubbs S	ngle (Jutiler		2.7	2.8	0.0708	No Outli	ers Detected			
ANOVA Table												
Source	Sum Squa	res	Mean	5qu	are	DF	F Stat	P-Value	Decision	(5%)		
Between	3.713789		0.618	9649		6	280	<0.0001	Significan	nt Effect		
Error	0.0355159	8	0.002	2197	49	16						
Total	3,749305		0.621	1846		22		91. C 233				
ANOVA Assur	nptions											
Attribute	Test				Test Stat	Critical	P-Value	Decision	a(1%)			
Variances	Mod Leve	ne Eq	uality of Varia	ince	1.1	5.8	0.4434	Equal Va	nances	2		
Distribution	Shapiro-V	Vilk No	mality		0.77		0.0001	Non-non	mal Distribut	ion		
96 h Survival	Summary											
Conc.%	Control Type	Cou	nt Mear	ŝ	95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	Diff%
0	Dilution Water	5	1		1	1	1	1	0	0	0.0%	0.0%
01	-0-07770700100707070	3	1		1	1	1	1	0	0	0.0%	0.0%
0.39		3	1		1	1	1	1	0	0	0.0%	0.0%
1.56		3	1		1	1	1	1	0	0	0.0%	0.0%
6.25		3	1		1	1	1	1	0	0	0.0%	0.0%
25		3	0.97		0.94	0.99	0.9	1	0.011	0.058	6.0%	3.3%
57.1		3	0.033	3	0.011	0.055	0	0.1	0.011	0.058	170.0%	97.0%
39750	ected) Transfor		1202.000	-	ALC: NO.	5566521	1970.0	100	10003	1.0000.00	100010000	0.000
Conc-%	Control Type	Cou			95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	Ditf%
0	Dilution Water	5	nt Mean 1.4		1.4	1.4	1.4	1.4	0.0007		0.29%	0.0%
59	Diffution mater	3	1.4		1.4	1.4	1.4	1.4	D.00031	0	0.25%	0.21%
0.1		3			1.4	1.4			0	0	0.0%	
0.39			1,4				1.4	1.4				0.219
1.56		3	1.4		1.4	1.4	1.4	1.4	0	0	0.0%	0.21%
		3	1.4		1.4	1.4	1.4	1.4	8000.0	0.0043	0.3%	0.04%
5.25												
6.25 25 57.1		3	1.4 0.21		1.3 0.18	1.4	1.2	1.4	0.017	0.094	6.9% 44.0%	4.0%

)

)

Taihoro Nukurangi

l og-Nor	Function	D=A+B*log(X)		Threshold Control Th	and the second se	Threshold 0	Optimized Yes	No	Het Corr No	Weighted Yes
	sion Su		1	5-211-91 TH						
ters	LL	AJCc	Mu	Sigma	G Stat	Chi-Sq	Critical	P-Value	Decision(58/3
5	-8.8	22	-1.1	0.098	0.11	4.1	26	1.0000		ficant Heterogeneity
	1000000				0.11	4.1	20	1.0000	mon-orgin	main reletogeneity
oint E	stimate									
evel	%	95% LCL		TU	95% LCL	the second s			_	
.C5	26	20	30	3.8	3.3	4.9				
.C10	28	23	33	35	3.1	4.4				
_C15	30	25	34	3.3	2.9	4.1				
.C20	31	26	36	32	2.8	3.9				
.C25 .C40	32 36	27	37	3.1	2.7	3.7				
C50	38	31 33	41 44	2.8 2.6	2.3	3.3 3.1				
	30	33	44	2.0	2.3	3.1				
Regres	sion Pa	rameters								
arame	eter	Estimate		95% LCL	95% UCL		P-Value	Decision(5%)	
Slope		10	1.7	68	14	5.9	<0.0001	Significant	t Parameter	
ntercep	ot	-11	2,8	-17	-57	-4	0.0010	Significan	t Parameter	
Residu	al Analy	sis								
Attribut	te	Method			Test Stat	Critical	P-Value	Decision(5%)	
	e Value		dreme Value	6	2.4	2.7	0.1680		s Detected	
Varianc			ne Equality (0.8	4.4	0.5877	Equal Var		
Distribu	tion		ilk Normalit		0.81		0.0020	2010 C C C C C C C C C C C C C C C C C C	al Distributio	an -
96 h S	urvival C	Detail								
			Dec 4	Der 3	Der 7	Dec. 4	Den F			
Conc-9 0		ontrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
	D	lution Water	1	1	1	1	1			
0.1			1	1	1					
0.39			1	1						
6.25			1	1	1					
25			1	i	0.9					
57.1			0	ó	0.1					
	norbidity									
Conc		Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	1	Dilution Water	1	1	1	1	1			
0.1			1	1	1					
0.39			1	1	1					
6.25				1	1					
25				1	0.9					
57.1			0	0	0.1					
-	les				w.1					
57.1 Graph	kcs		• •	•	0.1	-	"]			
										•
	1						1		1	
1	-						15			
1	-									
	-						-			00000000
							1	3.50	/	
							1	/		
	1									
	1									
	5 5						T			
						1	-			

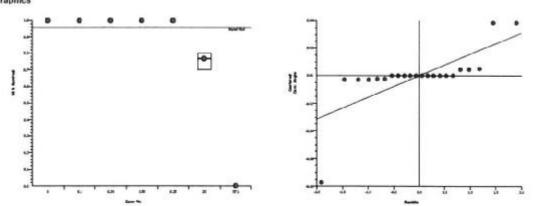
In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

TBS14201: Total Bridge Services

Taihoro Nukurangi

		rt							ort Date: Code:		an-14 11:07 1-0953/255	
Amphipod 95 h	survival and n	orbidity	lest						1000100	1	NIWA Ecot	oxicology
and the second sec	18-8699-8845 09 Dec-13 16:3		ndpoint: nalysis:	95 h Surv Parametri		ple Compan	ison	0.5253	15 Version cial Result		7.0	
Batch ID:	04-5184-2984	T	est Type:	Survival n	norbidi	ty		Ana	lyst: M	Martin		
start Date:	05 Dec-13 11:00) P	rotocol:	NIWA (19	95)			Dilu	ent: Ne	arshore seaw	ater	
Ending Date:	09 Dec-13 11:00	5	pecies:	Chaeloco	rophiu	m of lucasi		Brin	e: No	Applicable		
Ouration:	96h	s	ource:	Waingaro	Landi	ng, Raglan H	larbour	Age	:			
Sample ID:	10-0862-9854	с	ode:	2558/OT2				Clie	nt To	tal Bridge Sen	vices	
Sample Date:	03 Dec-13 09:00) M	laterial:	Paint WA	F			Proj	ect: Sp	ecial Studies		
Receive Date:	04 Dec-13 09:00	5	ource:	Client Sur	pplied							
Sample Age:	50h	\$	tation:	In House	WAF							
Sample Note:	Termarust 2100	Š.										
Data Transform		Zeta	Alt H		te Car	10	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	ted)	0	C > T	Not	Run		6.25	25	13	16	4.2%	
Bonferroni Adj	t Test											
Control	vs Conc-%		Test 5		cal	MSD	P-Value	Decision	No. of Concession, Name			
Dilution Water	0 1		0.15	2.7		0.051	1.0000	100 C 100 C 100 T 10	ificant Effe			
	0.39		0.026	2.7		0.051	1.0000	Non-Sign	ificant Effe	ct		
	1.56		0.15	2.7		0.051	1.0000		ificant Effe			
	6.25		0.13	2.7		0.059	1.0000		ificant Effe	et		
	25*		18	2.7		0.051	<0.0001	Significar	t Effect			
Auxiliary Tests	1											
Attribute	Test			Test	Stat	Critical	P-Value	Decision	É			
Extreme Value	Grubbs Si	ingle Out	bier	3.4		2.7	0.0002	Outlier De	etected			
ANOVA Table												
Source	Sum Squa	res	Mean	Square		DF	F Stat	P-Value	Decision	n(5%)		
Between	0.3006006	al the second	0.050	12013		5	86	<0.0001	Significa	nt Effect		
Error	0.0090729	87	0.000	6979221		13						
and the second se			0.000	0919221	_							
Total	0.3096736	_		81805	-0	18			-			
Contraction of the local data and the local data an	0.3096736	_			_					ment des Merz		
Total ANOVA Assum	0.3096736	_		81805	Stat		P-Value	Decision	(1%)	nich sedere		
Total	0 3096736 nptions Test			81805 Test	Stat	18	P-Value 0.3598	Decision Equal Va				
Total ANOVA Assum Attribute	0 3096736 nptions Test	ne Equa	0.050 Inty of Varia	81805 Test		18 Critical		Equal Va		tion		
Total ANOVA Assum Attribute Variances	0 3096736 nptions Test Mod Leve Shapiro-V	ne Equa	0.050 Inty of Varia	81805 Test ance 1.3 0.61		18 Critical 6.6	0.3598	Equal Va Non-nom	nances	tion		
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-%	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Norm Count	0.050 Inty of Varia nality Meas	81805 Test ance 1.3 0.61 n 951		18 Critical 5.6 95% UCL	0.3598 <0.0001 Min	Equal Va Non-nom Max	hances hal Distribu Std En	Std Dev	CV%	Diff%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc.% 0	0 3096736 nptions Test Mod Leve Shapiro-V Summary	ne Equa Vilk Norm Count 5	0.050 Inty of Varia nality	81805 Test ance 1.3 0.61 n 951 1		18 Critical 5.6	0.3598 <0.0001 Min 1	Equal Va Non-nom Max 1	nances nal Distribu Std En	Std Dev	0.0%	0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc.% 0 0 0.1	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Norr Count 5 3	0.050 Iny of Varia nality Mean 1 1	Test ance 1.3 0.61 n 951 1		18 Critical 5.5 95% UCL 1	0.3598 <0.0001 Min 1 1	Equal Va Non-nom Max 1	Std En	0 0	0.0% 0.0%	0.0% 0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Norr Count 5 3 3	0.050 Inty of Vana natity Mean 1 1 1	Test ance 1.3 0.61 n 951 1 1		18 Critical 5.6 95% UCL 1 1 1	0.3598 <0.0001 Min 1 1 1	Equal Va Non-nom Max 1 1	nances nal Distribu Std En 0 0 0	0 0 0 0	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc.% 0 0 0.1	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Nom 5 3 3 3	0.050 lify of Varia nality 1 1 1 1 1	Test ance 1.3 0.61 1 1 1 1		18 Critical 5.6 95% UCL 1 1 1 1	0.3598 <0.0001 Min 1 1 1 1	Equal Va Non-nom Max 1 1 1	nances nal Distribu Std En 0 0 0 0 0	Std Dev 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Nom 5 3 3 3 2	0.050 Inty of Vana natity Mean 1 1 1	Test ance 1.3 0.61 n 951 1 1		18 Critical 5.6 95% UCL 1 1 1	0.3598 <0.0001 Min 1 1 1	Equal Va Non-nom Max 1 1	nances nal Distribu Std En 0 0 0	0 0 0 0	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Nom 5 3 3 3	0.050 lify of Varia nality 1 1 1 1 1	Test ance 1.3 0.61 1 1 1 1 1	% LCL	18 Critical 5.6 95% UCL 1 1 1 1	0.3598 <0.0001 Min 1 1 1 1	Equal Va Non-nom Max 1 1 1	nances nal Distribu Std En 0 0 0 0 0	Std Dev 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc.% 0 0.1 0.39 1.56 6.25	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Nom 5 3 3 3 2	0.050 lity of Vana nality 1 1 1 1 1	Test ance 1.3 0.61 1 1 1 1 1	% LCL	18 Critical 5.6 95% UCL 1 1 1 1 1	0.3598 <0.0001 1 1 1 1 1 1	Equal Va Non-nom Max 1 1 1 1 1	nances nai Distribu Std En 0 0 0 0 0 0 0 0	Std Dev 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 23.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 25 57.1	0 3096736 nptions Test Mod Leve Shapiro-V Summary Control Type	ne Equa Vilk Norr 5 3 3 3 3 3 3 3 3 3 3 3 3 3	0.050 Iny of Varia natity 1 1 1 1 1 0.77 0	Test ance 1.3 0.61 1 1 1 1 1 0.7	% LCL	18 Critical 5.6 95% UCL 1 1 1 1 1 0.79	0.3598 <0.0001 1 1 1 1 1 0.7	Equal Va Non-nom Max 1 1 1 1 1 0.8	nances hal Distribu 0 0 0 0 0 0 0 0 0 0 0	5td Dev 0 0 0 0 0 0 0 0.058	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 23.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 57.1 Angular (Corre	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water	ne Equa Vilk Norr 5 3 3 3 3 3 3 3 3 3 3 3 3 3	0.050 lify of Varianality i Mean 1 1 1 1 1 0.77 0 ummary	Test ance 1.3 0.61 1 1 1 1 1 1 0.7 0	% LCL	18 Critical 5.6 95% UCL 1 1 1 1 1 0.79	0.3598 <0.0001 1 1 1 1 1 1 0.7 0	Equal Va Non-nom Max 1 1 1 1 1 0.8	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 7 58 0	0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 23.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0 1 0.39 1.56 6.25 57.1 Angular (Corre- Conc-%	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water	ne Equa Vilk Norr 5 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.050 lify of Varianality i Mean 1 1 1 1 1 0.77 0 ummary	Test ance 1.3 0.61 1 1 1 1 1 1 0.7 0	4 4	18 Critical 5.5 95% UCL 1 1 1 1 0.79 0	0.3598 <0.0001 1 1 1 1 1 1 0.7 0	Equal Va Non-nom 1 1 1 1 1 0.8 0	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 7 58 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0 1 0.39 1.56 6.25 25 57.1 Angular (Corre- Conc-%	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.050 lity of Varianality 1 1 1 1 1 0.77 0 ummary t Meat	Test ance 1.3 0.61 1 1 1 1 1 1 0.7 0 0	4 4 5 LCL	18 Critical 5.5 95% UCL 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min	Equal Va Non-nom 1 1 1 1 1 0.8 0 0	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 7 58 0	0.0% 0.0% 0.0% 0.0% 7.5%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0 1 0.39 1.56 6.25 57.1 Angular (Corre- Conc-% 0 0	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 7 2 3 3 3 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0.050 Iny of Varianality 1 1 1 1 1 0.77 0 ummary t Meat	Test ance 1.3 0.61 1 1 1 1 1 1 1 0.7 0 0 n 95 ⁴ 1.4	4 4 5 LCL	18 Critical 5.5 95% UCL 1 1 1 1 1 0.79 0 95% UCL 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min 1.4	Equal Va Non-nom 1 1 1 1 1 0.8 0 0 Max 1.4	nances nal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 7.5% CV% 0.29%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Corre Conc-% 0 0.1	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.050	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>6 LCL</u>	18 Critical 5.5 95% UCL 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min 1.4 1.4	Equal Va Non-nom 1 1 1 1 1 0.8 0 0 Max 1.4 1.4	nances nal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 7.5% CV% 0.29% 0.0%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% Diff% 0.0% 0.21%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Corro Conc-% 0 0 0.1 0.39	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 5 3 3	0.050	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 0.7 0 0 n 95 ⁴ 1.4 1.4 1.4 1.4	% LCL 4	18 Critical 5.5 95% UCL 1 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4 1.4 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min 1.4 1.4 1.4 1.4	Equal Va Non-nom 1 1 1 1 1 0.8 0 0 Max 1.4 1.4 1.4 1.4	nances nal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5% CV% 0.29% 0.0% 0.3%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% 0.0% 0.0% 0.21% 0.04%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Corro Conc-% 0 0.1 0.39 1.56 0 0.1 0.39 1.56	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 2 3 3 2 3 3 3 3 3 3 5 3 3 3 3 3 3	0.050	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 0.7 0 0 n 95 ⁴ 1.4 1.4 1.4 1.4 1.4	% LCL 4	18 Critical 5.6 95% UCL 1 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4 1.4 1.4 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min 1.4 1.4 1.4 1.4 1.4	Equal Va Non-nom 1 1 1 1 0.8 0 0 Max 1.4 1.4 1.4 1.4 1.4	hances hal Distribut 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5% CV% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% 0.0% 0.21% 0.0% 0.21%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 57.1 Angular (Corro Conc-% 0 0.1 0.39 1.56 6.25 57.1 Angular (Corro Conc-% 0 0.1 0.39 1.56 6.25 57.1	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water ected) Transfor Control Type	ne Equa Vilk Nom 5 3 3 2 3 3 2 3 3 3 3 3 3 3 5 3 3 3 3 3	0.050	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 % LCL	18 Critical 5.6 95% UCL 1 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4 1.4 1.4 1.4 1.4	0.3598 <0.0001 1 1 1 1 1 0.7 0 Min 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Equal Va Non-nom 1 1 1 1 0.8 0 Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5% 0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% 0.0% 0.21% 0.04% 0.21% 0.21%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 57.1 Angular (Corro Conc-% 0 0.1 0.39 1.56 6.25 25 57.1	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water	ne Equa Vilk Nom 5 3 3 2 3 3 2 3 3 3 3 5 3 3 3 3 3 3 3 3	0.050	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 % LCL	18 Critical 5.6 95% UCL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.1	0.3598 <0.0001 1 1 1 1 1 1 1 0.7 0	Equal Va Non-nom 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 0	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5% CV% 0.0% 0.0% 0.3% 0.0% 6.3%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% 0.0% 0.21% 0.24% 0.24% 0.21% 0.21%
Total ANOVA Assum Attribute Variances Distribution 96 h Survival : Conc-% 0 0.1 0.39 1.56 6.25 57.1 Angular (Corro Conc-% 0 0.1 0.39 1.56 6.25 25 57.1	0 3096736 Test Mod Leve Shapiro-V Summary Control Type Dilution Water Control Type Dilution Water	ne Equa Vilk Nom 5 3 3 2 3 3 2 3 3 3 3 5 3 3 3 3 3 3 3 3	0.050 Iny of Vania nality 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Test ance 1.3 0.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% LCL % LCL	18 Critical 5.6 95% UCL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.79 0 95% UCL 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.1	0.3598 <0.0001 1 1 1 1 1 1 1 0.7 0	Equal Va Non-nom 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 0	hances hal Distribu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 0.0% 7.5% 0.0% 0.0% 0.0% 6.3% 0.0% 6.3% 0.0%	0.0% 0.0% 0.0% 0.0% 23.0% 100.0% 0.0% 0.21% 0.24% 0.24% 0.21% 0.21%

NIWA


Taihoro Nukurangi

96 h Survival Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	Dilution Water	1	1	1	1	1
0.1		1	1	1		
0.39		1	1	1		
1.56		1	1	1		
6.25		1	1			
25		0.8	0.7	D.6		
57.1		0	0	D		

Graphics

)

Taihoro Nukurangi

	TIS Analytical Report phipod 96 h survival and morbidity test styres to: 02-7239-4417 Endpoint: 96h morbidity									D9 D4-64	94-0953/25	558/OT2 A/
Amphipod 96	h survival and r	norbid	ity test								NIWA Ec	otoxicolog
Analysis ID: Analyzed:	02-7239-4417 09 Dec-13 16:3		Endpoint: Analysis:		h morbidity rametric-Multiple Comparison				'15 Versio cial Resu	on: CETISv ilts: Yes	1.7.0	
Batch ID:	04-5184-2984				Fest Type: Survival morbidity			Ала	lyst: N	A Martin		
Start Date:	05 Dec-13 11:0	0	Protocol:	NIWA ((1995)			Dilu	ent: N	learshore sea	water	
Ending Date:	09 Dec-13 11:0	Dec-13 11:00 Species: Cha			haetocorophium cí lucasi				ie: N	Not Applicable	ê.	
Duration:	96h		Source:	Wanga	aro Landi	ing, Raglan	Harbour	Age	6			
Sample ID:	10-0862-9854	2558/0	T2			Clie	nt: T	fotal Bridge S	ervices			
	10-0862-9854 03 Dec-13 09:00		Code: Material:	Paint W						Special Studie		
	04 Dec-13 09.0		Source:	12102	Supplied							
Sample Age:	0.5.517 (Providence)		Station:		se WAF							
Sample Note:	Termarust 2100)										
Data Transfor	m	Zeta	Alt H	M ev	onte Car	rio	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre		0	C > T		ot Run		6.25	25	13	16	7.3%	
Bonferroni Ad												
Control	vs Conc-%		Test 5	stat Cr	ritical	MSD	P-Value	Decision	(5%)			
Dilution Water			0.067	2	7	0.12	1.0000	Non-Sign	ificant Eff	lect		
	0.39		0.011	2.	7	0.12	1.0000	Non-Sign	ificant Eff	fect		
	1.56		0.067		7	0.12	1.0000	Non-Significant Effect		fect		
	6.25		0.058	2.	7	0.14	1.0000	Non-Sign	ificant Eff	fect		
	25*		16	2	7	0.12	<0.0001	Significan	nt Effect	18643		
Auxiliary Test	5											
Attribute	Test			Te	est Stat	Critical	P-Value	Decision	1			
Extreme Value	Grubbs S	ingle O	utlier	3	3	2.7	0.0011	Outlier D	etected			
ANOVA Table												
		ares	Mean	Square		DF	F Stat	P-Value	Decisi	on(5%)		
ANOVA Table Source	Sum Squa	ares		Square	,	DF	F Stat	P-Value		on(5%)		
Source Between	Sum Squa 1.225932		0.245	1864		5	F Stat 66	P-Value <0.0001		on(5%) cant Effect		
Source Between Error	Sum Squa		0.245	1864 738492								
Source Between Error Total	Sum Squa 1.225932 0.0486003 1.274533		0.245	1864 738492	• 	5 13						
Source	Sum Squa 1.225932 0.0486003 1.274533		0.245	1964 738492 9249	est Stat	5 13 18			Signific			
Source Between Error Total ANOVA Assur Attribute	Sum Squa 1.225932 0.0486003 1.274533 mptions Test	19	0.245	1864 738492 9249 Te	est Stat	5 13 18	66	<0.0001 Decision	Signific	cant Effect		
Source Between Error Total ANOVA Assur	Sum Squa 1.225932 0.0486003 1.274533 mptions Test	19 ene Equ	0.245 0.003 0.248 uality of Varia	1964 738492 9249 Te ance 13	est Stat	5 13 18 Critical	66 P-Vatue	<0.0001 Decision Unequal	Signific h(1%)	cant Effect		
Source Between Error Total ANOVA Assur Attribute Variances Distribution	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve	19 ene Equ	0.245 0.003 0.248 uality of Varia	1964 738492 9249 Te ance 13	est Stat	5 13 18 Critical	66 P-Vatue 0.0010	<0.0001 Decision Unequal	Signific h(1%) Variances	cant Effect		
Source Between Error Total ANOVA Assur Attribute Variances Distribution	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V	19 ene Equ	0.245 0.003 0.248 uality of Varia mality	1964 738492 9249 Te ance 13 0	est Stat	5 13 18 Critical 6.6	66 P-Vatue 0.0010	<0.0001 Decision Unequal	Signific h(1%) Variances	s Sution	CV%	Diff%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V	ig ine Equ Wilk No	0.245 0.003 0.248 uality of Varia mality	1964 738492 9249 Te ance 13 0	est Stat 3 55 5% LCL	5 13 18 Critical 6.6	66 P-Value 0.0010 <0.0001	<0.0001 Decision Unequal Non-nom	Signific (1%) Variances nal Distrit	s Sution	CV%	Diff% 0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-%	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ne Equ Vilk No Cou	0.245 0.003 0.248 uality of Varu mailty nt Mean	1964 738492 9249 Te ance 13 0)	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL	66 P-Vatue 0.0010 <0.0001 Min	<0.0001 Decision Unequal Non-nom	Signific h(1%) Variances nal Distrit Std En	s s sution r Std Dev		
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ig ene Equ Wilk No Cou 5	0.245 0.003 0.248 uality of Varu mailty nt Mean	1964 738492 9249 Te ance 13 0; 1 9; 1	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1	66 P-Vatue 0.0010 <0.0001 Min 1	<0.0001 Decision Unequal Non-nom Max	Signific (1%) Variancee nal Distrib Std En 0 0	s bution 0 0 0	0.0%	0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0 0.1	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ig ine Equ Wilk No Cou 5 3	0.245 0.003 0.248 mailty of Varia mailty nt Mean 1	1964 738492 9249 Te ance 13 0; 1 9; 1 1	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1	66 P-Value 0.0010 <0.0001 Min 1 1	<0.0001 Decision Unequal Non-nom Max 1 1 1	Signific (1%) Variances nal Distrib Std En 0 0	s pution 0 0	0.0% 0.0%	0.0% 0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0 0.1 0.39	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ene Equ Wilk No 5 3 3	0.245 0.003 0.248 mailty of Varia mailty nt Mean 1 1 1	1964 738492 9249 Te ance 13 0) 1 9. 1 1 1	951 Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1	66 P-Value 0.0010 ~0.0001 Min 1 1 1	<0.0001 Decision Unequal Non-nom Max 1 1	Signific (1%) Variancee nal Distrib Std En 0 0	s bution 0 0 0	0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ene Equ Wilk No 5 3 3 3 3	0.245 0.003 0.248 uality of Varia maility nt Mean 1 1 1 1	1964 738492 9249 716 ance 13 0 1 1 1 1 1 1	951 Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1 1 1	66 P-Value 0.0010 ~0.0001 Min 1 1 1 1	<0.0001 Decision Unequal Non-nom Max 1 1 1	Signific (1%) Variances nal Distrib Std En 0 0 0 0	s bution 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	D.0% D.0% D.0% D.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ene Equ Wilk No 5 3 3 3 2	0.245 0.003 0.248 uality of Varia maility nt Mean 1 1 1 1 1	1964 738492 9249 716 ance 13 0 1 1 1 1 1 1	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1	66 P-Value 0.0010 ~0.0001 Min 1 1 1 1 1 1	<0.0001 Decision Unequal Non-nom Max 1 1 1 1	Signific N(1%) Variancee nal Distrib Std En 0 0 0 0 0	s bution 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0 0.1 0.39 1.56 6.25 25 57.1	Sum Squa 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type	ene Equ Wilk No 5 3 3 3 2 3 3 3 3 3	0.245 0.003 0.248 maility of Varia maility nt Mean 1 1 1 1 1 1 0.43 0	1964 738492 9249 ance 13 0 1 1 1 1 1 1 1 0	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1 1 0.49	66 P-Value 0.0010 ~0.0001 Min 1 1 1 1 1 1 0.3	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 1 0.6	Signific Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s bution r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 57.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0 0.1 0.39 1.56 6.25 25 57.1	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	ene Equ Wilk No 5 3 3 3 2 3 3 3 3 3	0.245 0.003 0.248 maility of Varia maility nt Mean 1 1 1 1 1 1 1 3 0.43 0 Summary	1864 738492 9249 ance 13 0 1 1 1 1 1 1 1 0 0	est Stat 3 55 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1 1 1 0.49 0	66 P-Value 0.0010 <0.0001 Min 1 1 1 1 1 0.3 0	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 1 0.6	Signific Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s sution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 0.0% 0.0% 57.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	Ne Equ Wilk No 5 3 3 3 2 3 3 3 3 3 3 3 3 3	0.245 0.003 0.248 maility of Varia maility nt Mean 1 1 1 1 1 1 1 3 0.43 0 Summary	1864 738492 9249 ance 13 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	est Stat 3 55 5% LCL .38	5 13 18 Critical 6.6 95% UCL 1 1 1 1 0.49 0	66 P-Value 0.0010 <0.0001 Min 1 1 1 1 1 0.3 0	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 0.6 0	Signific Nariances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s sution	0.0% 0.0% 0.0% 0.0% 35.0%	0.0% 0.0% 0.0% 0.0% 57.0% 100.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co Conc-%	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	19 Ene Equ Wilk No 5 3 3 3 3 3 3 3 3 7 Trined 1 Cou	0.245 0.003 0.248 maility of Varia maility nt Mean 1 1 1 1 1 1 1 3 0 Summary nt Mean	1864 738492 9249 ance 13 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1	est Stat 3 55 5% LCL .38 5% LCL	5 13 18 Critical 6.6 95% UCL 1 1 1 1 0.49 0 95% UCL	66 P-Value 0.0010 <0.0001 1 1 1 1 0.3 0 Min Min	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 1 0.6 0 0 Max	Signific (1%) Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s sution	0.0% 0.0% 0.0% 0.0% 35.0%	0.0% 0.0% 0.0% 0.0% 57.0% 100.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co Conc-% 0	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	19 Erne Equ Wilk No 5 3 3 3 3 3 3 3 3 3 3 7 Trimed 1 5	0.245 0.003 0.248 mailty nt Mean 1 1 1 1 1 1 0.43 0 Summary nt Mean 1.4	1864 738492 9249 ance 13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Stat 3 55 5% LCL .38 5% LCL .4	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1 0.49 0 0 85% UCL 1.4	66 P-Value 0.0010 ~0.0001 1 1 1 1 1 0.3 0 Min 1.4	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 0.6 0 Max 1.4	Signific (1%) Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 35.0% CV% 0.29%	0.0% 0.0% 0.0% 0.0% 57.0% 100.0% Diff% 0.0%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co Conc-% 0 0.1	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	19 2000 Equ 5 3 3 2 3 3 3 7 7 Cou 5 3 3 3 3 3 3 3 3 3 3 3 3 3	0.245 0.003 0.248 mailty nt Mean 1 1 1 1 1 1 0.43 0 Summary nt Mean 1.4 1 4	1864 738492 9249 ance 13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Stat 3 55 5% LCL .38 5% LCL .4 .4	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1 0.49 0 95% UCL 1.4 1.4	66 P-Value 0.0010 ~0.0001 1 1 1 1 1 1 0.3 0 Min 1.4 1.4 1.4	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 0.6 0 Max 1.4 1.4	Signific (1%) Variancee nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 35.0% CV% 0.29% 0.0%	0.0% 0.0% 0.0% 0.0% 57.0% 100.0% Diff% 0.0% 0.21%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co Conc-% 0 0.1 0.1 0.39	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	19 2000 Equ 5 3 3 2 3 3 3 2 5 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	0.245 0.003 0.248 mailty nt Mean 1 1 1 1 1 1 1 1 1 3 5 0 Summary nt Mean 1.4 1.4 1.4	1964 738492 9249 ance 13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Stat 3 55 5% LCL .38 5% LCL .4 .4 .4	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1 1 0.49 0 95% UCL 1.4 1.4 1.4	66 P-Value 0.0010 ~0.0001 1 1 1 1 1 1 1 0.3 0 Min 1.4 1.4 1.4 1.4 1.4	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 0.6 0 Max 1.4 1.4 1.4	Signific (1%) Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 35.0% CV% 0.29% 0.0% 0.3%	D.0% D.0% D.0% D.0% D.0% 57.0% 100.0% D.0% D.0% D.21% D.04%
Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidi Conc-% 0 0.1 0.39 1.56 6.25 25 57.1 Angular (Co Conc-% 0 0.1 0.39 1.56 0.1 0.39 1.56	Sum Squi 1.225932 0.0486003 1.274533 mptions Test Mod Leve Shapiro-V ty Summary Control Type Dilution Water	19 ene Equ 5 3 3 2 3 3 2 3 3 7 rmed 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3	0.245 0.003 0.248 mailty of Variant mailty nt Mean 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1964 738492 9249 ance 13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Stat 3 55 5% LCL .38 5% LCL .4 .4 .4	5 13 18 Critical 6.6 95% UCL 1 1 1 1 1 1 1 0.49 0 95% UCL 1.4 1.4 1.4 1.4	66 P-Value 0.0010 ~0.0001 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.0001 Decision Unequal Non-nom Max 1 1 1 1 0.6 0 Max 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Signific (1%) Variances nal Distrib Std En 0 0 0 0 0 0 0 0 0 0 0 0 0	r Std Dev 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 0.0% 0.0% 35.0% CV% 0.29% 0.0% 0.3% 0.0%	D.0% D.0% D.0% D.0% D.0% 57.0% 100.0% Diff% D.0% D.21% D.04% D.21%

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

)

-N-I-WA

Taihoro Nukurangi

Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Dilution Water 1 1 1 1 1 11 1 1 1 1 1 139 1 1 1 1 1 156 1 1 1 1 1 1525 1 1 1 1 1 155 0.6 0.4 0.3 0 0 0 Graphics Image: state st	Threshold	Option		Thres	hold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL
0 Ditution Water 1 1 1 1 1 0.1 1 1 1 1.56 1 1 1 25 0.6 0.4 0.3 57.1 0 0 0 Graphics	Control The	reshold		0		0.00%	1.3	0.043		20	17	25
0 Ditution Water 1 1 1 1 1 0.1 1 1 1 1 0.39 1 1 1 1 1.56 1 1 1 1 25 0.6 0.4 0.3 57.1 0 0 0 Graphics	96h morbie	dity Detail										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Conc-%	Control T	ype	Re	p 1	Rep 2	Rep 3	Rep 4	Rep 5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Dilution W	/ater	1		1	1	1	1			
25 0.6 0.4 0.3 57.1 0 0 0 Graphics	0.1			1		1	1					
625 1 1 25 0.6 0.4 0.3 57.1 0 0 0 Graphics	0.39			1		1	1					
25 0.6 0.4 0.3 57.1 0 0 0 Graphics	1 56			1		1	1					
57.1 0 0 0 Graphics	6 25			1		1						
Graphics	25			0.6	53	0.4	0.3					
Graphics	57.1			0		D	C					
							•				•••••	

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

)

Taihoro Nukurangi

	lytical Rep	on					Rep Test	Code:	05-080	3-9449/25	11 (p 1 of 58/OT3 AA
Amphipod 96	h survival and	morbid	ity test							NIWA Eco	toxicolog
Analysis ID:	07-4625-0328	£. 2	Endpoint:	96 h Survival	1755		CET	IS Version:	CETISv1	.7.0	
Analyzed:	D9 Dec-13 15	50	Analysis:	Parametric-M	ultiple Compa	inson	Offic	cial Results	: Yes		
Batch ID:	04-5184-2984		Test Type: Survival morbidity				Ала	lyst: M M	lartin		
Start Date:	05 Dec-13 11:	30	Protocol:	NIWA (1995)			Dilu	ent: Nea	rshore seav	vater	
Ending Date:	22070202000000000000000000000000000000		Chaetocoroph	ium of lucasi		Brin	e: Not	Applicable			
Duration:	96h		Source:	Waingaro Lan	ding, Raglan	Harbour	Age				
Sample ID:	06-9292-5601		Code:	2558/OT3			Che	nt: Tota	al Bridge Se	rvices	
Sample Date:	03 Dec-13 09.00		Material:	Paint WAF			Proj	ect: Spe	cial Studies		
Receive Date	: 04 Dec-13 09:	00	Source:	Client Supple	d						
Sample Age:	50h		Station:	In House WA	F						
Sample Note:	MC MIO										
Data Transfor	m	Zeta	Alt H	yp Monte C	arlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	Corrected) (C > T	Not Run	44.02	6.25	25	13	16	5.2%	
Bonferroni A	djt Test										
Control	vs Conc-%		Test	Stat Critical	MSD	P-Value	Decision	(5%)			
Dilution Water	0.1		0.1	26	0.075	1 0000	Non-Sign	ificant Effect	t		
	0.39		0.1	2.6	0.075	1.0000	Non-Sign	ificant Effect	t		
	1.56		0.017	2.6	0.075	1.0000	Non-Sign	ificant Effect	£		
	6.25		0.21	2.6	0.075	1.0000	Non-Sign	ificant Effect	t i i i		
	25*		19	2.6	0.075	<0.0001	Significar	nt Effect	~		
Auxiliary Test	ts										
Attribute	Test			Test Sta	t Critical	P-Value	Decision				
Extreme Value	e Grubbs	Single O	utier	3.1	2.7	0.0055	Outlier D	etected			
ANOVA Table	6										
Source	Sum Squ	13705	Mean	Square	DF	F Stat	P-Value	Decision	(5%)		
Between	0.703661		0.140	00.000000	5	92	<0.0001	Significan	ACCOR.		
Error	0.021325	17. II.		523223	14	94	-0.0001	orgrandan	IL ENCL		
Total	0.724986		0.142	the second s	19						
ANOVA Assu	mptions										
Attribute	Test			Test Sta	t Critical	P-Value	Decision	(1%)			
Variances		ene Equ	ality of Vari	2.303.0.0011	6.5	<0.0001	THE OWNER WATER OF TAXABLE PARTY.	Variances			
Distribution	es Mod Levene Equality of Variance 210 6.6					<0.0001	Non-normal Distribution				
the summer of a	Summary										
IS VIVIUG II OT		Coun	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
	Control Type								0	0.0%	0.0%
Conc-%	Control Type Dilution Water	5	1	1	1	1	1	0	0	W.W. W.	
Conc-%				1	1		1	0	0	0.0%	0.0%
Conc-% 0 0.1		5				1			3200	100000	0.0%
Conc-% D D.1 D.39		5 3	1	1	1	1 1	1	0	0	0.0%	
Conc-% 0 0.1 0.39 1.55 5.25		5 3 3	1	1 1	1	1 1	1	0	0 0	0.0% 0.0%	0.0%
Conc-% 0 0.1 0.39 1.56 5.25		5 3 3 3	1 1 1	1 1 1	1 1 1	1 1 1 1	1 1 1	0 0 0	0 0 0	0.0% 0.0% 0.0%	0.0%
Conc-% 0 0.1 0.39 1.56 5.25 25		5 3 3 3 3	1 1 1 1	1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1	0 0 0	0 0 0	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 40.0%
Conc-% 0 0.1 0.39 1.55 5.25 25 57.1		5 3 3 3 3 3 3 3 3 3	1 1 1 1 0.6 0	1 1 1 0.56	1 1 1 1 0.64	1 1 1 1 1 0.5	1 1 1 0.7	0 0 0 0 0.019	0 0 0 0.1	0.0% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0%
Conc-% 0 0.1 0.39 1.55 5.25 25 57.1 Angular (Corr Conc-%	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 3 7 med S Coun	1 1 1 0.6 0 ummary 1 Mean	1 1 1 0.56 0 95% LCL	1 1 1 0.64 0 95% UCL	1 1 1 1 1 0.5 0 Min	1 1 1 0.7 0 Max	0 0 0 0.018 0 Std Err	0 0 0 0.1 0 Std Dev	0.0% 0.0% 0.0% 0.0% 17.0%	0.0% 0.0% 0.0% 40.0% 100.0%
Conc-% 0 0.1 1.55 5.25 25 57.1 Angular (Corr Conc-% 0	Dilution Water	5 3 3 3 3 3 3 3 med S	1 1 1 0.6 0	1 1 1 0.56 0	1 1 1 0.64 0	1 1 1 1 1 0.5 0	1 1 1 0.7 0	0 0 0 0.019 0	0 0 0 0.1 0	0.0% 0.0% 0.0% 0.0% 17.0%	0.0% 0.0% 0.0% 40.0% 100.0%
Conc-% 0 0.1 1.55 5.25 25 57.1 Angular (Corr Conc-% 0	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 3 7 med S Coun	1 1 1 0.6 0 ummary 1 Mean	1 1 1 0.56 0 95% LCL	1 1 1 0.64 0 95% UCL 1.4 1.4	1 1 1 1 1 0.5 0 Min	1 1 1 0.7 0 Max	0 0 0 0.018 0 Std Err	0 0 0 0.1 0 Std Dev	0.0% 0.0% 0.0% 0.0% 17.0%	0.0% 0.0% 0.0% 40.0% 100.0%
Conc-% 0 0.1 1.55 5.25 25 57.1 Angular (Corr Conc-% 0 0.1	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 3 5	1 1 1 0.6 0 ummary 1.4	1 1 1 0.56 0 95% LCL 1.4	1 1 1. 0.64 0 95% UCL 1.4	1 1 1 1 0.5 0 Min 1.4	1 1 1 0.7 0 Max 1.4	0 0 0 0.019 0 Std Err 0.00076	0 0 0 0.1 0 <u>Std Dev</u> 0.0041	0.0% 0.0% 0.0% 17.0% CV% 0.29%	0.0% 0.0% 0.0% 40.0% 100.0% Diff% 0.0%
Conc-% 0 0.1 1.55 5.25 25 57.1 Angular (Corr Conc-% 0 0.1 0.39	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 3 5 5 3	1 1 1 0.6 0 ummary t Mean 1.4 1.4	1 1 1 0.56 0 95% LCL 1.4 1.4	1 1 1 0.64 0 95% UCL 1.4 1.4	1 1 1 1 0.5 0 Min 1.4 1.4	1 1 1 0.7 0 <u>Max</u> 1.4 1.4	0 0 0 0.015 0 Std Err 0.00076 0	0 0 0.1 0 5td Dev 0.0041 0	0.0% 0.0% 0.0% 17.0% CV% 0.29% 0.0%	0.0% 0.0% 40.0% 100.0% Diff% 0.0% 0.21%
Conc-% 0 0.1 0.39 1.55 5.25 25 57.1	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 3 5 5 3 3	1 1 1 0.6 0 ummary t <u>Mean</u> 1.4 1.4 1.4	1 1 1 0.56 0 95% LCL 1.4 1.4 1.4	1 1 1 0.64 0 95% UCL 1.4 1.4 1.4	1 1 1 1 0.5 0 Min 1.4 1.4 1.4	1 1 0.7 0 <u>Max</u> 1.4 1.4 1.4	0 0 0 0.015 0 Std Err 0.00076 0	0 0 0.1 0 5td Dev 0.0041 0	0.0% 0.0% 0.0% 17.0% CV% 0.29% 0.0%	0.0% 0.0% 40.0% 100.0% Diff% 0.0% 0.21%
Conc-% 0 0.1 1.55 5.25 25 57.1 Angular (Corr Conc-% 0 0.1 0.39 1.55	Dilution Water ected) Transfor Control Type	5 3 3 3 3 3 3 5 3 3 3 3 3	1 1 1 0.6 0 ummary <u>Mean</u> 1.4 1.4 1.4	1 1 0.56 0 95% LCL 1.4 1.4 1.4 1.4	1 1 1 0.64 0 95% UCL 1.4 1.4 1.4 1.4	1 1 1 1 1 0.5 0 Min 1.4 1.4 1.4 1.4	1 1 1 0.7 0 Max 1.4 1.4 1.4 1.4	0 0 0 0.015 0 Std Err 0.00076 0 0 0.0008	0 0 0.1 0 5td Dev 0.0041 0 0 0.0043	0.0% 0.0% 0.0% 17.0% CV% 0.29% 0.0% 0.0% 0.0%	0.0% 0.0% 0.0% 40.0% 100.0% 0.0% 0.21% 0.21% 0.04%

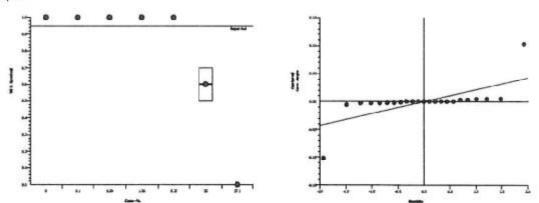
NIWA

Taihoro Nukurangi

e . arman Kärber Estimates

0

0


٥

Speanna	n-Aarber Esumau								
Threshol	d Option	Threshold	Trim	Mu	Sigma		LC50	95% LCL	95% UCL
Control TI	Control Threshold		0.00%	1.4	0 043		24	20	30
						_			
96 h Survi	ival Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Dilution Water	1	1	1	1	1			
0.1		1	1	1					
0.39		1	1	1					
1.58		1	1	1					
6.25		1	1	1					
25		0.7	0.5	0.6					

Graphics

57.1

)

CETIS Anal	lytical Repo	ort							ort Date: t Code:			09 (p 1 of 58/0T3 A/			
Amphipod 96	h survival and i	morbid	ity test							NIWA Eco ersion: CETISV1.7.0 Results: Yes M Martin Nearshore seawater Not Applicable Total Bridge Services Special Studies DEL TU PMSD 3 16 2.6% Ont Effect Int Effect Int Effect etected ecision(5%) on-Significant Effect					
Analysis ID:	00-9435-2126	. 3	Endpoint:	96h m	orbidity			CET	TIS Version:	CETISv1	.7.0				
Analyzed:	09 Dec-13 16:5	51	Analysis:	Paran	netric-Mul	iple Compa	rison	Offi	cial Results	: Yes					
Batch ID:	04-5184-2984	Test Type: 3		Surviv	al morbid	ity		Ana	lyst: MA	Nartin					
Start Date:			Protocol:	NIWA	(1995)	10		Dilu	ent: Nea	arshore seaw	vater				
Ending Date:	09 Dec-13 11:3	13 11:30 Species:			ocorophiu	m cf lucasi		Brin	ie: Not	Applicable					
Duration:	96h		Source:	Waing	garo Land	ng, Raglan	Harbour	Age	¢						
Sample ID:	06-9292-5601		Code:	2558/	отз			Clie	nt: Tot	al Bridge Sei	rvices				
Sample Date:	03 Dec-13 09:0	00	Material:	Paint	WAF			Pro	ject: Spe	cial Studies					
Receive Date:	04 Dec-13 09:0	00	Source:	Client	Supplied										
Sample Age:	50h		Station:	In Hor	use WAF										
Sample Note:	MC MIO														
Data Transform	m	ı Zeta Alt Hyp M		Nonte Ca	rio	NOEL	LOEL	TOEL	TU	PMSD					
Angular (Corre	cted)	0	C > T	,	Vot Run		6.25	25	13	16	2.6%				
Bonferroni Ad	jt Test														
Control	vs Conc-%		Test 9	Stat (Critical	MSD	P-Value	Decision	s(5%)						
Dilution Water	01		1.1	2	2.6	0.0067	0.5530	Non-Sigr	viticant Effec	1					
	0.39 1.1		2	2.6	0.0067	0.5530	Non-Significant Effect								
	1.56	0.19		2	2.6 0.0067 1.0000			Non-Significant Effect							
	6.25		2.2	2	2.6	0.0067	0.0887	Non-Sigr	nificant Effec	1					
Auxiliary Tests															
Attribute	Test			1	fest Stat	Critical	P-Value	Decision	1						
Extreme Value	Grubbs S	Single O	utlier	1	.9	2.6	0.8647	No Outlie	ers Detected	¢					
ANOVA Table															
Source	Sum Squ	ares	Mean	Squar	re	DF	F Stat	P-Value	Decision	(5%)		-			
Between	7.6905770	E-05	1.922	644E-0	5	4	1.5	0.2629	Non-Sign	ificant Effect	16 2.6%				
Error	0.000153	6252	1.280	21E-05	5	12									
Total	0.000230	531	3.202	855E-C)5	16									
ANOVA Assur	nptions														
Attribute	Test			1	fest Stat	Critical	P-Value	Decision	a(1%)						
Variances	Mod Leve	ene Equ	ality of Varia	ance (0.59	7.8	0.6817	Equal Va	riances						
Distribution	Shapiro-	Wilk No	rmality	0).93		0.1843	Normal E	Distribution						
96h morbidity	Summary											C			
	Control Type	Coun	- 13-1909RC		95% LCL	95% UCL		Max	Std Err	Std Dev	CV%	Diff%			
D	Dilution Water	5	1	1	1	1	1	1	0	0	0.0%	0.0%			
0.1		3	1	1	t	1	1	1	0	0	0.0%	0.0%			
0.39		3	1	1	1	1	1	1	0	0	0.0%	0.0%			
1.56		3	1	1	1	1	1	1	0	0	0.0%	0.0%			
6.25		3	1		1	1	1	1	0	0	0.0%	0.0%			
25		3	0	()	0	0	0	0	0		100.0%			
57.1		3	0	(0	0	0	0	0		100.0%			

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

J

Appendix 3: statistics

-N-LWA_

Taihoro Nukurangi

Binomial/Graphical Estimates

	Option	Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL
Control Th	reshold	0	0.00%	1.1	C		13	9.7	16
96h morbie	dity Detail								
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
0	Dilution Water	1	1	1	1	1			
D.1		1	1	1					
0.39		1	1	1					
1,56		1	1	1					
6.25		1	1	1					
25		0	0	0					
57.1		0	0	0					
7	0 0	0 0	0	North	-	-		1	/
1 2 2 2 2	0 8	<u>0 D</u>	6	ALC: Y	-	1111			
1	• •	• •		6.07 Y	-	111			
	• •	0 0		ALC'S					
1 2 3	• •	0 0	•	Raidt	-				
	0 0	0 0	•	Raidt	-	=			
 	0 0	0 0		Auto	u		•••		

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

)

NIWA

Taihoro Nukurangi

	ytical Repo							1.1111.0	ort Date: t Code:		1-14 13:14 5769/2558/	17 C C C C C C C C C C C C C C C C C C C
Amphipod 96 I	h survival and m	orbid	ity test							N	WA Ecoto	xicology
Analysis ID:	18-5407-6440		Endpoint:	96 h Surviv	al			CET	IS Version:	CETISV1.7.	0	N.
Analyzed:	09 Dec-13 16:55	5	Analysis:	Parametric	Mult	iple Company	ison	Offi	cial Results:	Yes		
atch ID:	04-5184-2984		Test Type:	Survival mo	orbidi	ty		Ала	lyst: MM	artin		
Start Date:	05 Dec-13 11:00	£	Protocol:	NIWA (199	5)			Dilu	ent: Near	shore seawat	er	
Ending Date:	09 Dec-13 11:00	1	Species:	Chaetocord	phiu	m of lucasi		Brin	e: Not /	Applicable		
Duration:	96h		Source:	Waingaro L	andi	ng, Raglan H	larbour	Age	:			
Sample ID:	13-7284-1324		Code:	2558/OT4				Clie	nt: Tota	Bridge Servi	ces	
Sample Date:	03 Dec-13 09:00	£	Material:	Paint WAF				Pro	ject: Spec	cial Studies		
Receive Date:	04 Dec-13 09 00)	Source:	Client Supp	beild							
Sample Age:	50h		Station:	In House W	AF							
Sample Note:	Zinc	_			-							
Data Transform	n	Zeta	Alt H	yp Monte	Car	10	NOEL	LOEL	TOEL	TU I	PMSD	
Angular (Correc		0	C > T	Not R	un		6.25	25	13	16	11.0%	
Bonferroni Ad	t Test											
Control	vs Conc-%		Test 5	Stat Critic	al	MSD	P-Value	Decision	1(5%)			
Dilution Water	0.1		0.042	2.6		0.19	1.0000	Non-Sigr	ificant Effect			
	0.39		0.81	26		0.19	1.0000	Non-Sign	ificant Effect			
	1.56		0.042	2.6		0.19	1.0000	Non-Sign	ificant Effect			
	6.25		0.81	2.6		0.19	1.0000	Non-Sign	ificant Effect			
	25*		7.8	2.6		0.19	~0.0001	Significat	nt Effect			
Auxiliary Tests												
Attribute	Test			Test \$	stat	Critical	P-Value	Decision				
Extreme Value	Grubbs Si	ngle O	utiier	3		2.7	0.0123	Outlier D	etected			
ANOVA Table												
Source	Sum Squa	res	Mean	Square		DF	F Stat	P-Value	Decision(5%)		
Between	0 7409257		0.148			5	16	<0.0001	Significant			
Error	0.1328478		10000	489128		14						
Total	0.8737735	£	0.157	6743	-	19						
ANOVA Assum	nptions											
Attribute	Test			Test	Stat	Critical	P-Value	Decision	1(1%)			
Variances	Mod Leve	ne Equ	ality of Varia	ance 2.3		6.6	0.1382	Equal Va	riances			
Distribution	Shapiro-V	lilk No	mality	0.83			0.0025	Non-nor	mal Distributio	'n		
96 h Survival	Summary											
Conc-%	Control Type	Cou	int Mea	n 95%	LCI	95% UCL	. Min	Max	Std Err	Std Dev	CV%	Diff%
0	Dilution Water	5	1	1		1	1	1	0	0	0.0%	0.0%
0.1		3	1	1		1	1	1	0	0	0.0%	0.0%
0.39		3	0.97	0.94	ę.	0.99	0.9	1	0 011	0.058	6.0%	3.3%
1.56		3	1	1		1	1	1	0	0	0.0%	0.0%
6.25		3	0.97	0.94		0.99	0.9	1	0.011	0.058	6.0%	3.3%
25		3	0.57	0.49		0.65	0.4	0.8	0.039	0.21	37.0%	43.09
57.1		3	0	0		0	0	0	0	0		100.0
Angular (Cor	rected) Transfo	med	Summary		_							
Conc-%	Control Type	Cou		in 95%	LCI	95% UCI	Min	Max	Std Err	Std Dev	CV%	Diff%
0	Dilution Water	5	1.4	1.4	1	1.4	1.4	1.4	0.00076		0.29%	0.0%
0.1		3	1.4	1.4		1.4	1.4	1.4	O	0	0.0%	0.219
0.39		3	1.4	1.3		1.4	1.2	1.4	0.017	0.094	6.9%	4.0%
1.56		3	1.4	1.4		1.4	1.4	1.4	0	0	0.0%	0.219
6.25		3	1.4	1.3		1.4	1.2	1.4	0.017	0.094	6.9%	4.0%
					i -							
25 57.1		3	0.86			0.94	0.68	1.1	0.041	0.22	26.0%	39.09
			0.16	0.16	x	0.16	0.16	0.16	0	0	0.0%	89.01

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

1

NIWA

Taihoro Nukurangi

Spearman-Kärber Estimates Threshold Option Threshold Trim Mu Sigma LC50 95% LCL 95% UCL 0.00% Control Threshold 0 1.3 0.052 21 17 27 96 h Survival Detail Control Type Conc-% Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0 Dilution Water 1 1 1 1 0.1 1 1 1 0.39 1 0.9 1 1.56 1 1 1 6.25 0.9 1 1 25 0.4 0.5 0.8 57.1 0 0 0 Graphics Fø • 1 . . 7 J

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

)

Alla	lytical Repo							Repo	Code:	12-744	5-5769/255	8/014 AA
Amphipod 96	h survival and	morbid	ty test								NIWA Eco	toxicolog
Analysis ID:	05-3117-8482		Endpoint:		orbidity		0	CET	S Versio	n: CETISv1	7.0	
Analyzed:	09 Dec-13 16:5	56	Analysis:	Paran	netric-Mult	ple Company	rison	Offic	ial Resul	ts: Yes		
Batch ID:	04-5184-2984		Test Type:	Surviv	val morbid	ty		Anal	yst: M	Martin	2-22	
Start Date:	05 Dec-13 11:0	00	Protocol:	NIWA	(1995)			Dilue		earshore seaw	val.er	
Ending Date:	09 Dec-13 11:0		Species:			m cf lucasi		Brin	50 D D D	ot Applicable		
Duration:	96h		Source:	Waing	garo Landi	ng, Raglan i	Harbour	Age:	9			
Sample ID:	13-7284-1324		Code:	2558/				Clier	nt: T	otal Bridge Ser	rvices	
	03 Dec-13 09:0	101 I	Material:	Paint				Proje	ect: S	pecial Studies		
	04 Dec-13 D9:0		Source:		Supplied							
Sample Age:	50h		Station:	In Hou	use WAF							
Sample Note:	Zinc								-			
Data Transfor		Zeta	Alt H		Monte Car	lo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cled)	0	C>T	Ņ	Not Run		6.25	25	13	16	11.0%	
Bonferroni Ac	lj t Test											
Control	vs Conc-%		Test	-	Critical	MSD	P-Value	Decision				
Dilution Water	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		0.043		2.6	0.18	1.0000	Non-Signi		202		
	0.39		0.84		2.6	0.18	1.0000	Non-Signi				
	1.56		0.043		2.6	0.18	1.0000	Non-Signi				
	6.25		0,84		2.6	0.18	1.0000	Non-Signi		ect		
	25*	2011	14		2.6	0_18	<0.0001	Significan	t Effect			
Auxiliary Test												
Attribute	Test					Concerns to be	12000000000000000000000000000000000000					
and the second se		Name in C	and the state		Test Stat	Critical	P-Value	Decision	logiad			
and the second se		Single O	utlier	3		Critical 2.7	P-Value 0.0098	Decision Outlier De	Necled			
Extreme Value	Grubbs 5	Single O	utlier			and the second second			tected			
Extreme Value ANOVA Table	Grubbs 5				3	and the second second			tected Decisio	on(5%)		
Extreme Value ANOVA Table Source Between	Grubbs 5			3 Squar	3	2.7	0.0098	Outlier De	Decisio	on(5%) ant Effect		
Extreme Value ANOVA Table Source Between) Grubbs S Sum Squ	ares	Mean 0.463	3 Squar	3 re	2.7 DF	0.0098 F Stat	Outlier De P-Value	Decisio			
Extreme Value ANOVA Table Source Between Error	Grubbs 5 Sum Squ 2 318161	ares	Mean 0.463	3 5quar 6362 807844	3 re	2.7 DF 5	0.0098 F Stat	Outlier De P-Value	Decisio			
Extreme Value ANOVA Table Source Between Error Total	Grubbs 5 Sum Squ 2 318161 0 123309 2 441491	ares	Mean 0.463 0.008	3 5quar 6362 807844	3 re	2.7 DF 5 14	0.0098 F Stat	Outlier De P-Value	Decisio			
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur	Grubbs 5 Sum Squ 2 318161 0 123309 2 441491	ares	Mean 0.463 0.008	3 9 Squar 6362 807844 4441	3 re	2.7 DF 5 14	0.0098 F Stat	Outlier De P-Value	Decisio Signific			
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute	Grubbs 5 Sum Squ 2 318161 0.123309 2.441491 mptions Test	ares 8	Mean 0.463 0.008	3 5quar 6362 807844 4441	3 re 4	2.7 DF 5 14 19	0.0098 F Stat 53	P-Value	Decisio Signific (1%)			
Extreme Value ANOVA Table Source	Grubbs 5 Sum Squ 2 318161 0.123309 2.441491 mptions Test	ares 8. ene Equ	Mean 0.463 0.008 0.472 nality of Vari	3 5 Squar 6362 807844 4441 1 ance (a 4 Test Stat	2.7 DF 5 14 19 Critical	0.0098 F Stat 53 P-Value	P-Value <0.0001	Decisio Signific (1%) fiances	ant Effect		
Extreme Value ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Leve Shapiro-1	ares 8. ene Equ	Mean 0.463 0.008 0.472 nality of Vari	3 5 Squar 6362 807844 4441 1 ance (a 4 Test Stat 0.99	2.7 DF 5 14 19 Critical	0.0098 F Stat 53 P-Value 0.4806	P-Value <0.0001 Decision Equal Val	Decisio Signific (1%) fiances	ant Effect		
Extreme Value ANOVA Table Source Between Error Total ANOVA Assun Attribute Variances Distribution 96h morbidity	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Leve Shapiro-1	ares 8. ene Equ	Mean 0.463 0.008 0.472 ality of Vari mality	3 5 quar 6362 807644 4441 1 ance 0 0	3 4 Test Stat 0.99 0.81	2.7 DF 5 14 19 Critical	0.0098 F Stat 53 P-Value 0.4806 0.0011	P-Value <0.0001 Decision Equal Val	Decisio Signific (1%) fiances	ution	CV%	Diff%
Extreme Value ANOVA Table Source Between Error Fotal ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-%	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary	ene Equ Wilk No	Mean 0.463 0.008 0.472 ality of Vari mality	3 5 Squar 6362 807644 4441 ance 0 0	3 4 Test Stat 0.99 0.81	2.7 DF 5 14 19 Critical 6.6	0.0098 F Stat 53 P-Value 0.4806 0.0011	Outlier De P-Value <0.0001 Decision Equal Val Non-norm	Decisio Signific (1%) fiances nal Distrib	ution	CV% 0.0%	Diff% 0.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assun Attribute Variances Distribution 96h morbidity Conc-% D	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Kulk No Cour	Mean 0.463 0.008 0.472 mality of Vari rmality	3 5 Squar 6362 807644 4441 ance 0 0	3 4 4 7est Stat 0.99 0.81 95% LCL	2.7 DF 5 14 19 Critical 6.6 95% UCL	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min	Outlier De P-Value <0.0001 Decision Equal Val Non-norm	Decisio Signific (1%) fiances nal Distrib Std Er	ution τ Std Dev		
Extreme Value ANOVA Table Source Between Error Total ANOVA Assun Attribute Variances Distribution 96h morbidity Conc-% D	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Wilk No Cour 5 3	Mean 0.463 0.008 0.472 nality of Vari rmality nt Mean 1 1	3 5 quar 6362 807844 4441 1 ance (()	3 4 4 0.99 0.81 95% LCL 1	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1 1	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1	Decisio Signific (1%) hances al Distrib Std Er 0	ution T Std Dev 0	0.0% 0.0%	0.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assun Attribute Variances Distribution 96h morbidity Conc-% D 0.1 0.39	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Nik No Cour 5	Mean 0.463 0.008 0.472 mality of Vari rmality st. Mean 1	3 5 quar 6362 807844 4441 1 ance (()	3 4 4 0.99 0.81 95% LCL 1 1	2.7 DF 5 14 19 Critical 6.6 95% UCL 1	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1	Decisio Signific (1%) Tiances al Distrib Std Er 0 0	ution T Std Dev 0 0	0.0%	0.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Wilk No Cour 5 3 3	Mean 0.463 0.008 0.472 mality of Vari rmality st Mean 1 1 0.97	3 1 Squar 6362 807844 4441 1 ance (0 n	3 re 4 	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1	Decisio Signific (1%) hances al Distrib Std Er 0 0 0 0.011	ution T Std Dev 0 0 0.058	0.0% 0.0% 6.0%	0.0% 0.0% 3.3%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Wilk No Cour 5 3 3 3	Mean 0.463 0.009 0.472 ality of Vari rmality st. Mean 1 1 1 0.97 1	3 Squar 6362 807844 4441	3 Test Stat 0.99 0.81 95% LCL 1 1 0.94 1	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1 1 0.9 1	Outlier De P-Value -0.0001 Decision Equal Val Non-norm Max 1 1 1 1	Decisio Signific (1%) fiances al Distrib Std Er 0 0 0.011 0	ution T Std Dev 0 0.058 0	0.0% 0.0% 6.0% 0.0%	0.0% 0.0% 3.3% 0.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 25	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Wilk No Cour 5 3 3 3 3	Mean 0.463 0.009 0.472 ality of Vari rmality at Mean 1 1 0.97 1 0.97	3 Squar 6362 807844 4441 ance (()	3 Test Stat 0.99 0.81 95% LCL 1 1 0.94 1 0.94	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1 1 0.9 1 0.9	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 1	Decisio Signific (1%) hances al Distrib Std Er 0 0 0.011 0 0.011	ution T Std Dev 0 0.058 0 0.058	0.0% 0.0% 6.0% 0.0% 6.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1	Sum Squ 2 318161 0 123309 2 441491 mptions Test Mod Lev Shapiro- y Summary Control Type	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 3 3	Mean 0.463 0.009 0.472 wality of Vari rmality 1 1 1 0.97 1 0.97 0.2 0	3 Squar 6362 807844 4441 ance (()	3 Test Stat 0.99 0.81 95% LCL 1 1 0.94 1 0.94 0.13	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1 1 0.9 1 0.9 0.1	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 0.4	Decisio Signific (1%) hances al Distrib Std Er 0 0 0.011 0 0.011 0.032	ution T Std Dev 0 0.053 0 0.058 0.17	0.0% 0.0% 6.0% 0.0% 6.0%	0.0% 0.0% 3.3% 0.0% 3.3%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 25 57.1	Sum Squ 2 318181 0 123309 2 441491 mptions Test Mod Lew Shapiro- y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 3 3	Mean 0.463 0.009 0.472 nality of Vari rmality nt Mean 1 1 0.97 1 0.97 0.2 0 0	3 Squar 6362 807844 4441 ance (()	3 Test Stat 0.99 0.81 95% LCL 1 1 0.94 1 0.94 0.13	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 0.4	Decisio Signific (1%) hances al Distrib Std Er 0 0 0.011 0 0.011 0.032	ution T Std Dev 0 0.053 0 0.058 0.17 0	0.0% 0.0% 6.0% 0.0% 6.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1 Angular (Conc Conc-%	Sum Squ 2 318161 0.1233094 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Mean 0.463 0.009 0.472 nality of Vari rmality 1 1 1 0.97 1 0.97 0.2 0 0	3 Squar 6362 807844 4441 1 ance (()	3 Test Stat 0.99 0.81 1 0.94 1 0.94 0 13 0 13 0	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27 0	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 0 4 0	Decision Signific (1%) frances hal Distrib Std Er 0 0 0.011 0 0.011 0.032 0	ution T Std Dev 0 0.053 0 0.058 0.17 0 T Std Dev	0.0% 0.0% 6.0% 6.0% 6.0% 87.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1 Angular (Conc Conc-% 0	Sum Squ 2 318161 0.123309 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 7 med \$ 5	Mean 0.463 0.009 0.472 nality of Vari rmality nt Mean 1 1 0.97 1 0.97 0.2 0 0 summary nt Mean	3 Squar 6362 807844 4441 1 ance (()	3 Test Stat 0.99 0.81 1 0.94 1 0.94 0 0 95% LCL 95% LCL	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27 0 95% UCL	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0 Min Min 1 0.9 1 0.9 0.1 0 Min	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 0.4 0 Max	Decisio Signific Signific (1%) fances hal Distrib Std Er 0 0.011 0.011 0.032 0 Std Ec	ution T Std Dev 0 0.053 0 0.058 0.17 0 T Std Dev	0.0% 0.0% 6.0% 6.0% 87.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1 Angular (Conc Conc-% 0 0.1	Sum Squ 2 318161 0.123309 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Mean 0.463 0.009 0.472 nality nality nt Mean 1 1 0.97 1 0.97 1 0.97 0.2 0 0 summary 1.4 1.4 1.4	3 5 Squar 6362 807844 4441 1 ance (() 1 n	3 Test Stat 0.99 0.81 95% LCL 1 0.94 1 0.94 0 95% LCL 1.4 1.4	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 1 0.99 0.27 0 95% UCL 1.4 1.4 1.4	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0 Min 1.4 1.4 1.4	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 0.4 0 Max 1.4 1.4 1.4	Decisio Signific Signific (1%) fances hal Distrib Std Er 0 0.011 0.011 0.032 0 Std Ec 0.0007 0	ution τ Std Dev 0 0.053 0 0.058 0.17 0 τ Std Dev 7 5 td Dev	0.0% 0.0% 6.0% 6.0% 87.0% CV% 0.29%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0% 0.0% 0.21%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1 Angular (Conc Conc-% 0 0.1 0.39	Sum Squ 2 318161 0.123309 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 7 med \$ 5	Mean 0.463 0.009 0.472 walky of Vari rmality 1 1 1 0.97 1 0.97 1 0.97 0.2 0 summary 1.4 1.4 1.4 1.4	3 5 Squar 6362 807844 4441 1 ance (() 1 n	3 Test Stat 0.99 0.81 1 1 0.94 1 0.94 0 13 0 95% LCL 1.4	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 1 0.99 0.27 0 95% UCL 1.4	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0 Min 1 0.9 1.1 0.9 1.1 0.9 1.1 0.1 0 Min 1.4	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 0.4 0 Max 1.4	Decisio Signific Signific (1%) fances hal Distrib Std Er 0 0.011 0.011 0.032 0 Std Ec 0.0007	ant Effect ution T Std Dev 0 0 0.058 0 0.058 0.17 0 T Std Dev 7 5 td Dev 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 6.0% 6.0% 87.0% 87.0% CV% 0.29% 0.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidit) Conc-% 0 0.1 1.56 5.25 25 57.1 Angular (Con Conc-% 0 0.1 0.39 1.56	Sum Squ 2 318161 0.123309 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No 5 3 3 3 3 3 5 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Mean 0.463 0.009 0.472 nality nality nt Mean 1 1 0.97 1 0.97 1 0.97 0.2 0 0 summary 1.4 1.4 1.4	3 Squar 6362 807844 4441 ance (0 0 n	Test Stat 0.99 0.81 95% LCL 1 1 0.94 1 0.94 0 13 0 95% LCL 1.4 1.4 1.3 1.4	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27 0 95% UCL 1.4 1.4 1.4 1.4	0.0098 F Stat 53 P-Value 0.4806 0.0011 1 1 0.9 1 0.9 0.1 0 Min 1.4 1.4 1.4 1.2	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 0.4 0 Max 1.4 1.4 1.4 1.4 1.4	Decisio Signific Signific (1%) fances hal Distrib Std Er 0 0.011 0.011 0.032 0 Std Ec 0.0007 0 0.017	ution τ Std Dev 0 0 0.058 0 0.058 0 0.058 0 1.17 0 τ Std Dev 7 5 td Dev 0 0.059 0 0.058 0 0 0.058 0 0.058 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0% 0.0% 6.0% 6.0% 87.0% 87.0% 0.29% 0.0% 6.9%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0% 0.0% 0.0% 0.21% 4.0%
Extreme Value ANOVA Table Source Between Error Total ANOVA Assur Attribute Variances Distribution 96h morbidity Conc-% 0 0.1 0.39 1.56 5.25 57.1 Angular (Conc Conc-% 0 0.1 0.39	Sum Squ 2 318161 0.123309 2.441491 mptions Test Mod Lew Shapiro-1 y Summary Control Type Dilution Water	ene Equ Wilk No Cour 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Mean 0.463 0.009 0.472 ality of Vari rmality at Mean 1 1 0.97 0.2 0 iummary at Mean 1.4 1.4 1.4	3 Squar 6362 807844 4441 ance (0 0	Test Stat 0.99 0.81 95% LCL 1 0.94 1 0.94 0 95% LCL 1.4 1.4 1.3	2.7 DF 5 14 19 Critical 6.6 95% UCL 1 1 0.99 1 0.99 0.27 0 95% UCL 1.4 1.4 1.4 1.4 1.4	0.0098 F Stat 53 P-Value 0.4806 0.0011 Min 1 0.9 1 0.9 1 0.9 0.1 0 Min 1.4 1.4 1.4 1.2 1.4	Outlier De P-Value <0.0001 Decision Equal Val Non-norm Max 1 1 1 1 1 0.4 0 Max 1.4 1.4 1.4 1.4 1.4 1.4	Decisio Signific Signific (1%) fances hal Distrib Std Er 0 0.011 0.011 0.011 0.032 0 Std Ec 0.0007 0 0.017 0	ution T Std Dev 0 0 0.058 0 0.058 0.17 0 7 5td Dev 7 5td Dev 0 0.094 0 0.094 0	0.0% 0.0% 6.0% 6.0% 87.0% 87.0% 0.29% 0.0% 6.9% 0.0%	0.0% 0.0% 3.3% 0.0% 3.3% 80.0% 100.0% 0.0% 0.21% 4.0% 0.21%

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

1

....

٠

1.8

1.3

NIWA

Taihoro Nukurangi

Spearman-Kärber Estimates Threshold Option Threshold Trim Mu EC50 95% LCL 95% UCL Sigma Control Threshold 0 0.00% 1.2 0.045 14 12 17 96h morbidity Detail Conc-% Control Type Rep 4 Rep 1 Rep 2 Rep 3 Rep 5 0 Dilution Water 1 1 1 0.1 1 1 1 0.39 1 0.9 1 1.56 1 1 1 6.25 0.9 1 25 0.1 0.4 0.1 57.1 0 0 0 Graphics e e . -0l 1 .

.

х

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

7 7

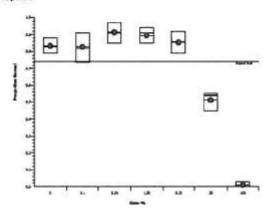
Taihoro Nukurangi

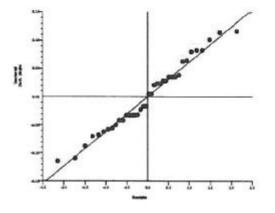
		ort						ort Date: Code:		2627/2558/	(p 1 of 2) OT1 MyG
Bivalve Larval	Survival and D	evelop	ment Test						N	IWA Ecoto	xicology
Analysis ID: Analyzed:	01-6672-2624 07 Jan-14 11:1		Endpoint: Analysis:	Proportion Norr Parametric-Mul		ison		S Version: ial Results:	CETISv1.7 Yes	.0	
Batch ID: Start Date: Ending Date:	04-8368-5973 05 Dec-13 11:0 07 Dec-13 11:0	0	Test Type: Protocol: Species:	Development NIWA (2008) Mytilus galiopro	vincialis		Anal Dilue Brine	nt: Offsh	rtin ore seawate oplicable	e	
Duration:	48h		Source:	Coromandel			Age:				
	08-3736-7167 02 Dec-13 09:0 03 Dec-13 09:0 74h	10 10	Code: Material: Source: Station:	2558/OT1 Paint WAF Client Supplied In House WAF			Clier Proje	10.00 (13.3507)	Bridge Serv al Studies	ices	
Sample Note:	MC Ferrox										
Data Transform	11	Zeta	Alt H	yp Monte Ca	rlo	NOEL	LOEL	TOEL	τυ	PMSD	
Angular (Correc		0	C > T	and the second se		6.25	25	13	16	11.0%	
Bonferroni Ad	jt Test										
Control	vs Conc-%		Test	Stat Critical	MSD	P-Value	Decision(5%)			
SW Control	0.1		0.072	2.5	0.093	1.0000	Non-Signi	ficant Effect			
	0.39		-3.6	2.5	0.093	1.0000	Non-Signi	ficant Effect			
	1.56		-2.5	2.5	0.093	1.0000	Non-Signi	ficant Effect			
	6.25		-0.82	2.5	0.093	1.0000	Non-Signi	ficant Effect			
	25*		9.7	2.5	0.093	<0.0001	Significant	tEffect			
	100*		24	2.5	0.11	<0.0001	Significant				
Auxiliary Test											
Attribute	Test			Test Stat	Critical	P-Value	Decision				
Extreme Value	the second se		utier	1.9	3	1.0000	No Outlier	s Detected	- 1010		
Excense value	Grubbs S	single O									
	Grubbs S	single O									
ANOVA Table Source	Grubbs S Sum Squ			Square	DF	F Stat	P-Value	Decision(5	i%)		
ANOVA Table Source					DF 6	F Stat	P-Value <0.0001	Decision(5 Significant			
ANOVA Table Source Between	Sum Squ	ares	Mean 0.629				1 1 101414				
ANOVA Table Source Between Error	Sum Squ 3 775622	ares	Mean 0.629	2703 452828	6		1 1 101414				
ANOVA Table Source Between Error Total	Sum Squ 3.775622 0.1380377 3.913659	ares	Mean 0.629 0.004	2703 452828	6 31		1 1 101414				
ANOVA Table Source Between Error Total ANOVA Assum	Sum Squ 3.775622 0.1380377 3.913659	ares	Mean 0.629 0.004	2703 452828	6 31 37		1 1 101414	Significant			
ANOVA Table Source Between Error Total ANOVA Assum Attribute	Sum Squ 3.775622 0.1380373 3.913659 nptions Test	ares 7	Mean 0.629 0.004	2703 452828 7231	6 31 37	140	<0.0001	Significant			
ANOVA Table	Sum Squ 3.775622 0.1380373 3.913659 nptions Test	ares 7	Mean 0.629 0.004 0.633 of Variance	2703 452828 7231 Test Stat	6 31 37 Critical	140 P-Value	<0.0001 Decision	Significant (1%) lances			
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution	Sum Squ 3.775622 0.1380377 3.913659 nptions Test Bartiett E	quality Wilk No	Mean 0.629 0.004 0.633 of Variance	2703 452828 7231 Test Stat 5.8	6 31 37 Critical	140 P.Value 0.4511	<0.0001 Decision(Equal Var	Significant (1%) lances			
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution Proportion No Conc-%	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	ares 7 quality Wilk No 7	Mean 0.625 0.004 0.633 of Variance rmality nt Mea	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL	6 31 37 Critical 17 95% UCL	140 P.Value 0.4511 0.4005 Min	<0.0001 Decision(Equal Var Normal Di Max	Significant (1%) Stances Stribution Std Err	Effect Std Dev	CV%	Diff%
ANOVA Table Source Between Error Fotal ANOVA Assum Attribute Variances Distribution Proportion No Conc-%	Sum Squ 3.775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V	ares 7 quality Wilk No 7 Cou 10	Mean 0.620 0.004 0.633 of Variance rmality nt Mea 0.63	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL 0.82	6 31 37 Critical 17 95% UCL 0.65	140 P.Value 0.4511 0.4005 Min 0.79	<0.0001 Decision(Equal Var Normal Di Max 0.88	Significant (1%) iances stribution Std Err 0.0058	Effect Std Dev 0.031	3.7%	0.0%
ANOVA Table Source Between Error Fotal ANOVA Assum Attribute Variances Distribution Proportion No Conc-%	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	ares 7 quality Wilk No 7	Mean 0.625 0.004 0.633 of Variance rmality nt Mea	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL	6 31 37 Critical 17 95% UCL	140 P.Value 0.4511 0.4005 Min	<0.0001 Decision(Equal Var Normal Di Max	Significant (1%) Stances Stribution Std Err	Effect Std Dev		
ANOVA Table Source Between Error Fotal ANOVA Assum Attribute Variances Distribution Proportion No Conc-% D 0	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	ares 7 quality Wilk No 7 Cou 10	Mean 0.620 0.004 0.633 of Variance rmality nt Mea 0.63	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL 0.82	6 31 37 Critical 17 95% UCL 0.65	140 P.Value 0.4511 0.4005 Min 0.79	<0.0001 Decision(Equal Var Normal Di Max 0.88	Significant (1%) iances stribution Std Err 0.0058	Effect Std Dev 0.031	3.7%	0.0%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution Proportion No Conc-% 0 0.1 0.39	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	ares 7 Quality Wilk No 7 Cou 10 5	Mean 0.620 0.004 0.633 of Variance rmality nt Mea 0.63 0.83	2703 452828 7231 5.8 0.97 n 95% LCL 0.82 0.8	6 31 37 Critical 17 95% UCL 0.85 0.86	140 P.Value 0.4511 0.4005 Min 0.79 0.74	<0.0001 Decision(Equal Var Normal Di Max 0.88 0.91	Significant (1%) iances stribution Std Err 0.0058 0.013	Std Dev 0.031 0.072	3.7% 8.7%	0.0% 0.72%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution Proportion No Conc-% 0 0.1 0.39 1.56	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	quality Wilk No Cou 10 5 5 5	Mean 0.629 0.004 0.633 of Variance rmality nt Mea 0.83 0.83 0.83 0.91	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL 0.82 0.8 0.9	6 31 37 Critical 17 95% UCL 0.85 0.86 0.93	140 P.Value 0.4511 0.4005 Min 0.79 0.74 0.85	<0.0001 Decision(Equal Var Normal Di Max 0.88 0.91 0.97	Significant (1%) iances stribution Std Err 0.0058 0.013 0.0089	Std Dev 0.031 0.072 0.046	3.7% 8.7% 5.2%	0.0% 0.72% -9.6%
ANOVA Table Source Between Error Total ANOVA Assum Attribute Variances Distribution	Sum Squ 3 775622 0.1380377 3.913659 nptions Test Bartiett E Shapiro-V ormal Summary Control Type	ares 7 Y Vilk No 7 Y Cou 10 5 5	Mean 0.629 0.004 0.633 of Variance rmality nt Mea 0.83 0.83 0.83 0.81 0.89	2703 452828 7231 Test Stat 5.8 0.97 n 95% LCL 0.82 0.8 0.9 0.88	6 31 37 Critical 17 95% UCL 0.65 0.66 0.93 0.91	140 P.Value 0.4511 0.4005 Min 0.79 0.74 0.85 0.85	<0.0001 Decision(Equal Var Normal Di Max 0.88 0.91 0.97 0.94	Significant (1%) iances stribution 5td Err 0.0058 0.013 0.0089 0.007	Std Dev 0.031 0.072 0.046 0.038	3.7% 8.7% 5.2% 4.2%	0.0% 0.72% -9.6% -7.2%

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).)

Taihoro Nukurangi

Linear Regression Options


Model	Function			Threshold	1 Option	Threshold	Optimized	Pooled	Het Corr	Weighted
Log-No	rmal (NEC)=A+B*log(X)]		Control Th	reshold	0.166	Yes	No	No	Yes
Regres	sion Sum	nmary	Antonio de Constante							
Iters	LL	AICc	Mu	Sigma	G Stat	Chi-Sq	Critical	P-Value	Decision	5%)
11	-6.5	17	-0.25	0.24	0.032	32	39	0.1900	Non-Signi	ficant Heterogeneity
Point E	stimates									
Level	. %	95% LCL	95% UCL	TU	95% LCL	95% UCL				
EC5	11	9.3	13	8.7	7.5	11				
EC10	14	12	16	7.1	6.3	8.4				
EC15	16	14	18	6.2	5.6	7.2				
EC20	18	16	20	5.6	5.1	6.3				
EC25	20	18	21	5.1	4.7	5.7				
EC40	25	23	27	4	3.8	4.4				
EC50	29	27	31	3.5	3.3	3.8				
Regres	sion Para	ameters								
Parame	eter	Estimate	Std Error	95% LCL	95% UCL	t Stat	P-Value	Decision	(5%)	
Thresh	old	0.14	0.0064	0.13	0.15	22	<0.0001	Significan	I Parameter	
Slope		4.2	0.38	3.4	4.9	11	<0.0001	Significan	t Parameter	
Intercep	pt	-1.1	0.55	2.1	0.028	-1.9	0.0673	Non-Signi	ficant Paran	neter


Proportion Normal Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	SW Control	0.81	0.85	0.85	0.88	0.79	0.86	0.61	0.81	0.61	0.86
0.1		0.89	0.74	0.91	0.82	0.78					
0.39		0.89	0.85	0.91	0.95	0.97					
1.56		0.86	0.85	0.91	0.94	0.91					
6.25		0.92	0.84	0.86	0.86	0.79					
25		0.54	0.55	0.45	0.54	0.48					
100		0	0	0.03							

Graphics

)

In the following statistics appendix, the NOEL (No observable effect level) equals the NOEC (no observed effect concentration), LOEL (lowest observed effect level) equals the LOEC (lowest observed effect concentration), and TOEL (toxic effect level) equals the TEC (threshold effect concentration).

TBS14201: Total Bridge Services

Taihoro Nukurangi

CETIS Anal	lytical Repo	ort							ort Date: t Code:			9 (p 1 of 2 8/OT2 My
Bivalve Larval	Survival and D	Developm	nent Test								NIWA Eco	texicology
Analysis ID: Analyzed:	04-1102-4816 07 Jan-14 11:2		indpoint: Analysis:	Proportio Paramet		nal tple Compa	rison		FIS Version: icial Results		7.0	
Batch ID:	01-9828-4088	1	est Type:	Developr	nent			Ала	lyst: M k	Aartin		111
Start Date:	05 Dec-13 11:0	00 F	Protocol:	NIWA (2)	(800			Dilk	ent: Off	shore seawa	ter	
Ending Date:	08 Dec-13 11:0	00 5	Species:	Mytilus g	allopro	wincialis		Brin	ne: Not	Applicable		
Duration:	48h	5	Source:	Coroman	del			Ape	et			
Sample ID:	01-2035-7720	(ode:	2558/OT	2			Clie	ent: Tot	al Bridge Se	rvices	
Sample Date:	02 Dec-13 09:0	N 00	Anterial:	Paint WA	Æ			Pro	ject: Spe	ecial Studies		
Receive Date:	03 Dec-13 09:0	00 5	source:	Client Su	pplied							
Sample Age:	4d 2h	5	Station:	In House	WAF							
Sample Note:	Termarust 210	0										
Data Transform	m	Zeta	Alt H	yp Mor	nte Ca	rlo	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Correc	cled)	0	C > T	Not	Run		1.56	6.25	3,1	64	10.0%	
Bonferroni Ad	jt Test											
Control	vs Conc-%		Test 5	Stat Crit	ical	MSD	P-Value	Decision	n(5%)			
SW Control	0.1		0.28	2.5		0.09	1.0000	Non-Sign	nificant Effect	t		
	0.39		-2	2.5		0.09	1.0000	Non-Sign	nificant Effec	t		
	1.56		0.95	2.5		0.09	0.8751	Non-Sign	nificant Effect	1		
	6.25*		28	2.5		0.09	<0.0001	Significa	nt Effect			
	25*		25	2.5		0.11	<0.0001	Significa	nt Effect			
Auxiliary Tests	5											
Attribute	Test			Tes	t Stat	Critical	P-Value	Decision	1			
Extreme Value	Grubbs 5	Single Ou	rtlier	2		3	1.0000	No Outli	ers Detected			
ANOVA Table												
Source	Sum Squ	ares	Mean	Square		DF	F Stat	P-Value	Decision	(5%)		
Between	6.822266		1,364	453		5	310	<0.0001	Significar	t Effect		
Error	0.1204963	2	0.004	462823		27						
Total	6.942762		1.368	916		32						
ANOVA Assur	nptions					1020						
Attribute	Test			Tes	l Stat	Critical	P-Value	Decision	n(1%)			
Variances	Bartiett E	Equality o	f Variance	5,5	3	15	0.3542	Equal Va	riances			
Distribution	Shapiro-	WEK NOT	mality	0.95	i .		0.1350	Normal	Distribution	1000000		
Proportion No	rmal Summary											
	Control Type	Count			LCL			Max.	Std Err	Std Dev	CV%	Din%
	SW Control	10	0.83	0.83	2	0.85	0.79	0.88	0.0058	0.031	3.7%	0.0%
0.1		5	0.82	0.8		0.85	0.76	0.9	0.011	0.059	7.2%	1.2%
0.39		5	0.88	0.8	5	0.9	0.82	0.95	0.01	0.056	6.4%	-5.5%
1.56		5	0.81	0.70	3	0.83	0.73	0.87	0.01	0.055	6.9%	3.4%
6.25		5	0.018	0.0	890	0.026	0	0.05	0.004	0.022	120.0%	98.0%
25		3	0.003	3 0.00	14.4	0.0055	0	0.01	0.0011	0.0058	170.0%	100.0%

Taihoro Nukurangi

1 1 1 1

Trimmed Spearman-Kärber Estimates

0.05

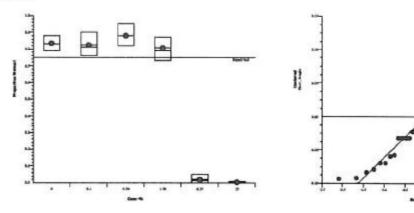
0

0

0.01

Threshold	Option	Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UC	L	
Control Th	reshold	0.17	0.39%	0.48	0.007		3	2.9	3.1		
Proportio	n Normal Detail										
Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	SW Control	0.81	0.86	0.85	0.88	0.79	0.85	0.81	0.81	0.81	0.86
0.1		0.81	0.87	0.78	0.76	0.9					
		0.95	0.68	0.82	0.83	0.92					
0.39		0.95	0,00	0.02	0.00	0.02					

0.03


0

Graphics

6.25

25

)

0.01

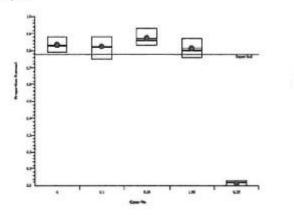
0

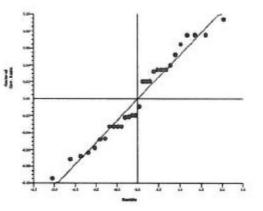
CETIS Anal	lytical Rep	ort					5-3-5-C (T)	ort Date: t Code:		lan-14 14:3 5-0458/25	
Bivalve Larval	Survival and [Developm	ent Test							NIWA Eco	
Analysis ID:	04-7257-8438	Er	ndpoint: P	roportion Norr	nal		CET	15 Version:	CETISv1	7.0	
Analyzed:	07 Jan-14 13.5	58 Ar	nalysis: P	arametric-Mul	tple Compa	rison	Offi	cial Results:	Yes		
Batch ID:	01-9828-4088	Te	st Type: D	evelopment			Ала	lyst: MM	lartin		
Start Date:	06 Dec-13 11:0	00 Pr	otocol: N	IFWA (2008)			Dilu	ent: Offs	hore seawa	ter	
Ending Date:	08 Dec-13 11:0	00 Sg	pecies: N	tytilus gallopro	minicialis		Brin	e: Not	Applicable		
Duration:	48h	Se	ource: C	Coromandel	201202022		Age	\$			
Sample ID:	01-4619-1119	C	ode: 2	558/OT3			Clie	nt: Tota	I Bridge Ser	rvices	
Sample Date:	02 Dec-13 09:0	00 M	aterial: P	aint WAF			Pro	ject: Spe	cial Studies		
Receive Date:	02 Dec-13 09:0	00 \$6	ource: C	lient Supplied							
Sample Age:	4d 2h	SI	lation: In	h House WAF	6						
Sample Note:	MC M10										
Data Transform	m	Zeta	Alt Hyp	Monte Ca	rio	NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	cted)	0	C > T	Not Run		1.56	6.25	3.1	64	6.7%	
Bonferroni Ad	j I Test									- C	
Control	vs Conc-%		Test St.	at Critical	MSD	P-Value	Decision	(5%)			
SW Control	0.1		0.36	24	0.072	1.0000	Non-Sign	ificant Effect			
	0.39		-1.9	2.4	0.072	1.0000	Non-Sign	hificant Effect			
	1.56		0.85	2.4	0.072	0.8100	Non-Sign	ificant Effect			
	6.25*		34	2.4	0.072	<0.0001	Significan	nt Eflect			
Auxiliary Test	5										
Attribute	Test			Test Stat	Critical	P-Value	Decision	1			
Extreme Value	Grubbs	Single Out	lier	1.8	2.9	1.0000	No Outlie	ers Detected			
ANOVA Table											
Source	Sum Squ	Jares	Mean S	quare	DF	F Stat	P-Value	Decision	(5%)		
Between	4.483107		1.12077	7	4	360	< 0.0001	Significan	t Effect		
Error	0.076841	11	0.00307	3644	25						
Total	4.559947		1.12385	5	29						
ANOVA Assur	nptions										
Attribute	Test			Test Stat	Critical	P-Value	Decision	1(1%)			
Variances	Bartlett 6	Equality of	Variance	2.3	13	0.6829	Equal Va	niances			
Distribution	Shapiro-	Wilk Norm	vality	0.96		0.2566	Normal E	Distribution			
Proportion No	ormal Summary	Y									
	Control Type	Count	Mean	and the state of the second se	95% UCL	Min	Max	Std Err	Std Dev	CV%	Diff%
0	SW Control	10	0.83	0.82	0.85	D.79	0.88	0.0058	0.031	3.7%	D.0%
0.1		5	0.82	0.8	0.85	D.75	0.88	0.011	0.057	5.9%	1.2%
0.39		5	0.87	0.86	0.89	D.83	0.93	0.0078	0.042	4.8%	-4.6%
1.56		5	0.81	0.8	0.83	0.76	0.87	0.0078	0.042	5.2%	2.4%
6.25		5	0.016	0.012	0.02	D	0.03	0.0021	0.011	71.0%	98.0%

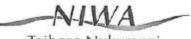
Appendix 3: statistics

_	-N-I-	WA	

Taihoro Nukurangi


Trimmed Spearman-Kärber Estimates


Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.17	1.90%	0.49	0.0062	3.1	3	3.2


Proportion Normal Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	SW Control	0.81	0.86	0.85	0.68	0.79	0.86	0.81	0.81	0.81	0.86
0.1		0.88	0.82	0.79	0.75	0.88					
0.39		0.84	0.83	0.9	0.86	0.93					
1.56		8.0	0.76	0.8	0.87	0.84					
6.25		0.02	0	0.02	0.03	0.01					

Graphics

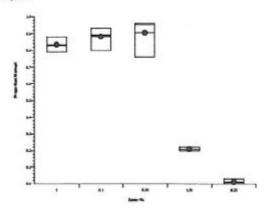
Taihoro Nukurangi

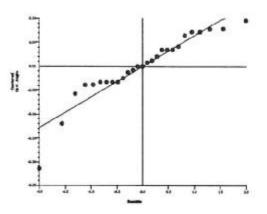
CETIS Ana	lytical Repo	ort							ort Date: Code:			2 (p 1 of 2) 8/OT4 MyG
Bivalve Larval	Survival and D)evelopm	nent Test								NIWA Eco	toxicology
Analysis ID: Analyzed:	08-3112-3501 07 Jan-14 14:0		indpoint: malysis:		ortion Norr parametric-	nal Multiple Cor	mparison	10.222.0	15 Version: cial Results	3 200	.7.0	
Batch ID:	06-7364-3794	Т	est Type:	Deve	elopment			Anal	lyst: MA	fartin		
Start Date:	06 Dec-13 11:0	00 P	rotocol:	NIW.	A (2008)			Dilu	ent: Off	shore seawa	ter	
Ending Date:	08 Dec-13 11:0)) S	pecies:	Mytil	lus gallopro	vincialis		Brin	e: Not	Applicable		
Duration:	48h	\$	ource:	Coro	mandel	7000371602		Age	:			
Sample ID:	13-0674-4293	c	ode:	2558	B/OT4			Clie	nt: Tot	al Bridge Se	rvices	
Sample Date:	02 Dec-13 09:0	00 N	laterial:	Pan	t WAF			Proj	ect: Spe	ecial Studies		
Receive Date:	03 Dec-13 09:0	00 S	ource:	Clier	nt Supplied							
Sample Age:	4d 2h	5	itation:	In He	ouse WAF							
Sample Note:	Zinc				1.0							
Data Transform	m	Zela	Alt H	yp	Monte Ca	rto	NOEL	LOEL	TOEL	τυ	PMSD	
Angular (Come	cted)	0	C⊧T		Not Run	0.000000000	0.39	1.56	0.78	260	11.0%	
Wilcoxon/Bon	ferroni Adj Tes	1										2.10
Control	vs Conc-%		Test	Stat	Critical	Ties	P-Value	Decision	(5%)			
SW Control	D.1		56			1	1.0000	Non-Sign	ificant Effec	t		
	0.39		55			0	1.0000	Non-Sign	ilicant Effec	t		
	1.56*		10			0	0.0040	Significar	nt Effect			
	6.25*		6			0	0.0140	Significar	1 Effect			
Auxiliary Test	5											
Attribute	Test				Test Stat	Critical	P-Value	Decision				
Extreme Value	Grubbs S	Single Ou	tlier		3.2	2.9	0.0068	Outlier De	etected			
ANOVA Table												
Source	Sum Squ	ares	Mean	Squi	are	DF	F Stat	P-Value	Decision	(5%)		
Between	4,393018		1.098	254		4	210	< 0.0001	Significar	nt Effect		
Error	0.113764	4	0.005	17110	08	22						
Total	4.506782		1.103	426		26						
ANOVA Assum	nptions											
Attribute	Test				Test Stat	Critical	P-Value	Decision				
Variances		C	(Variance		15	13	0.0046	0.5001057000	Variances			
Distribution	Shapiro-	Wilk Norr	mality		0.9		0.0128	Normal D	istribution			
Proportion No	rmal Summary											
	Control Type	Count	Mean	1	95% LCL			Max	Std Err	Std Dev	CV%	Diff%
-	SW Control	10	0.63		0.82	0.85	0.79	0.88	0.0058	0.031	3.7%	0.0%
0.1		5	0.68		0.86	0.9	0.6	0.93	0.0094	0.051	5.7%	-5.7%
0.39		5	0.9		0.87	0.94	0.76	0.96	0.016	0.084	9.3%	-8.4%
1.56		4	0.21		0.21	0.21	0.2	0.22	0.0015	0.0082	3.9%	75.0%
6.25		3	0.009	R.	0.0033	0.016	0	0.029	0.0032	0.017	170.0%	99.0%

NIWA

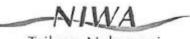
Taihoro Nukurangi

Trimmed Spearman-Kärber Estimates


Threshold Option	Threshold	Trim	Mu	Sigma	EC50	95% LCL	95% UCL
Control Threshold	0.17	1.00%	0.037	0.013	1.1	1	1.2


Proportion Normal Detail

Conc-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	SW Control	0,81	0.86	0.85	0.88	0.79	0.86	0.81	0.81	0.81	0.86
0.1		0.8	0.88	0.91	0.89	0.93					
0.39		0.9	0.76	0.95	0.96	0.95					
1.56		0.21	0.22	0.2	0.21						
6.25		0.029	0	0							


Graphics

)

Appendix 4:

Taihoro Nukurangi

Chemical data at test terminations

Blue	Muss	els:

Date	Day	Sample	Conc	Temp	pH	DO	Salinity
			% or ppm	°c		mg/L	ppt
nstruments used	:			Trace	Orion	HACH	HACH
7/12/2013		2 Control	0	20.0	8.18	7.0	35.2
		2558/OT1	0.1	20.4	8.11	6.7	35.7
		MC Ferrox	0.39	20.2	8.07	7.0	35.6
			1.56	20.2	8.02	7.1	35.6
			6.25	20.2	7.98	6.9	35.6
			25.0	20.3	7.96	7.2	35.7
			100.0	20.4	7.95	7.5	35.7
7/12/2013		2 2558/OT2	0.1	20.4	7.96	7.1	35.7
		Termarust 2100	0.39	20.3	7.97	6.7	35.5
			1.56	20.3	7.97	6.6	35.6
			6.25	20.3	7.96	6.5	35.6
			25.0	20.3	7.97	6.1	35.5
			100.0	20.4	7.89	6.9	35.6
7/12/2013		2 2558/OT3	0.1	20.6	7.96	6.4	35.7
		MC M10	0.39	20.5	7.98	6.4	35.5
			1.56	20.5	7.98	6.0	35.4
			6.25	20.5	7.97	5.9	35.5
			25.0	20.7	7.93	6.7	35.7
			100.0	20.7	7.74	7.2	35.7
7/12/2013		2 2558/OT4	0.1	20.9	7.86	6.2	35.7
		Zinc	0.39	20.8	7.94	6.3	35.7
			1.56	20.7	7.97	6.0	35.6
			6.25	20.6	7.98	6.1	35.5
			25.0	20.7	7.97	5.9	35.6
			100.0	21.1	7.94	6.9	35.7

)

-N-I-WA

Taihoro Nukurangi

Appendix 4:

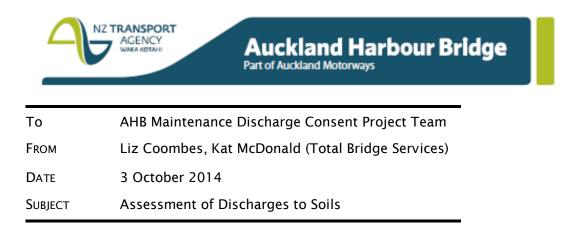
Chemical data at test terminations

Amphipods:

)

)

Date	Day	Sample	Conc	Temp	pH	DO	Salinity
			%	°C		mg/L	pp
struments use	d:			Trace	Orion	HACH	HACH
9/12/2013		4 Control	0	19.9	7.73	7.2	21.6
		2558/OT1	0.1	19.7	7.76	7.1	21.7
		MC Ferrox	0.39	19.6	7.74	6.9	21.6
			1.56	19.6	7.72	6.7	21.5
			6.25	19.6	7.62	5.9	21.4
			25.0	19.6	7.61	6.3	21.1
			57.1	19.6	7.57	5.5	20.5
9/12/2013		4 2558/OT2	0.1	19.6	7.67	6.9	21.9
		Termarust 2100	0.39	19.6	7.74	7.1	21.6
			1.56	19.6	7.75	7.1	21.6
			6.25	19.6	7.76	7.1	21.4
			25.0	19.6	7.63	5.9	20.9
			57.1	19.6	7.46	5.3	20.0
9/12/2013		4 2558/OT3	0.1	19.5	7.67	6.7	21.7
		MC M10	0.39	19.6	7.76	7.1	21.5
			1.56	19.6	7.79	7.2	21.4
			6.25	19.6	7.8	7.2	21.3
			25.0	19.6	7.76	7.1	20.7
			57.1	19.6	7.63	6.9	19.7
9/12/2013		4 2558/OT4	0.1	19.5	7.74	6.9	21.7
		Zinc	0.39	19.5	7.8	7	21.5
			1.56	19.5	7.8	6.9	21.5
			6.25	19.5	7.83	7	21.3
			25.0	19.5	7.78	6.1	20.8
			57.1	19.5	7.72	5.3	20.0


Appendix C

Discharges to Land – Assessment of Effects (Opus, October 2014)

11.11.1

1. Introduction

Discharges to land from bridge maintenance activities arise from waterblasting washwater, dry and wet abrasive blasting, and spray painting. Maintenance discharges from the Auckland Harbour Bridge (AHB) are currently authorised under Consents 38519, 38835 and 38836. These consents require the progressive introduction of a containment system to control maintenance discharges and reduce environmental impacts. In the period during 'partial containment' (containment implemented north of Pier 1 and south of Pier 5) 100% of washwater and wastewater are to be contained over land, however up to 15% of dry discharges can be discharged.

A new consent is now being sought to improve flexibility in maintenance operations and allow a range of methodologies to control discharges from maintenance works on the AHB. The aim is to achieve the same or better environmental outcomes as the current consent but without being tied into the use of specific controls such as containment.

This technical report is intended to inform the new application by assessing the potential and/or actual effects of discharges to land from maintenance activities on the AHB. This report:

- Sets the level of effects and discharges allowed under the current consents;
- Sets out the proposed management approach for discharges from areas of the AHB over the land;
- Identifies methods for enabling this management approach; and
- Assesses effects of this approach and the Permitted Activity criteria.

2. Existing Environment

2.1 Location, site characteristics/values

The AHB spans the Waitemata Harbour with the southern abutment adjacent to the Westhaven Marina and the northern abutment located within the residential area of Stokes Point, Northcote. The land areas adjacent to the northern and southern abutments of the bridge are both highly modified environments.

Northcote Point is a residential area with a number of dwellings located adjacent to the northern end of the AHB. The Stokes Point-Te Onewa Reserve is also located at the northern end of the AHB. The Reserve is characterised by cliffs along the northern boundary of the bridge comprising inter-bedded thick sandstone and thin siltstone layers of the East Coast Bays Formation (part of the Waitemata Group).

At the southern end of the bridge, the majority of the land was reclaimed during the construction of the bridge, and as such is likely to be predominantly composed of

Auckland Harbour Bridge Part of Auckland Motorways

fill. At this end of the bridge much of the site is paved, with the exception of a grassed area to the southwest of the end of the bridge along the edge of Curran Street, and some landscaped areas between SH1 and Westhaven Drive to the southeast of the bridge. There are a number of commercial facilities in this area including a cafe, a retail outlet (for marine products) and a yacht club. Members of the public have access to walkways and cycle paths along Westhaven Drive and the area to the east of the southern abutment is also used by local fishermen.

The historic use of the land at either end of the AHB is likely to have affected the quality of the soils in these areas. Sources such as fill imported onto site during construction of the AHB, traffic exhaust deposition, historic bridge maintenance activities, and other historic uses may have contributed contaminants to the soils at the site.

2.2 Bridge Structure

TRANSPORT AGENCY

The AHB is considered the most strategically important bridge in New Zealand and is recognised as nationally significant infrastructure. The bridge also plays an important role in the growth and development of Auckland as it is the main conduit between Auckland, North Shore, and beyond.

The AHB is made of different structural components which are shown on Figure 2.1. The landward components of the bridge consist of three viaducts, namely the South Steel Viaduct, North Steel Viaduct and North Concrete Viaduct.

The current paint system on the bridge is a zinc rich moisture-cured urethane. Historical paint coatings include zinc phosphate, zinc chromate and a lead primer paint, which has not been used on the bridge since the very limited applications in 1959.

2.3 Current Consented Activity

Maintenance of the AHB involves cleaning and repainting of the structure. Washing and waterblasting are used to clean the bridge, then sections of the bridge that require repainting are prepared by dry abrasive blasting or wet abrasive blasting prior to repainting. Currently these activities are undertaken in accordance with discharge consents: 38519, 38836 and 38835.

Over land areas, washwater from waterblasting and wastewater from wet abrasive blasting are currently contained and collected for disposal (refer to Figure 2.2 for example); dry abrasive blasting is currently only carried out over land within an enclosed containment system. Paint application over land is currently managed to minimise discharges to soils; this is achieved by undertaking painting by hand or spray painting within an enclosed containment system.

Additional controls are used to manage discharges to air from paint overspray which can potentially settle out to soils if not managed appropriately. Restrictions are in place for works on the landward side of Piers 1 and 5, when the wind direction is blowing towards land, and wind speed restrictions apply to works in any area of the bridge. These controls prevent airborne discharges drifting onto land during maintenance works (see air discharges technical report for further details of these controls).

Auckland Harbour Bridge Part of Auckland Motorways

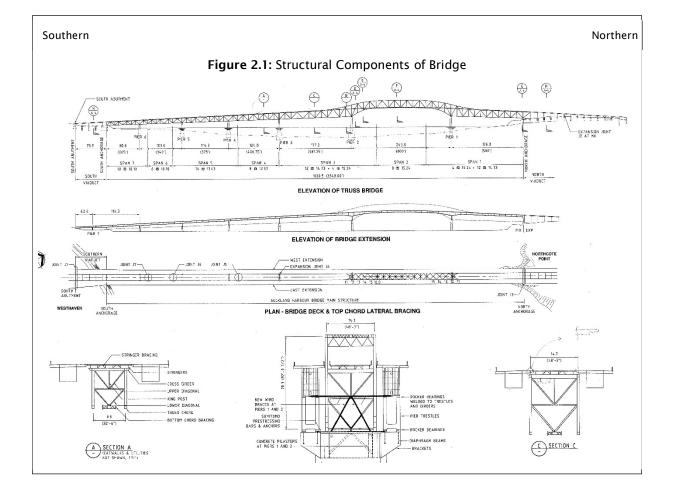


Figure 2.2: Containment system over Stokes Point to collect wet abrasive blasting wastewater

3. Proposed Activity: Adaptive Management Approach

New resource consents are being sought for AHB maintenance discharges which will allow greater flexibility in the management of maintenance discharges while still ensuring the same or better environmental outcomes as under the current consents. The new consents propose an adaptive management approach that will allow the bridge maintenance contractors to test new solutions and adapt maintenance methods or products over time to incorporate new innovations and improve environmental outcomes.

While containment is likely to continue to be used as a key environmental control for managing maintenance discharges to soils, the proposed adaptive management approach would allow for new products or methodologies to be introduced if they can be shown to achieve the same or better environmental performance as the currently used products and methods.

It is proposed that maintenance discharges from spray paint application over land will be managed to ensure that any discharge to land and associated effects are negligible, while discharges from waterblasting and wet abrasive blasting over land will be managed to ensure that they comply with the Permitted Activity requirements of relevant planning documents.

3.1 Example Operational Methodologies

The following are examples of methodologies that could be implemented to manage discharges to soils from waterblasting, abrasive blasting, and paint application. It should be noted however, that other methodologies not listed here might be used in the future to control discharges from these activities.

- Waterblasting: Washwater from waterblasting over land will be discharged to the harbour (via the stormwater system) as a Permitted Activity under the relevant planning documents (see technical memo: *Contaminants in Waterblasting Washwater* for further details). The contaminants in the washwater will be minimised as far as practicable by filtering out particulate matter through a geotextile fabric prior to discharge.
- Abrasive Blasting: Wet abrasive blasting will be carried out over land instead of dry abrasive blasting, because wet abrasive blasting discharges are easier to control; dry abrasive blasting will no longer be carried out over land. Wastewater from wet abrasive blasting will be contained (see Figure 2.2) and disposed of off-site at an appropriate facility. Hand preparation with power tools such as a sanding disk or a bristle blaster may be used for very small areas of work, (less than 1% of the surface area of the bridge), which can be effectively managed to avoid discharges of dust to land and therefore can comply with the relevant Permitted Activity requirements in planning documents.
- **Paint application:** will either be carried out within an enclosed containment system, or applied by hand to avoid overspray. Spray paint discharges are addressed further in the air discharges technical report.

3.2 Adaptive Management Framework

The Adaptive Management Framework (AMF) will be used to enable changes and improvements to the products or methodologies used for bridge maintenance. If new paint products or maintenance methods are proposed in the future, they will be

Auckland Harbour Bridge

assessed using the AMF to ensure there will be no increase in environmental effects and that the same or better environmental outcomes can be achieved as through using current products/ methods.

For discharges of washwater and/or wet abrasive blasting wastewater, if the methods used to control discharges change in the future, any new methods will be assessed under the AMF to confirm that discharges continue to meet relevant Permitted Activity rule requirements. Any new paint products or product application methods will be assessed to ensure any potential discharge is negligible.

The adaptive management process to assess a new product or method under this framework in relation to its potential discharge to land is given in Appendix A. An example of how this process might be applied to test a new product with respect to discharges to land is given below.

Example:

'Termarust' is a new encapsulating coating system for some of the bridge structures over land. This new system will encapsulate existing and historic layers of paint reducing the need for abrasive blasting surface preparation (only water blasting is required), however it cannot be used on parts of the bridge that are accessible to the public due to its low resistance to abrasion and long curing time.

An example of the steps taken to assess this new product under the adaptive management framework is given below.

Termarust Example: Assessment under adaptive m	nanagement process
 Is product/ method substantially the same as existing product/ method? (E.g. new brand of the same type of coating system) If 'Yes', product/ method can be used under current operational documents (further assessment not required - proceed to Step 5. If 'No' proceed to Step 2. 	No, Termarust has a different composition to all currently consented products.
2. Does product/ method disperse contaminants into the air that could deposit onto land? (such as spray application of paint)	Yes, Termarust can only be applied by spray application.
 If 'Yes' proceed to Step 4. If 'No' proceed to Step 3. 	
 3. Can the product/ method be used as Permitted Activity under the relevant council plans? If 'Yes' proceed to Step 5. If 'No' then resource consent is required before the product/ method can be used. 	n/a
 4. Can the discharge be controlled or contained to ensure the discharge to land and any effects are negligible? If 'Yes' proceed to Step 5. If 'No' then resource consent is required before the product/ method can be used. 	Yes, current containment of spray paint overspray to achieve a negligible discharge will be similarly effective for Termarust overspray.
5. New product/ method approved for use, update operational documents	Application of Termarust to be added to operational documents (no additional controls are required).

3.3 Mitigation

Discharges to soils will be controlled through the Environmental Management Plan (EMP). The EMP will set out roles and responsibilities of AHB staff and ensure that maintenance works cause no nuisance or harm to the general public or environment. At the current time, the main mechanisms for ensuring that maintenance discharges to land are minimised as far as is practicable include:

- Spray paint encapsulated containment systems
- Containment systems to capture washwater/ wastewater discharges over land
- Hand application of paints to avoid overspray
- Hand surface preparation methods to reduce dust discharges
- Using wet abrasive blasting instead of dry abrasive blasting over land to avoid dust discharges.

Other mitigation controls may be adopted if approved under the AMF (as described in Section 3.2).

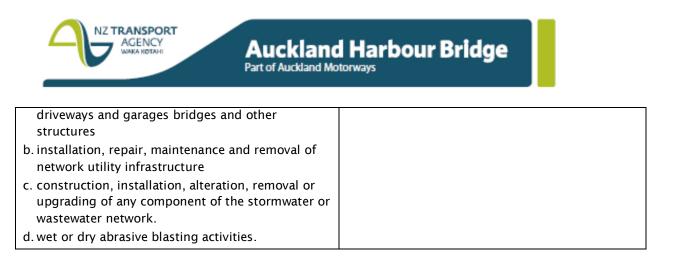
4. Assessment of Environmental Effects

As discussed above, discharges to land from bridge maintenance activities may arise from waterblasting, wet abrasive blasting, and spray paint application. It is proposed that discharges from waterblasting and wet abrasive blasting over land will be managed to comply with the Permitted Activity requirements under the relevant planning documents, and discharges from paint application over land will be managed to ensure that any discharge to land and associated effects are negligible.

4.1 Assessment against Permitted Activity Criteria

Discharges of washwater from waterblasting and wastewater from wet abrasive blasting will be managed to ensure that they comply with the relevant Permitted Activity rules and controls of the ACRP: ALW (Rule 5.5.54) and the PAUP (Rule H.4.18.1). An assessment of the potential discharges against the relevant Permitted Activity criteria is provided in the table below:

Auckland Council Regional Plan: Air, Land and Water Rule 5.5.55	Assessment
 The activities in Rule 5.5.54 are subject to the following conditions: The discharge shall be either: (a) collected for reuse; or (b) discharged to land so that runoff or the accumulation of contaminants does not occur; (c) recycled or collected for disposal at an authorised facility; or (d) discharged onto land resulting in runoff, including to any natural or man-made stormwater drainage system, where the discharge has been minimised to the greatest extent practicable, in a manner that does not give rise, after reasonable mixing, in the receiving waterbody to any or all of the following: 	 Wet Abrasive Blasting Wastewater Discharges of wastewater from wet abrasive blasting over land will be contained and disposed of at an authorised facility. Waterblasting Washwater Discharges of washwater from waterblasting may be discharged onto land resulting in runoff to the stormwater drainage system, which discharges to the Waitemata Harbour. Prior to discharge, the contaminants in the washwater will be minimised as much as practicable by filtering through



Auckland Harbour Bridge Part of Auckland Motorways

- (i) the production of any conspicuous oil or grease films, scum, foams, of floatable or suspended material;
- (ii) any conspicuous change in the colour or visual clarity;
- (iii) a change in the natural pH of more than 1 pH unit; or
- (iv) any significant adverse effect on aquatic life

a geotextile to remove particulate matter. The extent of contaminants in the washwater is not expected to cause any of the effects listed in (d) (i-iv) (see technical report *Marine Ecology Assessment – Maintenance Discharges* and technical memo: *Contaminants in Waterblasting Washwater* for further details).

Proposed Auckland Unitary Plan Permitted Activity Controls H.4.18.2.1.1	Assessment
 General Permitted Activity Controls 1. The discharge must not, after reasonable mixing, give rise to: a. the production of any conspicuous oil or grease film, scum or foam, or floatable or suspended materials; or b. any conspicuous change in the colour or visual clarity; or c. any emission of objectionable odour; or d. the rendering of freshwater unsuitable for consumption by farm animals; or e. a change the natural temperature of the receiving water by more than 3° C; or f. a change in the natural pH of the water by more than 1 pH unit. 2. The contaminant discharged must not either by itself or in combination with other contaminants after reasonable mixing exceed the greater of the 95 per cent trigger values for freshwater (groundwater) specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000, or the natural background level. 3. The discharge must not enter into any water supply catchment, Wetland, Natural Lake or Natural Stream Management Area. 4. The discharge must not cause erosion or scouring at the point of discharge or alter the natural 	 Wet Abrasive Blasting Wastewater Discharges of wastewater from maintenance activities over land will be contained and disposed of at an authorised facility, and so will not cause any of the described effects, and the discharge will not enter any of the listed areas. Waterblasting Washwater Washwater from waterblasting will be discharged onto land resulting in runoff to the stormwater drainage system, which discharges to the Waitemata Harbour. 1. The extent of contaminants in the washwater is not expected to cause any of the effects listed in 1. a - f (see technical report Marine Ecology Assessment - Maintenance Discharges and technical memo Contaminants in Waterblasting Washwater for further details). 2. Based on washwater sampling results, the contaminants are not expected to result in an exceedance of the ANZECC guidelines after reasonable mixing (see technical memo Contaminants in Waterblasting Washwater). 3. The discharges of washwater will not enter any of the types of areas listed. 4. The washwater will be discharged into a man- made stormwater system, and so will not cause
course of the water body Proposed Auckland Unitary Plan Permitted	erosion or scouring at the point of discharge or alter the natural course of a waterbody. Assessment
Activity Controls H.4.18.2.2.1 Discharge of Wastewater or Washwater 1. Discharges from the following activities must not enter any Wetland Management Area, Natural Lake Management Area or Natural Stream Management Area: a. the cleaning, maintenance and preparation of surfaces of buildings, associated structures e.g.	The discharges of washwater and wastewater will not enter any of the types of areas listed.

4.2 Effects of Waterblasting

The effects from the discharge of washwater from waterblasting over the land are discussed in technical report *Marine Ecology Assessment – Maintenance Discharges* and technical memo *Contaminants in Waterblasting Washwater*. Discharging the waterblasting washwater is considered unlikely to have more than a negligible environmental effect on the Waitemata Harbour. This is partially based on the recommendation that washwater discharges be managed within the key contaminant thresholds. These thresholds have been set to control the effects from all consented maintenance activities so that the total discharges of zinc and particulate to the coast do not exceed the calculated 'thresholds' that are permitted under the current maintenance discharge consents: Zinc: 223kg/annum, Particulate (garnet): 14679 kg/annum.

4.3 Effects of Abrasive Blasting

The effects from abrasive blasting over land are expected to be less than those that are currently consented, particularly because of the approach to comply with the permitted activity standards for abrasive blasting over land. To achieve this, wet abrasive blasting will predominantly be used, and some limited surface preparation using hand tools (as described in Section 3.1). Wet abrasive blasting (which uses water to blast the abrasive agent onto the surface) and hand preparation methods significantly reduce dust generation, and mean that the discharges from these activities can be managed much more effectively. The move away from dry abrasive blasting to wet abrasive blasting over land will allow more of the discharge to be captured and disposed of appropriately rather than discharging to the soils.

4.4 Effects of Spray Painting

The current consent allows for the discharge of up to 15% of overspray from spray painting, once containment is required from 30 August 2014. However, under the new consent it is proposed that discharges of spray paint will be managed so that any discharges to soils are minimised as far as practicable. A range of mitigation options will be used to ensure that the discharge to land from spray painting is reduced to a negligible amount. Because the discharge of spray paint will be negligible, effects on the environment are also expected to be negligible.

Initially mitigation may include the use of a containment system to capture as much paint overspray as practicable. Alternatively hand application of paints may be carried out where practicable to avoid overspray. The options used to control paint overspray in the future may differ, however the Adaptive Management Framework (as described in Section 3 above) will be used to ensure that any new products or methods will have the same or less effect than what is currently consented (i.e. negligible effects). An example of how the Adaptive Management Framework will be used in practice is given in Section 3.2. If the same or less effect cannot be

Auckland Harbour Bridge Part of Auckland Motorways

achieved, either the new product or method will not be used, or a variation or new consent will be sought for it.

5. Monitoring and Reporting

Any controls implemented over land will be monitored to ensure they are effective, this will include:

- 1. Visual monitoring during water blasting and wet abrasive blasting to check that discharges are being contained effectively.
- 2. Air monitoring, where appropriate, to ensure that any system (e.g. containment) used to control discharges to air (where there is a risk that may they settle out to land) are working effectively (see Air Discharges technical report).
- 3. Internal audits to ensure relevant environmental procedures and processes are being followed during both surface preparation activities and paint application.

A summary of monitoring and audit results will be provided to Auckland Council through the reporting process outlined in the AMF and Environmental Management Plan (EMP). This is likely to include:

- Photographs from visual monitoring of containment systems for washwater or wet abrasive blasting wastewater;
- Summary of any air monitoring that has been carried out to verify the effectiveness of any control system;
- Evidence of internal audits.

6. Conclusions

It is concluded that the discharges to land from waterblasting and wet abrasive blasting on the AHB can be undertaken as Permitted Activities under the ACRP: ALW and PAUP. The discharge from paint application can be managed to ensure that the discharge and any consequential effects are negligible.

Appendix A

Adaptation Process for Work over Land

Step	Tasks
 Is product/ method substantially the same as existing product/ method? (E.g. new brand of the same type of coating system) If 'Yes', product/ method can be used under current operational documents (further assessment not required - proceed to Step 5. If 'No' proceed to Step 2. 	 Check SDS for any new contaminants Check SDS for proportion of key contaminants - are they the same as in the currently used product? Check manufacturer specification for details of application method
2. Does product/ method disperse contaminants into the air that could deposit onto land? (such as spray application of paint)	
• If 'Yes' proceed to Step 4.	
• If 'No' proceed to Step 3.	
 3. Can the product/ method be used as Permitted Activity under the relevant council plans? If 'Yes' proceed to Step 5. If 'No' then resource consent is required before the product/ method can be used. 	 Check product and method against the Auckland Council Regional Plan: Air Land and Water and Proposed Auckland Unitary Plan rules to determine if it can meet the PA requirements. Determine whether any new controls are needed to meet PA requirements.
4. Can the discharge be controlled or contained to ensure the discharge to land and any effects are negligible?	• Determine whether any new controls are needed to ensure the discharge is negligible.
• If 'Yes' proceed to Step 5.	
 If 'No' then resource consent is required before the product/ method can be used. 	
5. New product/ method approved for use, update operational documents.	 Add new controls to EMP Add new product/ method into operational model

Appendix D

Air Quality Assessment (Air Matters Ltd, September 2014)

11.1.1

ASSESSMENT OF DISCHARGES TO AIR FROM AUCKLAND HARBOUR BRIDGE MAINTENANCE

REPORT NUMBER: 14502

18/09/2014

Report prepared for Auckland Harbour Bridge Alliance by Air Matters Limited

Report written by:

Robert Murray Environmental Scientist

Report Checked by:

Carol McSweeney Principal

Air Matters Report:	14502
Date:	21/05/2014
Status:	DRAFT 1
Air Matters Report:	14502
Date:	12/06/2014
Status:	DRAFT 2
Air Matters Report:	14502
Date:	07/08/2014
Status:	DRAFT 3
Air Matters Report:	14502
Date:	17/08/2014
Status:	DRAFT 4
Air Matters Report:	14502
Date:	03/09/2014
Status:	DRAFT 5
Air Matters Report:	14502
Date:	18/09/2014
Status:	FINAL

This report must not be reproduced, except in full, without the written consent of the signatory.

Table of Contents

1.	SCOPE	5
2.	INTRODUCTION	5
ź	2.1 New Zealand Transport Agency – Auckland Harbour Bridge	5
Ž	2.2 Reasons for Consent	6
3.	EXISTING ENVIRONMENT	10
	3.1 Receiving Environments	10
3	3.2 Current Sources of Contaminants	10
3	3.3 Nature of Key Contaminants and Thresholds	12
3	3.4 Contaminant Pathways and Receiving Environments	
3	3.5 Resource Consent 38519	17
	3.5.1 Overview	
	3.5.2 Pre-containment phase	17
	3.5.3 Partial containment	
	3.5.4 Full containment	
	3.5.5 Summary	
3	3.6 Auckland Harbour Bridge Alliance Environmental Management Plan	
3	3.7 Assessment of Effects of Currently Consented Regime	20
	3.7.1 Introduction	20
	5.7.1 Indibuduction	
	3.7.2 Total Particulate (Inhalable)	
		20
	3.7.2 Total Particulate (Inhalable)	20 21
	3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM10)	20 21 21
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 	20 21 21 22
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 	20 21 21 22 22
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 	20 21 21 22 22 22
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 	
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.8 Zinc 	20 21 21 22 22 22 22 22 23 23
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 	
4.	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 	
	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary 	
2	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary ASSESSMENT OF EFFECTS OF FUTURE REGIME 	
2	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary ASSESSMENT OF EFFECTS OF FUTURE REGIME 4.1 Thresholds 	
2	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary ASSESSMENT OF EFFECTS OF FUTURE REGIME 4.1 Thresholds 4.2 Adaptive management Framework & Air Quality 	
2	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary ASSESSMENT OF EFFECTS OF FUTURE REGIME 4.1 Thresholds 4.2 Adaptive management Framework & Air Quality 4.2.1 Initial Recommendations 	
2	 3.7.2 Total Particulate (Inhalable) 3.7.3 Particulate less than 10 Microns (PM₁₀) 3.7.4 Particulate less than 2.5 Microns (PM_{2.5}) 3.7.5 Chromium 3.7.6 Iron 3.7.7 Lead 3.7.7 Lead 3.7.8 Zinc 3.7.9 Volatile Organic Compounds 3.7.10 Isocyanates 3.7.11 Summary ASSESSMENT OF EFFECTS OF FUTURE REGIME 4.1 Thresholds 4.2 Adaptive management Framework & Air Quality 4.2.1 Initial Recommendations 4.2.2 AMF and Buffer Zones 	

7.	APPENDIX 2: AHB AIR QUALITY MONITORING REPORT	39
8.	APPENDIX 3: BUFFER ZONES	40
9.	APPENDIX 4: AMF APPLICATION - TERMARUST	49

4

1. SCOPE

This technical report is designed to support the resource consent applications relating to the maintenance of the Auckland Harbour Bridge (AHB). The report will;

- 1) Describe the existing environment by assessing the discharges to air authorised under consented maintenance practices in the pre containment phase.
- 2) Develop acceptable threshold values for air discharges that will result from maintenance activities.
- 3) Outline methodologies and mitigation specific to air quality to be used for achieving and monitoring threshold compliance along with assessing future changes to maintenance activities (methodology or products) in accordance with the proposed Adaptive Management Framework (AMF).

2. INTRODUCTION

2.1 NEW ZEALAND TRANSPORT AGENCY – AUCKLAND HARBOUR BRIDGE

The New Zealand Transport Agency (NZTA) has a statutory responsibility under the Land Transport Management Act 2003 to manage state highways. The AHB is part of the State Highway network and is strategically important. The safe operation of the AHB requires a comprehensive maintenance programme for all components of the structure.

Key maintenance activities that contribute to air discharges primarily involve cleaning/surface preparation and repainting of the structure. This technical report will focus on the effects of dry abrasive blasting (DAB), spray painting and stripe coating (hand painting). Wet abrasive blasting is noted in the report but not assessed as discharges to air are a Permitted Activity.

Maintenance works are currently carried out under consent 38519 which includes pre-containment conditions followed by a requirement for partial containment (2014) then full containment (2021) to be in place during the course of the consent (excluding the overarch section of the AHB). Some of the air discharges would therefore have been controlled with containment. The suggested framework for moving forward with bridge maintenance is to use a variety of controls which may or may not include containment to achieve the same level or reduce discharges as would have been achieved under full containment.

Discharges of key contaminants to air will be assessed against pre-determined threshold levels that have been derived from the current maintenance permit. This will include a total annual emission for PM₁₀ from abrasive blasting along with other specific air quality thresholds set for acute effects both in respect to health and odour. Chronic effects are not assessed due to the intermittent nature of the maintenance activities involved.

Replacement consents are being sought based on these thresholds and an Adaptive Management Framework (AMF) which is outlined in more detail in the Assessment of Environmental Effects which is the lead document for the consent application. In essence, this framework manages (in conjunction with the Environmental Management Plan (EMP)) out the operational processes so that annual discharges of key contaminants remain within the thresholds and it sets out monitoring and reporting processes to demonstrate compliance. It also includes an adaptive process for new products or methods and the effects of their discharge to be assessed. Before a product or methodology can be used, the effects must be shown to be no worse and met the prescribed thresholds. The process can be applied to currently used products or methods and may also be used in the future to assess new products and/or maintenance methodologies.

This document will review the products and methodologies currently used and provide a basis for ongoing assessment during the term of consent using the proposed AMF for any products or new methods that may be used.

2.2 REASONS FOR CONSENT

AHB maintenance requires resource consent under Section 15 of the Resource Management Act 1991 (RMA). This document outlines the current consent and the supports the applications for a new resource consent in relation to air discharges under the following Auckland Council plan statutory provisions:

6

Air, Land an	d Water Plan Rule and Project Relevance	Status
	Rule 4.5.1: Unless provided for otherwise in this plan, activities	
	that discharge contaminants into air are Permitted Activities,	
	subject to the following conditions:	
	(a) That beyond the <i>boundary</i> of the <i>premises</i> where the activity is	
	being undertaken there shall be no noxious, dangerous, offensive	
	or objectionable odour, dust, particulate, smoke or ash; and	
	(b) That there shall be no noxious, dangerous, offensive or	
	objectionable visible emissions; and	Permitted
	(c) That beyond the <i>boundary</i> of the <i>premises</i> where the activity is	
	being undertaken there shall be no discharge into air of hazardous	
	air pollutants that does, or is likely to, cause adverse effects on	
	human health, ecosystems or property; and	
	This Rule is relevant to the following phases of the maintenance	
	work:	
	Wet Abrasive Blasting (assessment covered in technical	
	reports for discharges to land and the coastal marine	
	environment)	
	Stripe coating	
Discharge to	4.5.61 The discharge of contaminants into air from any dry	
Air (Chapter	abrasive, vacuum or sweep blasting process that uses abrasive	
4)	material for blasting containing no more than 5 per cent dry weight	
	free silica that does not comply with Rule 4.5.52, Rule 4.5.53 or	
	Rule 4.5.54 is a Restricted Discretionary Activity.	
	This Rule is relevant to the following phases of the maintenance	
	work:	
	Dry Abrasive Blasting	
	Rules 4.5.52, 4.5.53 and 4.5.54 are detailed below:	Destricted
	4.5.52 The discharge of contaminants into air from dry abrasive	Restricted Discretionar
	blasting within a permanent facility (abrasive blasting booth) that	
	uses abrasive material for blasting containing less than 5 % dry	
	weight free silica is a Permitted Activity, subject to the following	
	conditions:	
	(a) Conditions (a) to (c) of Rule 4.5.1; and	
	<i>(b)</i> Before discharge to atmosphere, all emissions from the	
	abrasive blasting booth shall pass through a fabric filter or dry	
	filtration system capable of achieving a discharge rate for	
	particulate of 30 milligrams per cubic metre, corrected to 0 degrees	
	<i>Celsius, 1 atmosphere pressure and a dry gas basis; and</i>	

Table 1: Auckland Council Regional Plan: Air Land and Water Plan (Operative 30 September 201	3)

	(a) A differential pressure and a shall be installed assess the fabric	
	(c) A differential pressure gauge shall be installed across the fabric	
	filter and the processing monitoring equipment shall be fitted with audible alarms; and	
	(d) The control equipment shall be certified by an independent	
	chartered professional engineer to demonstrate that the control	
	equipment is adequate to meet the criteria specified in (b) and(c) above; and	
	(e) All work areas and surrounding areas shall be kept clean and	
	substantially free of accumulations of deposited blasting material	
	and other debris; and	
	(f) Abrasive material used for the blasting shall contain less than 2	
	% by dry weight dust able to pass a 0.15 mm sieve.	
	4.5.53 The discharge of contaminants to air from vacuum blasting	
	that uses abrasive material for blasting containing less than 5% dry	
	weight free silica is a Permitted Activity, subject to the following	
	conditions:	
	(a) Conditions (a) to (c) of Rule 4.5.1; and	
	(b) Material collected by the vacuum device shall pass through a	
	fabric filter or other collection system capable of achieving a non-	
	visible discharge; and	
	(c) All work areas and surrounding areas shall be kept clean and	
	substantially free of accumulations of deposited abrasive blasting	
	material and other debris.	
	4.5.54 The discharge of contaminants to air from sweep blasting	
	that uses abrasive material for blasting containing less than 5% dry	
	weight free silica is a Permitted Activity, subject to the following	
	conditions:	
	(a) Conditions (a) to (c) of Rule 4.5.1; and	
	(b) All work areas and surrounding areas shall be kept clean and	
	substantially free of accumulations of deposited abrasive blasting	
	material and other debris.	
ľ	Rule 4.5.97: The discharge of volatile organic compounds	
	(including solvents) into air at a rate exceeding 20 kilograms per	
	hour or 10 tonnes per year (excluding the ventilation, displacement	
	or dispensing of motor fuels covered by Rules 4.5.100 to 4.5.103)	Discretionary
	is a Discretionary Activity.	
	This Rule is relevant to the following maintenance activities:	
	Spray Painting	

Rule 4.5.96: The discharge of contaminants into air from any <i>process</i> that includes the use of diisocyanates, methylene chloride or organic plasticisers at a rate exceeding a total of 100 kilograms per hour is a Discretionary Activity. This Rule is relevant to the following phases of the maintenance	Discretionary
Spray Painting	

Table 2: Proposed Auckland Unitary Plan (Notified 30th September 2013)

Unitary Plan	Rule and Project Relevance	Status
	The following controls apply to all permitted activities that	
	discharge contaminants to air except from mobile sources. No	l
	permitted activity controls apply to mobile sources.	
	1. The discharge must not contain contaminants that cause, or are likely to cause, adverse effects on human health, property or the	
	environment beyond the boundary of the premises where the	
	activity takes place.	
	2. The discharge must not cause noxious, dangerous, offensive or objectionable odour, dust, particulate, smoke or ash beyond the	Permitted
	boundary of the premises where the activity takes place.	
	3. There must be no, dangerous, offensive or objectionable visible	
	emissions.	
	4. There must be no spray drift or overspray beyond the boundary	
Part 3	of the premises where the activity takes place	
Regional and	This Rule is relevant to the following phases of the maintenance	
District	work:	
Rules	Wet Abrasive Blasting	
	Stripe Coating	
	Blasting (dry abrasive, vacuum or sweep) using abrasive material	
	containing less than 5 percent silica but not meeting the permitted	
	activity controls	
	This Rule is relevant to the following phases of the maintenance	Restricted
	work:	Discretionary
	Dry Abrasive Blasting	
	NOTE: this Rule is the same as 4.5.61 in ALWP	
	Any process that discharges more than 20kg/hour or 10t/year of	
	volatile organic compounds such as large-scale application of	
	surface coatings or printing ink without the application of heat,	
	excluding the ventilation, displacement or dispensing of motor fuels	Discretionary
	This Rule is relevant to the following phases of the maintenance	
	Spray Painting	

	NOTE: this Rule is the same as 4.5.97 in ALWP	
	Spray application of surface coatings containing diisocyanates or	
	hazardous organic plasticisers not in a spray booth or at a domestic	
	premises at an application rate no more than 2L/day	Restricted
	This Rule is relevant to the following phases of the maintenance	Discretionary
1	• Spray Painting (if more than 2L/day)	

3. EXISTING ENVIRONMENT

3.1 RECEIVING ENVIRONMENTS

The AHB spans the Waitemata Harbour with the majority of the Bridge being directly over the Coastal Marine Area (CMA). The northern extent of the AHB is adjacent to a residential area and above Stokes Point public reserve. The southern extent of the Bridges is to the west of Westhaven marina which includes commercial facilities such as the Sitting Duck Café and the east of an area used by local fishermen and the Bridge Climb and Bungy Jump office.

The receiving environment for discharges to air is a mixture of urban and coastal air quality management areas. These environments are currently impacted by vehicle emissions and other urban activities. It is necessary to assess the short term acute health and odour effects on these environments as well as longer term chronic effects. The proposed AMF will be used to control effects of air discharges below both acute and chronic the threshold values.

3.2 CURRENT SOURCES OF CONTAMINANTS

Maintenance of the AHB involves cleaning and repainting of the structure. Some sections of the bridge surface which require repainting are initially prepared by dry abrasive blasting or wet abrasive blasting followed by zinc coating and repainting. Only small sections of the bridge are prepared at a time using this technique as exposure of the bare metal to the atmosphere is to be minimised.

The dry abrasive blasting process generates particulate from both the garnet used as the abrasive agent and the paint which is removed and to a lesser extent the bridge structure itself. Historically the AHB has been coated with paint that is known to contain zinc chromate and some sections have been coated with lead based paint.

After the surface has been suitably prepared, a protective coating is applied by either hand painting (stripe coating) or spray painting. The current coating system includes Wasser MC Zinc Coating, Wasser Mio Mastic, MC Ferrox A Columbia Grey and Wasser Thinner R175.

Example sources of discharges to air and the associated activity from which it is generated in relation to AHB maintenance is outlined in Table 3 below.

Contaminant	Maintenance Activity	Source of Discharge		
Particulate Matter (TSP)	Dry Abrasive Blasting	Garnet, Paint Flakes and AHB Structure		
Particulate Matter (TSP)	Spray Painting	Paint Overspray		
Dartiquiate Matter (DM)	Dry Abrasive Blasting	Garnet, Paint Flakes and AHB Structure		
Particulate Matter (PM ₁₀)	Spray Painting	Paint Overspray		
Dartiquiate Matter (DM)	Dry Abrasive Blasting	Garnet, Paint Flakes and AHB Structure		
Particulate Matter (PM _{2.5})	Spray Painting	Paint Overspray		
Iron	Dry Abrasive Blasting	Paint Flakes and AHB Structure		
Iron	Spray Painting	Paint Overspray		
7:	Dry Abrasive Blasting	Paint Flakes and AHB Structure		
Zinc	Spray Painting	Paint Overspray		
Lead	Dry Abrasive Blasting	Paint Flakes, other Depositions (vehicle sources)		
Chromium	Dry Abrasive Blasting	Paint Flakes		
Volatile Organic Compounds	Spray Painting	Mixing, Cleaning, Application and Paint Overspray		
	Stripe Painting	Mixing, Cleaning and Application		
Isocyanates	Spray Painting	Mixing, Cleaning, Application and Paint Overspray		
	Stripe Painting	Mixing, Cleaning and Application		

Table 3: Example discharges to air from current AHB Maintenance

Products currently used and consented for in the maintenance of the AHB and their components are listed below in Table 4.

	Blasting Agent	MC Zinc	Wasser Mio Mastic	MC Ferrox A Columbia Grey	Wasser Thinner R175
Garnet Sand	\checkmark				
Iron oxide				\checkmark	
Zinc Dust		\checkmark	\checkmark		
Aromatic Hydrocarbon Mixture (naphtha)		\checkmark	\checkmark	\checkmark	
Xylene		\checkmark	\checkmark	\checkmark	\checkmark
1,2,4 trimethylbenzene		\checkmark	\checkmark		
Ethylbenzene		\checkmark	\checkmark	\checkmark	\checkmark
Toluene					\checkmark
Heptan-2-one				\checkmark	
Methyl isobutyl Ketone					\checkmark
Methylene Diphenyl Diisocyanate (MDI)		\checkmark	\checkmark	\checkmark	
Total Isocyanate		\checkmark	\checkmark	\checkmark	
Quartz			\checkmark	\checkmark	

Table 4: Products used for current AHB maintenance

The components identified in the products above are likely to be similar in other coating products that may be used over the 35 year duration sought for the discharge consent.

3.3 NATURE OF KEY CONTAMINANTS AND THRESHOLDS

Key contaminants discharged from the maintenance of the AHB have been assessed as recommended by the Good Practice Guide for Assessing Discharges to Air from Industry¹. TP152² also provides guidance on air quality criteria, but as a national and more recent document, the Good Practice Guide for Assessing Discharges to Air from Industry takes precedent.

According to this document, assessments are to be compared to air quality criteria in the following order of priority depending on what is provided in the various documents:

1. National Environmental Standards for Air Quality (NESAQ)

Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

 ¹ Ministry for the Environment, *Good Practice Guide for Assessing Discharges to Air from Industry*, 2008.
 ² Auckland Regional Council, Assessing Discharges of Contaminants into Air – Draft, 2002

- 2. National Ambient Air Quality Guidelines (AAQG)
- Regional objectives (unless more stringent than above criteria). The Auckland Regional Air Quality Targets are the same as the AAQG
- 4. World Health Organisation Air Quality Guidelines (WHO)
- 5. California Office of Environmental Health Hazard Assessment Reference Exposure Levels (OEHHA acute, 8 hr and chronic) and unit risk factors
- 6. US EPA inhalation reference concentrations (USEPA RfC) and unit risk factors
- Other standards and guidelines. The Texas Commission on Environmental Quality (TCEQ) Effects Screening Levels (ESL) or Ontario Ministry of the Environment Ambient Air Quality Guidelines have been used as these are recommended in TP152.

Standards/guidelines were referred to for each contaminant in turn based on the above order of priority. However, as the processes involved in the maintenance of the AHB are short term, appropriate short term guidelines have been used. For instance lead has been compared to the Ontario Ministry of the Environment half hour guideline as opposed to the Auckland Regional Air Quality Objective which is based on a 3 month rolling average.

Key contaminants and their associated thresholds are detailed in Appendix 1.

Thresholds are summarised in the Table 5 below:

	Short term acute odour values			Short ter	m acute toxicit	y values
Contaminant	Concentration µg.m- ³	Averaging period	Authority	Concentration µg.m- ³	Averaging period	Authority
TSP	-	-	-	80	24 hour	Ministry for the Environment
PM10	-	-	-	50	24 hour	National Environmental Standard
	-	-	-	31kg	Annual	AHB EMP
Iron	-	-	-	50	1 hour	TCEQ ESL
Zinc	-	-	-	20	1 hour	TCEQ ESL
Lead	-	-	-	1.5	30 min	Ontario
Chromium	-	-	-	3.6	1 hour	TCEQ ESL
Naphtha	3500	1 hour	TCEQ ESL	18,000	30 min	Ontario

Table 5: Summary of Proposed Thresholds for Discharges to Air

13

Xylene	350	1 hour	TCEQ ESL	22000	1 hour	OEHHA
Trimethylbenzene	No data	No data	No data	1250	1 hour	TCEQ ESL
Toluene	640	1 hour	TCEQ ESL	-	-	-
Ethylbenzene	740	1 hour	TCEQ ESL	1100	1 hour	ATSDR
Methyl Isobutyl ketone	820	1 hour	TCEQ ESL	No data	No data	No data
Isopropylbenzene	230	1 hour	TCEQ ESL	-	-	-
Isocyanate (MDI)	-	-	-	0.5	1 hour	TCEQ ESL
Isocyanate (TDI)	-	-	-	0.36	1 hour	TCEQ ESL

3.4 CONTAMINANT PATHWAYS AND RECEIVING ENVIRONMENTS

- Particulate Matter (TSP and PM₁₀) Particulate will be transported from the source and deposited on any solid surfaces or into water. The distance travelled will depend on the particle size and finer will particles remain airborne for longer periods. It is well-recognised that large particles settle out more quickly than smaller ones and Appendix 1 of the Good Practice Guide for Assessing and Managing the Environmental Effects of Dust Emissions³ states "in a 5 m/s wind, the 100 µm particles would only be blown about 10 metres away from the source while the 10 µm particles have the potential to travel about a kilometre".
- Iron, Zinc, Lead and Chromium The paint pieces removed from the bridge, which include iron, zinc, lead and chromium, would be relatively large as they have been generated via mechanical means. Therefore, it is expected that, without any controls, the discharge would deposit close to source and may be carried further in stronger winds. Refer to the paragraph above for more details on particulate transport. Metals will be deposited in the surrounding marine or terrestrial environment and the effects of these discharges are covered in other technical reports in this application.

³ Ministry for the Environment, *Good Practice Guide for Assessing and Managing the Environmental Effects of Dust Emissions'*, Ministry for the Environment, Wellington, September 2001

When spray painting using products that contain iron and zinc these elements will be discharged to air as particulate in any overspray.

• Volatile Organic Compounds

- Aromatic Hydrocarbon Mixture (Naphtha) According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, naphtha, which has a vapour pressure range of about 211 to 514 mm Hg at 25°C, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase naphtha is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 3-4 days. The chemical is readily biodegradable and does not bioaccumulate.⁴
- Xylene According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, xylenes, which have vapour pressure values ranging from 6.61-8.80 mm Hg at 25°C for the individual isomers are expected to exist solely in the vapour phase in the ambient atmosphere. Vapour-phase xylenes are degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-lives for this reaction in air are estimated to be 16-28 hours. The chemical is readily biodegradable and does not bioaccumulate.⁵
- Trimethylbenzene Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals. Reaction also occurs with ozone but very slowly (half life, 8820 days). In the atmosphere, two estimates of the half-life are approximately 6 hours and, in the presence of hydroxyl radicals, 0.5 days. The chemical is readily biodegradable and does not bioaccumulate.⁶
- Ethylbenzene According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, ethylbenzene, which has a vapour pressure of 9.6 mm Hg at 25°C, is expected to exist solely as a vapour. Vapour-phase ethylbenzene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is 55 hr. The chemical is readily biodegradable and does not bioaccumulate.⁷
- Toluene According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, toluene, which has a vapour pressure of 28.4 mm Hg at 25°C, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase

⁴ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

⁵ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

⁶ Office of Pollution Prevention and Toxics, US Environmental Protection Agency, *Chemical Summary for 1,2,4-Trimethylbenzene*, August 1994

⁷ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

toluene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals, nitrate radicals and ozone molecules. The half-life for the reaction with hydroxyl radicals is estimated to be 3 days. The half-life for the nighttime reaction with nitrate radicals is estimated as 491 days). The half-life for the reaction with ozone is estimated as 27,950 days. The chemical is readily biodegradable and does not bioaccumulate.⁸

- Heptan-2-one If released to air, a vapour pressure of 3.85 mm Hg at 25°C indicates 2-heptanone will exist solely as a vapour in the atmosphere. Vapour-phase 2-heptanone will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 1.4 days. It may undergo atmospheric removal by wet deposition. 2-Heptanone is not expected to undergo significant atmospheric removal by direct photolytic processes. The chemical is readily biodegradable and does not bioaccumulate.⁹
- Methyl isobutyl ketone According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, methyl isobutyl ketone, which has a vapour pressure of 19.9 mm Hg at 25°C, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase methyl isobutyl ketone is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 27 hours. The chemical is readily biodegradable and does not bioaccumulate.¹⁰
- Isopropylbenzene (cumene) According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, cumene, which has a vapour pressure of 4.5 mm Hg at 25°C, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase cumene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 2.5 days. Vapour-phase cumene is also degraded in the atmosphere by reaction with ozone radicals; the half-life for this reaction in air is estimated to be 3 years. The chemical is readily biodegradable and does not bioaccumulate.¹¹
- Isocyanates most of the isocyanate used in the process is in the polymeric form which is not volatile. Free isocyanate vapour will react with water in the atmosphere and break down. Short term levels should remain below the threshold value.

⁸ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

⁹ US National Library of Medicine, *Toxicology Data Network*, http://toxnet.nlm.nih.gov/, March 2014

¹⁰ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

¹¹ US National Library of Medicine, *Wireless Information System for Emergency Responders*, http://webwiser.nlm.nih.gov, March 2014

• **Silica** - Silica in the form of respirable quartz may be transported in the environment as fine particulate and deposited at a distance far from origin (refer to paragraph on Particulate Matter above). It will eventually be deposited on the ground or into water.

3.5 RESOURCE CONSENT 38519 3.5.1 OVERVIEW

Discharges to air associated with AHB maintenance activities are currently authorised under Resource Consent 38519 which was granted in 2010 as part of a suite of consents for maintenance activities associated with the AHB. The application was based on the concept of containment as a best practicable option to manage adverse effects of the maintenance discharges to receiving environments. The existing consent is based on the provision that containment would generally achieve an 85% reduction of discharges from the pre-containment 'existing' situation¹². Other mitigation measures were also included in the consent to control discharges to air where sensitive receivers were in close proximity.

3.5.2 PRE-CONTAINMENT PHASE

Consent 38519 does not permit any dry abrasive blasting over land and requires the amount of dry abrasive blasting out to Pier 1 and Pier 5 to be minimised prior to containment. Containment in this area was set for 2014 and full containment was set for 2021. Some sections of the AHB surface which require repainting are initially prepared by dry abrasive blasting. Under present operations, only small sections of the AHB are prepared at a time using this abrasive blasting technique and all discharges to air are released to the environment. To minimise the effects of the discharge, the applicant uses screens and undertakes work during speeds of \leq 7m/s. There are additional wind direction restrictions out to Pier 1 and Pier 5 due to their proximity to land, residential properties and businesses (sensitive receptors).

Consent conditions 30-34 relate to contaminant discharges to air in the pre containment phase (2011-2014);

<u>Condition 30</u>. Beyond the boundary of the site there shall be no dust or odour caused by discharges from the site, which in the opinion of an enforcement officer, is noxious, offensive or objectionable.

<u>Condition 31</u>. No discharges from any activity on site shall give rise to visible emissions, other than water vapour and clean steam, to an extent which, in the opinion of an enforcement officer, is noxious, dangerous, offensive or objectionable.

<u>Condition 32</u>. Beyond the boundary of the site, there shall be no discharges to air of any hazardous air pollutant, caused by discharges from the site, which is present at a concentration that causes, or is likely to cause adverse effects to human health, the environment or property.

<u>Condition 33</u>. No dry abrasive blasting shall be undertaken when wind speeds are greater than 7m/s, averaged over 5 minutes, or when;

¹² Where containment is possible which does not include the overarch section of the AHB

a) undertaking maintenance work north of Pier 1 when the wind is blowing from the southwest or southeast quarters.

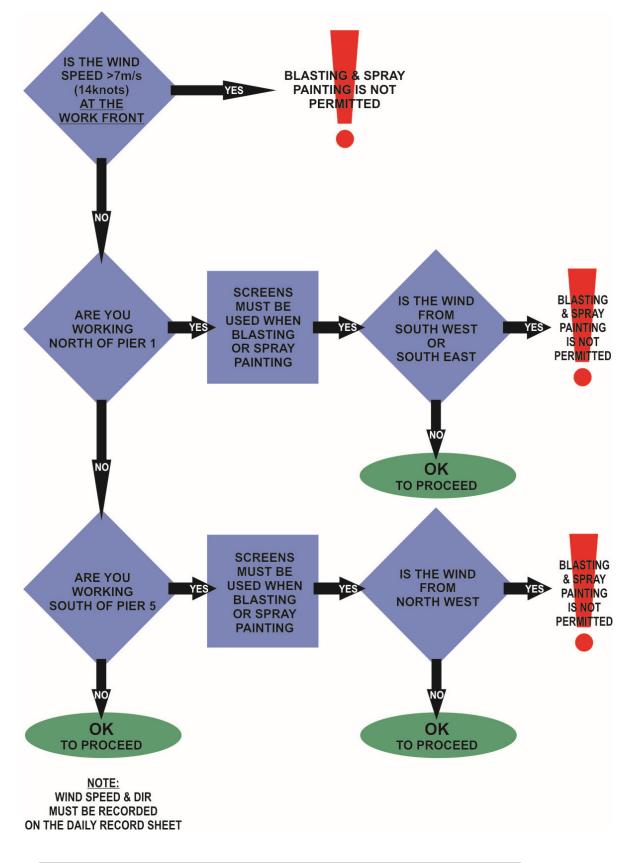
b) undertaking maintenance work south of Pier 5 when the wind is from the northwest quarter. <u>Condition 34</u>. That in order to minimise the drift of blast debris and paint spray, suitable screens shall be used at all times when undertaking dry abrasive blasting and/or spray painting of the AHB and extensions north of Pier 1 and south of Pier 5.

3.5.3 PARTIAL CONTAINMENT

Partial containment commenced on the 30/08/2014 and covers the area north of Pier 1 and south of Pier 5. This containment must capture 85% of all dry discharges and spray paint generated during maintenance works.

3.5.4 FULL CONTAINMENT

Full containment is set to commence by the 30 August 2021 and covers the entire bridge except the lower overarch. This containment must capture 85% of all dry discharges and spray paint generated during maintenance works.


3.5.5 SUMMARY

Across the staged consent, conditions or plans were required to be complied with. The purpose of these is to achieve a level of discharge to air that causes less than minor adverse environmental effects and avoid creating any adversely affected parties.

3.6 AUCKLAND HARBOUR BRIDGE ALLIANCE ENVIRONMENTAL MANAGEMENT PLAN

Maintenance activities carried out on the AHB are currently in the pre-containment phase. The management of environmental effects from maintenance activities on the AHB are covered under an Environmental Management Plan (EMP). This plan describes the roles and responsibilities of AHB staff and covers the current consent conditions in relation to wind speed and wind direction and other mitigation methods. The proposal for the new consent is to continue to use the EMP as a way of managing the effects from the air discharges below the proposed threshold values described above. The EMP will therefore be amended as required to achieve this. An example of the controls used in the current environment is outlined below in Diagram 1.

3.7 ASSESSMENT OF EFFECTS OF CURRENTLY CONSENTED REGIME *3.7.1 INTRODUCTION*

In order to determine the environmental effects from the discharges to air associated with maintenance activities, the NZTA and AHBA has carried out air quality monitoring. The objectives of this monitoring exercise were as follows:

- 1. The application pertaining to Air Discharge Consent 38519 was submitted based largely on theoretical data and minimal measured data. Monitoring data was to be used to confirm the theoretical data submitted to the Auckland Council was accurate.
- 2. Assess compliance with consent conditions 30-34 (refer to Section 4.1) in the pre-containment phase (2011-2014).
- 3. Assess the effectiveness of mitigation measured implemented during maintenance activities.
- 4. Frame the effects authorised by the existing consent.

Consent conditions have been put in place so that effects of discharges from maintenance operations can avoided, remedied or mitigated particularly on sensitive receptors which include the Westhaven Marina, Sitting Duck Cafe, residential properties and recreational uses of the waterfront on Curran St and around Stokes Point.

Sampling for dust, metals (specifically iron, lead, chromium and zinc), volatile organic compounds (VOC) and isocyanates was carried out during routine maintenance works. Sampling has been carried out under varying meteorological conditions to assess compliance with air discharge consent 38519, and to assess any offsite effects and to better quantify the overall impact that maintenance work is having on the environment in relation to air quality. Monitoring data was gathered at the source (or as close as practicable) of work and then at stepped downwind locations from the source. Data allowed for the quantification of contaminant concentrations and the nature of dispersion. Full copies of the reports can be found in Appendix 2 and sampling results are summarised below.

The buffer distances provided below are based on the usage at the time of testing. Other mitigating procedures may be used to reduce the concentrations below the threshold values. This will be part of the AMF going forward.

3.7.2 TOTAL PARTICULATE (INHALABLE)

Monitoring results show that there is significant particulate discharge from the process of abrasive blasting. Monitoring indicates that the coarser particulate fraction measured drops out of the air within a short distance downwind.

One 24 hour total dust (Inhalable Dust) sample located at the southern compound of the AHB was below the Ministry for the Environment Dust Trigger Level for Highly Sensitive Receiving Environments when controls were in place. Sampling over this 24 hour period has indicated that the threshold can be met.

Monitoring has been carried out during spray painting in order to quantify particulate levels from overspray. Particulate levels were detected at source and 5m downwind from the source, other samples located further away did not detect any increased particulate. These results indicate that particulate

discharges from overspray are localised at source when screens are used. Paint overspray is likely to have a nuisance effect on property and will be managed with screens, containment or application practice (stripe or hand painting) when close to property.

The current consent used a total overspray of 989.07Kg/year based on 6720 litres of various paint products. Based on the proposed reduction in paint use, an annual threshold of 646kg/annum will apply (based on the 2011 consent baseline). This is considered as a discharge to the coast rather than an air discharge.

3.7.3 PARTICULATE LESS THAN 10 MICRONS (PM10)

 PM_{10} concentrations measured at source during abrasive blasting were considered high but decrease rapidly with distance. At 10m downwind of the source, concentrations are below the proposed threshold (NES) of 50µg/m³. Concentrations were affected by the meteorological conditions on the days of sampling.

Concentrations measured offsite during blasting were below the NES of 50µg/m³.

Using Advanced Technology Institute Emission Factors¹³ and the amount of PM_{10} discharged from abrasive blasting using garnet, PM_{10} emissions are estimated at approximately 0.4% of the total garnet used during abrasive blasting. Annual emissions will be calculated and managed within the AMF to ensure the total discharge of PM_{10} is below the 31kg/year threshold (2011 consent baseline).

Monitoring results and applied emission factors show that there is significant particulate discharge from the process of abrasive blasting. Overall, monitoring indicates that PM₁₀ is unlikely to exceed the NES over a 24 hour period due to the frequency and duration of abrasive blasting activities. (Total particulate when measured over a 24 hour period was just above the NES and PM₁₀ will only be a fraction of this value).

 PM_{10} was not assessed during spray painting. Literature suggests that the PM_{10} component of spray painting may be 50%¹⁴, however, this value is not applicable to the AHB situation and as total particulate levels measured during spray painting were low, it is therefore assumed that PM_{10} from overspray will be minor.

3.7.4 PARTICULATE LESS THAN 2.5 MICRONS (PM_{2.5})

 $PM_{2.5}$ has not been measured under the current maintenance operations. $PM_{2.5}$ is more likely to be thermally generated than mechanically generated therefore detailed assessment is not required other than noting that discharges are expected to be less than minor.

21

¹³ Advanced Technology Institute, Residual Risk From Abrasive Blasting Emissions: Particle Size and Metal Speciation, December 2005

¹⁴ Rania A. Sabty-Daily, William C. Hinds and John R. Froine, Size Distribution of Chromate Paint Aerosol Generated in a Bench-Scale Spray Booth, Annals of Occupational Hygiene, (2005) 49 (1): 33-45.

3.7.5 CHROMIUM

Chromium concentrations measured at source during abrasive blasting are considered high and are influenced by the elemental makeup of surface coating being removed which appears to vary by location on the AHB. When the surface coating being removed by abrasive blasting contains a high percentage of chromium, measured concentrations of this element in the air up to 20m downwind from the blasting source have been found to exceed the threshold.

Concentrations of chromium measured offsite were below the threshold.

If no mitigation measures are implemented during abrasive blasting, an estimated buffer zone for chromium of 183m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the threshold. The buffer zones can be reduced or eliminated with the implementation of mitigation measures such as wind direction controls or containment.

3.7.6 IRON

Iron concentrations measured at source during abrasive blasting are considered high and are influenced by the elemental makeup of surface coating being removed which appears to vary by location on the AHB. Iron from the structure as well as the surface coating will be present in the abrasive blasting particulate. Measured concentrations of iron in the air up to 30m downwind from the blasting source have been found to exceed the threshold (for soiling).

Concentrations of iron measured offsite were below the threshold.

Where no mitigation measures are implemented, an estimated buffer zone for iron of 49m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level. The buffer zones can be reduced or eliminated with the implementation of mitigation measures such as wind controls or containment.

Monitoring has been carried out during spray painting in order to quantify iron concentrations in air from overspray. The work was based on a concentration calculated from the percentage of iron in the product being sprayed. Iron concentrations were detected at source and 5m downwind from the source, other samples located further away did not detect any increased iron concentrations above the field blank. These results indicate that iron discharges from overspray are less than minor.

3.7.7 LEAD

Lead concentrations measured at source during abrasive blasting are considered high and are influenced by the elemental makeup of surface coating being removed which appears to vary by location on the AHB. When the surface coating being removed by abrasive blasting contains a high percentage of lead, measured concentrations of this element in the air up to 150m downwind from the blasting source have been found to exceed the threshold.

Lead concentrations measured offsite at one downwind location were above the threshold.

Where no mitigation measures are implemented, an estimated buffer zone for lead of 343m from land has been calculated from the results. At this point there is more certainty concentrations measured on land will be below the threshold.

3.7.8 ZINC

Zinc concentrations measured at source during abrasive blasting are considered high and are influenced by the elemental makeup of surface coating being removed which appears to vary by location on the AHB. When the surface coating being removed by abrasive blasting contains a high percentage of zinc, measured concentrations of this element in the air up to 30m downwind from the blasting source have been found to exceed the threshold.

Concentrations of zinc measured offsite were below the threshold.

Where no mitigation measures are implemented, an estimated buffer zone for zinc of 216m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the threshold.

Monitoring has been carried out during spray painting in order to quantify zinc concentrations in air from overspray. The work was based on a concentration calculated from the percentage of zinc in the product being sprayed. Zinc concentrations were detected at source and 5m downwind from the source, other samples located further away did not detect any increased zinc concentrations above the field blank. These results indicate that zinc discharges from overspray less than minor.

3.7.9 VOLATILE ORGANIC COMPOUNDS

Stripe Coating

Speciated VOCs measured during stripe coating were not detected in this sampling exercise.

Spray Painting

VOC concentrations for ethylbenzene, isopropylbenzene, 1,2,4 trimethylbenzene, 1,2,5 trimethylbenzene, toluene, xylene and methyl isobutyl ketone measured at source during spray painting exceeded their respective thresholds.

VOC concentrations measured 5-10m downwind of spray painting for ethylbenzene, isopropylbenzene, trimethylbenzene, toluene, and methyl isobutyl ketone were below the threshold.

Measured xylene concentrations up to 20m downwind from spray painting exceed the threshold. The threshold used for xylene is based on odour effects as opposed to health effects and where there are no mitigation measures implemented an estimated buffer zone for xylene (odour effects) of 152m from land has been calculated. At this point concentrations measured on land will be below the odour threshold.

3.7.10 ISOCYANATES

Stripe Coating

No isocyanates were detected during stripe coating.

Spray painting

High levels of methylene bisphenyl isocyanate (MDI) were measured at source during spray painting Miomastic at a spray rate of 2.6l/hour.

However, the concentration of MDI measured 5-10m downwind was below the threshold. A buffer zone can be applied as a control to ensure that there is no isocyanate risk is associated with spray painting.

3.7.11 SUMMARY

Overall, monitoring results indicate that when maintenance activities are carried out in the pre containment phase, the consent conditions (wind speed, wind direction, screens and restricted zones) are adequate to ensure that threshold levels are not exceeded at sensitive receptor sites.

However, conditions around wind direction need to be increased. The consent condition restricting abrasive blasting based on wind direction is proving effective with the exception of the sample measured offsite to the SW of the AHB during work on the 29/01/2013 where guidelines were exceeded for lead. This would contravene Condition 32 of Air Discharge Consent 38519. This consent condition focussed more on the sensitive receptors to the SE of the AHB, where all results were below relevant guidelines.

A second specific condition relates to the use of screens to prevent overspray from painting activities on the bridge when painting Pier 5 and south. Results show that compliance with consent conditions are resulting in less than minor effects at offsite locations sampled during this monitoring exercise.

Where there are no mitigation measures in place or required by consent conditions, buffer zones have been created from the monitoring results above. These buffer zones are displayed in Appendix 3.

Results are summarised below in Table 6.

Maintenance Activity	Key Contaminant	Compliance	Implication
	Dust	One 24 hour total dust sample located at the southern compound of the AHB was below the Auckland Council Dust Trigger Level for Highly Sensitive Receiving Environments.	Threshold for dust can be met under the current regime. Buffer zones created for metals will ensure that compliance is ongoing.
	PM ₁₀	Concentrations measured offsite during blasting were below the NES of 50µg/m ³ . Using Advanced Technology Institute Emission Factors and the amount of PM ₁₀ discharged from abrasive blasting using garnet can be estimated at approximately 0.4kg/hour.	Threshold can be met for PM ₁₀ under the current regime. Annual emissions under the AMF need to be under 31kg/year. This will require either a reduction in the amount of DAB, containment or the adoption of other methods to prevent the release of PM ₁₀ to the airshed.
Abrasive Blasting	Chromium	Concentrations of chromium measured offsite were below the Effects Screening Level.	An estimated buffer zone for chromium of 183m from land has been calculated from the results. Where works are undertaken at 183m or more from land wind direction controls are not required for chromium. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.
-	Iron	Concentrations of iron measured offsite were below the Effects Screening Level.	An estimated buffer zone for iron of 49m from land has been calculated from the results. Where works are undertaken at 49m or more from land wind direction controls are not required for iron. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.
	Lead	Lead concentrations measured offsite at one downwind location were above the Ontario Guideline.	An estimated buffer zone for lead of 343m from land has been calculated from the results. Where works are undertaken at 343m or more from land wind direction controls are not required for lead At this point there is more certainty concentrations measured on land will be below the Ontario Guideline.

Table 6: Monitoring summary and outcomes based on currently consented activities and products used for AHB maintenance

Maintenance Activity	Key Contaminant	Compliance	Implication
	Zinc	Concentrations of zinc measured offsite were below the Effects Screening Level.	An estimated buffer zone for zinc of 216m from land has been calculated from the results. Where works are undertaken at 216m or more from land wind direction controls are not required for zinc. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.
Spray Painting	Dust	Particulate levels measured beyond 5m were negligible	Localised effects from overspray and considered on a nuisance level
	PM ₁₀	Not assessed in this exercise but emission factors indicate that levels will be minor	No restrictions around PM_{10} from spray painting
	VOCs	VOC concentrations measured 5-10m downwind of spray painting for ethylbenzene, isopropylbenzene, trimethylbenzene, toluene, and methyl isobutyl ketone are below the Effects Screening Levels. Measured xylene concentrations up to 20m downwind from spray painting exceed the ESL. The ESL for xylene is based on odour effects as opposed to health effects.	An estimated buffer zone for xylene (odour effects) of 152m from land has been calculated. Where works are undertaken at 152m or more from land wind direction controls are not required for xylene. At this point concentrations measured on land will be below the Effects Screening Level for odour.
	Isocyanates	The concentration of MDI measured 5-10m downwind was below the ESL	Any buffer zone implemented for xylene will suitably reduce any isocyanate risk associated with spray painting
Stripe	VOCs	Not detected during sampling	No restrictions around stripe coating
Coating	Isocyanates	Not detected during sampling	No restrictions around stripe coating

4. ASSESSMENT OF EFFECTS OF FUTURE REGIME

4.1 THRESHOLDS

Monitoring work of maintenance activities carried out under the pre-containment conditions was compared to thresholds for key contaminants. These threshold values have been developed from a number of air quality criteria, with precedence given to regulatory requirements, averaging times and applications as outlined in the Good Practice Guide for Assessing Discharges to Air published by MfE in 2008. The mass emission threshold for PM_{10} is based on the post containment condition in the current consent that requires an 85% reduction in dry abrasive blasting emissions post containment. Thresholds for new contaminants identified with the introduction of new products/methodologies will be developed using a similar procedure. The current thresholds are outlined below in Table 7.

	Short ter	m acute odou	r values	Short term acute toxicity values		
Contaminant	Concentration µg.m- ³	Averaging period	Authority	Concentration µg.m- ³	Averaging period	Authority
TSP	-	-	-	80	24 hour	Ministry for the Environment
PM ₁₀	-	-	-	50	24 hour	National Environmental Standard
PM10	-	-	-	31kg ¹	Annual	AHB EMP
Iron	-	-	-	50	1 hour	TCEQ ESL
Zinc	-	-	-	20	1 hour	TCEQ ESL
Lead	-	-	-	1.5	30 min	Ontario
Chromium	-	-	-	3.6	1 hour	TCEQ ESL
Naphtha	3500	1 hour	TCEQ ESL	18,000	30 min	Ontario
Xylene	350	1 hour	TCEQ ESL	22000	1 hour	OEHHA
Trimethylbenzene	No data	No data	No data	1250	1 hour	TCEQ ESL

Table 7: Summary of Thresholds for Discharges to Air

Toluene	640	1 hour	TCEQ ESL	-	-	-
Ethylbenzene	740	1 hour	TCEQ ESL	1100	1 hour	ATSDR
Methyl Isobutyl ketone	820	1 hour	TCEQ ESL	No data	No data	No data
Isopropylbenzene	230	1 hour	TCEQ ESL	-	-	-
Isocyanate (MDI)	-	-	-	0.5	1 hour	TCEQ ESL
Isocyanate (TDI)	-	-	-	0.36	1 hour	TCEQ ESL

¹ Based on an 85% reduction of PM₁₀ emissions to atmosphere from pre-containment

The setting of these thresholds has been designed so that the effects of discharges to air will be the same as would be achieved by full containment (less than minor). Monitoring work undertaken in 2013 during the pre-contaminant phase has shown that these thresholds can be met provided additional controls are implemented such as wind speed and wind direction restrictions and the use of screens. In the future, buffer zones and other mitigation measures may be required to meet these thresholds which will be tested and implemented through the EMP.

4.2 ADAPTIVE MANAGEMENT FRAMEWORK & AIR QUALITY 4.2.1 INITIAL RECOMMENDATIONS

Monitoring has resulted in the following recommendations which will need to be implemented by AHBA via the EMP and operational practises in order to meet the above thresholds. Recommendations which should be implemented are summarised below in Table 8.

Maintenance Activity	Key Contaminant	Recommendation
Abrasive Blasting	Dust	Threshold can be met through buffer zones implemented for metals (chromium, iron, lead and zinc) via the EMP.
	PM ₁₀	Include annual emission reporting of mass emission of PM_{10} . All future methods and products must comply with the annual emission threshold of 31kg/yr. This will require either a reduction in the amount of DAB, containment or the adoption of methods which do not generate PM_{10} .
	Chromium	Implement buffer zone through EMP; Wind direction controls or other forms of containment are required when working less that 183m from land at either end of the bridge.
	Iron	Implement buffer zone through EMP;

Table 8: Controls to be used to meet threshold values for air discharges

Maintenance Activity	Key Contaminant	Recommendation
		Wind direction controls or other forms of containment are required when working less that 49m from land at either end of the bridge.
	Lead	Implement buffer zone through EMP; Wind direction controls or other forms of containment are required when working less that 343m from land at either end of the bridge.
	Zinc	Implement buffer zone through EMP; Wind direction controls or other forms of containment are required when working less that 216m from land at either end of the bridge.
Spray Painting	Dust	Continue to use screens when spray painting.
	PM ₁₀	Minimised with overall control methods.
	VOCs	Implement buffer zone through EMP; Wind direction controls or other forms of containment are required when working less that 152m from land at either end of the bridge.
	Isocyanates	Minimised with buffer zone for VOCs.
Stripe	VOCs	None.
Coating	Isocyanates	None.

Buffer zones for inclusion in the EMP can be viewed in Appendix 3. It is recommended that these buffer zones are not specified as consent conditions but instead they are generated under the AMF and implemented through the EMP. This is because these buffer distances are based on initial monitoring and are likely to be conservative. If further testing is commissioned that can refine the buffer zones or new products or methods are used that enable a reduced buffer zone and still meet the thresholds, under the AMF the ability to do so via the EMP is more appropriate than a change to consent conditions.

If these recommendations are implemented then the effects of discharges to air from AHB maintenance based on current practices methods and products will be less than minor.

4.2.2 AMF AND BUFFER ZONES

Under the AMF, current products and maintenance methodologies along with future products and new maintenance methodologies can be assessed and used in bridge maintenance without the need to apply for a new consent or a variation to the current consent. Under the currently consented maintenance activities (dry abrasive blasting and painting), discharges to air are required to be controlled by the use of buffer zones, wind speed, wind direction (when working above the CMA) so that there are no more than minor effects on sensitive receptors. These controls have been calculated from the monitoring carried out which is detailed in Section 3 of this report. These proposed mitigation procedures are more effective in protecting sensitive receptors than the conditions currently imposed by air discharge consent 38519 (detailed in Section 3.5 of this report). These controls shall be implemented through the EMP and will likely be;

BUFFER ZONE FOR DRY ABRASIVE BLASTING There are two key Buffer Zones that will be implemented BZ-1 = 343m from land (lead based) BZ-2 = 216m from land (metals based - zinc)

It is proposed that on granting of consent the EMP be updated so that from an operational point of view it will work as follows:

- DAB cannot be undertaken on the AHB when the wind speed is >7m/s.
- When working on the AHB within 343m of land (at either the north or south end) then operations are being undertaken within BZ-1. This is a lead based Buffer Zone. If it can be confirmed that historic lead based coatings are not present in the paint that is to be removed from the structure the DAB activities can be carried out without mitigation. If there is lead in the historic coating or it cannot be proven otherwise then DAB cannot be undertaken when the wind is from the seaward quarter (i.e. from the northern quarter when working on the southern end of the AHB (and vice versa for the northern end) without suitable mitigation (most likely containment).
- If working within 216m from land (at either the north or south end) then operations are being undertaken within BZ-2. This is ma metals based Buffer Zone (based on zinc). DAB cannot be undertaken when the wind is from the seaward quarter (i.e. from the northern quarter when working on the southern end of the AHB and vice versa for the northern end) without suitable mitigation (most likely containment).

BUFFER ZONE FOR SPRAY PAINTING

There is one key Buffer Zone that will be implemented

BZ-A = 152m from land (odour from xylene when solvent based paint is used)

It is proposed that on granting of consent the EMP be updated so that from an operational point of view it will work as follows:

• If working within 152m from land (at either the north or south end) then operations are being undertaken within BZ-A. This is an odour based Buffer Zone for xylene. Spray painting with solvent based paint cannot be undertaken when the wind is from the seaward quarter (i.e. from the northern quarter when working on the southern end of the AHB and vice versa for the northern end) without suitable mitigation (most likely containment).

These Buffer Zones are illustrated in Pictures 4 and 5 in Appendix 3.

4.2.3 THE ROLE OF THE AMF IN FUTURE MANAGEMENT OF DISCHARGES TO AIR

Maintenance methodologies may alter in the future with advances in technology and the AHBA may choose to adopt some of these new methodologies or products. If this is to happen the AHBA will follow the AMF process which can be viewed general Assessment of Environmental Effects section of this document.

Using the AMF for a new product the following is proposed in relation to air quality:

1. Request and review Material Safety Data Sheet for the product;

- 2. Identify components of the product;
- Research air quality guidelines associated with components and create a list of thresholds (if not already covered);
- 4. Assess the proposed product or activity against the relevant Auckland Plan Rules or statutory requirements outlined in the consent;
- 5. Define mitigation measures to be used with new products e.g. preparation method, application method, duration of application method, wind restrictions, screens, buffer zones, containment;
- 6. Carryout trial of product which will require:
 - Ambient air quality monitoring; and/or
 - Air dispersion modelling. The modelling may be used as part of the AMF to test the effect on the threshold values for off-site effects against various mitigation procedures. Modelling may not be necessary for each application but maybe a useful tool when further verification of monitoring is required or when monitoring is not possible. Modelling may also be useful to assess the accuracy of previously recommended buffer zones and generate new buffer zones.
- 7. Compare results with thresholds and assess effectiveness of mitigation measures. Implement more mitigation where required to achieve thresholds and ensure that the offsite effects are the same or less than what has been authorised;
- If product meets thresholds (ambient air quality guidelines) update EMP to include new product and associated mitigations;
- 9. Introduce product to maintenance; and
- 10. Update operational model to include the new discharge rate (where applicable).

Termarust has been proposed as a new type of coating system to be used on the AHB and has been assessed under the above AMF process to demonstrate how it would operate in practice. These air discharge assessment indicates that the product has an odour effect close to the works (30 metres) which will need to be controlled when using the product close to sensitive receptors (over land). Health effects for sensitive receptors were identified as low risk with the prescribed threshold values being met within 5 metres of the works. These buffers can be used to manage the use of this product without further adverse effects and therefore within the thresholds and scope of the proposed consent. A technical report for this can be viewed in Appendix 4.

If Termarust is adopted then the required mitigation is required to be implemented through the EMP; BUFFER ZONE FOR SPRAY PAINTING - TERMARUST There is one key Buffer Zone that will be implemented BZ-T1 = 40m from land (odour)

The EMP will be updated so that from an operational point of view it will work as follows:

• If working within 40m from land (at either the north or south end) then operations are being undertaken within BZ-T1. This is an odour based Buffer Zone. Spray painting cannot be undertaken when the wind is from the seaward quarter (i.e. from the northern quarter when working on the southern end of the AHB and vice versa for the northern end) without suitable

mitigation (most likely containment).

There is no Buffer Zone for nuisance particulate from the application of Termarust. This is calculated from a wind speed matrix which can be viewed in Appendix 4.

5. CONCLUSION AND RECOMMENDATIONS

The monitoring of discharges to air from current maintenance activities (pre-containment phase) have shown that the existing pre-containment consent conditions are generally proving adequate in protecting sensitive receptors in relation to threshold values set out in this document. These are specific conditions which include restrictions around works south of Pier 1 and north of Pier 5, controls around wind direction and wind speed, and the requirement to use screens.

This document has identified the current contaminants released to air during abrasive blasting and surface coating and classifies an appropriate environmental threshold level for that contaminant that is either already consented by the current permit or is set at a level that results in less than minor effects on sensitive receiving environments (which is the same level of effect anticipated to be achieved by full containment of 85% of dry discharges). Under the proposed AMF and conditions, the above control measures will continue to be used along with other controls, to enable compliance with the threshold values for contaminants of concern.

Through the AMF, proposed conditions and the associated EMP, the effects on sensitive receptors can be maintained at concentrations that are below the thresholds and therefore are less than minor with no adversely affected parties. This can be achieved through a combination of wind speed and direction controls and buffer zones.

The current consent proposed to reduce discharges to air from maintenance activities by 85% and this was to be achieved with containment. Through the AMF and prior to 2021 the same effect can be achieved using various control tools and in a shorter timeframe. This will have a significant benefit by reducing the overall discharges to the Auckland Airshed, particularly of PM₁₀ from abrasive blasting. Monitoring in the pre-containment phase has also shown that with specific controls and an effective EMP (outlining operational procedures), concentrations below the threshold values can be achieved for sensitive receptor sites. Therefore containment is not a necessity to enable sensitive receptors to be protected from nuisance, health and odour effects due to discharges to air from the maintenance activities on the AHB.

This application has illustrated how the AMF can be used successfully for the currently consented methodologies and products and future products. The application seeks the use of an AMF to manage the ongoing discharges to air from maintenance activities of the AHB below the proposed threshold values.

6. APPENDIX 1: NATURE OF KEY CONTAMINANTS AND THRESHOLDS

Particulate Matter (TSP and PM₁₀) – Particulate matter will be discharged to air as fugitive emissions from the dry abrasive blasting and spray painting processes which will include garnet, old paint flakes, the AHB structure and paint overspray. Particles greater than 10µm in diameter are deposited quickly due to gravity and therefore do not travel as far from their source of origin. These particles are termed Total Suspended Particulate (TSP) and are considered more at the nuisance level. As particle size decreases, the greater potential particles have to travel further from their source of origin. Epidemiological research has linked the concentration of particles in the atmosphere with effects on human health and it has been documented that particles less than 10µm in diameter pose the greatest threat to human health as they have the ability to pass through the nose and throat to enter the lungs.

The current particulate standard was designed to identify those particles likely to be inhaled and penetrate the lower respiratory system. Particulate with a diameter less than $10\mu m$ (PM₁₀) has become the accepted measure of particulate material in the atmosphere in New Zealand.

It is proposed that the thresholds used for particulate discharges to air from the maintenance activities carried out on the AHB are:

- TSP The Ministry for the Environment has a TSP guideline of 80µg/m³ (averaged over a 24 hour period) in sensitive recieving environments.
- PM₁₀ The Ministry for the Environment has National Environmental Standard (NES) for PM₁₀ of 50µg/m³ (averaged over a 24 hour period).
- Annual PM₁₀ emissions. There is no specific guideline for this value, however, annual PM₁₀ emssions were calculated at 130kg/year from abrasive balsting in the current consent. The new methodologies for abrasive blasting submitted as part of the new AEE suggests that there will be an annual reduction in total emissions of 85%. This value is equivalent to reduction from full contaimnment. It is therefore proposed that the threshold for annual emissions of PM₁₀ from abrasive blasting will be 31kg/year (note: there is no containment required for the overach section of the bridge and therefore no change in discharges from this area). This will be measured and calculated through the AMF model (by using an emission factor refer to Section 5.3 below) and will be based on the amount of abrasive material used and the control method utilized.

There will also be PM_{10} emissions from paint overspray. Research suggests that 50% of the overspray is likely to be PM_{10} , however data is limited therefore PM_{10} from spraypainting is not assessed further in this report.

- **Iron** Iron will be discharged as particulate matter to air from the dry abrasive blasting and spray painting processes. The proposed threshold used for iron is an ESL based on health effects.
 - $_{\odot}$ Iron 50µg/m³ as a 1 hour average (as PM₁₀).

 Zinc – Zinc will be discharged as particulate matter to air from the dry abrasive blasting and spray painting processes. Zinc metal is used most commonly as a protective coating of other metals, such as iron and steel. Zinc metal dust is widely used in paint coatings.

The effects of inhalation exposure to zinc and zinc compounds vary somewhat with the chemical form of the zinc compound, but the majority of the effects seen will occur within the respiratory tract. Following inhalation of zinc oxide, and to a lesser extent zinc metal and many other zinc compounds, the most commonly reported effect is the development of "metal fume fever." Metal fume fever is characterized by chest pain, cough, dyspnea, reduced lung volumes, nausea, chills, malaise, and leukocytosis. Symptoms generally appear a few hours after exposure, and are reversible 1–4 days following cessation of exposure. Exposure levels associated with the development of metal fume fever have not been identified, though are generally in the range of 77–600 mg/m³. Acute experimental exposures of humans to lower concentrations of zinc oxide (14 mg/m³ for 8 hours or 45 mg/m³ for 20 minutes) and occupational exposures to low concentrations of zinc (8–12 mg/m³ for 1–3 hours and 0.034 mg/m³ for 6–8 hours) did not produce symptoms of metal fume fever.¹⁵ The proposed threshold used for zinc is an ESL.

- \circ Zinc is 20µg/m³ as a 1 hour average (as PM₁₀).
- Lead Lead wll be discharged to air from the dry abrsaive blasting process as particulate matter depending on the location on the AHB and the historic coating being removed. Lead affects practically all systems within the body. Lower levels of lead can cause adverse health effects on the central nervous system, kidney, and blood cells. Blood lead levels as low as 10 micrograms per deciliter can impair mental and physical development.¹⁶

The effects of lead exposure on fetuses and young children can be severe. They include delays in physical and mental development, lower IQ levels, shortened attention spans, and increased behavioral problems. Fetuses, infants, and children are more vulnerable to lead exposure than adults since lead is more easily absorbed into growing bodies, and the tissues of small children are more sensitive to the damaging effects of lead. Children may have higher exposures since they are more likely to get lead dust on their hands and then put their fingers or other lead-contaminated objects into their mouths.¹⁷

The Auckland Council has an Auckland Regional long term air quality target for lead based on $0.2\mu g/m^3$ moving average calculated monthly. As the abrasive blasting is a short term activity, it would be difficult to assess the effects against this target. For this activity, it is proposed that a short term threshold be used to assess lead emissions and this will help achieve the air quality

 ¹⁶ US Environment Protection Agency – Integrated Risk Information System, *Lead and Compounds (inorganic)*, January 2013
 ¹⁷ US Environmental Protection Agency – *An Introduction* to *Indoor Air Quality*, *Lead*, *http://www.epa.gov/iaq/lead.html*, *Updated* 21/06/2012.

¹⁵ US Department of Health and Human Services - Agency for Toxic Substances and Disease Registry, *Toxicological Profile for Zinc*, August 2005

target. The proposed threshold used for lead is based an Ontario Ministry of the Environment Standard.

- \circ Lead half hour average is 1.5µg/m³.
- **Chromium** Chromium wll be discharged to air from the dry abrsaive blasting process as particulate matter depending on the location on the AHB and the historic coating being removed. Depending on the original paint used, the chromium may be in present in different compounds. Paint products often contained chromium as chromate (chromium VI) which is one of the more toxic forms. The different types of chromium exhibit different properties, which is important for assessing the risk of potential harm to human health.

The Auckland Council has an Auckland Regional annual air quality target for chromium VI of $0.0011\mu g/m^3$ and chromium III of $0.11\mu g/m^3$. For this activity, it is proposed that a short term threshold will be used to assess chromium emissions to help achieve the air quality target. The proposed threshold used for chromium metal and chrome 3 is an ESL

 \circ Chromium - 3.6µg/m³ as a 1 hour average (as PM₁₀).

• Volatile Organic Compounds

• Aromatic Hydrocarbon Mixture (Naphtha) – Naphtha is discharged as a gas from the spray painting process. Naphtha is a mixture of paraffins (C5 to C13) that may contain a small amount of aromatic hydrocarbons. Exposure routes include inhalation, ingestion, skin and/or eye contact. Symptoms of exposure include irritation of the eyes, nose, throat; dizziness, drowsiness, headache, nausea; dry cracked skin; chemical pneumonitis (aspiration liquid).¹⁸ Naphtha is a colourless liquid with a petrol or kerosene-like odor. The odour threshold is variable depending on the make up of the naphtha.The proposed threshold used for naphtha is an ESL which is based on odour.

Naphtha - 1 hour average is $3500\mu g/m^3$ or 880ppm.

Xylene - Xylene is discharged as a gas from the spray painting process. Commercial or mixed xylene usually contains about 40-65% m-xylene and up to 20% each of o-xylene and p-xylene and ethylbenzene. During AHB maintenance xylenes are released into the atmosphere through volatilisation from their use as solvent (in the paint products). Xylene will also be emiited from vehilce exhausts from traffic movements on the AHB.

Acute (short-term) inhalation exposure to mixed xylenes in humans results in irritation of the eyes, nose, and throat, gastrointestinal effects, eye irritation, and neurological effects.

¹⁸ Centres for Disease Control and Prevention, National Institute for Occupational Safety and Health – Pocket Guide to Chemical Hazards, Naphtha, April 2011

EPA has classified mixed xylenes as a Group D, not classifiable as to human carcinogenicity.¹⁹ The threshold proposed for xylene is an odour based ESL.

Xylene – 1 hour average is $350\mu g/m^3$ or 80ppm.

Trimethylbenzene – Trimethylbenzene is discharged as a gas from the spray painting process. Trimethylbenzene will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Exposure symptoms include irritation of the eyes, skin, nose, throat, respiratory system. At higher concentrations, bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, may occur.²⁰ The threshold proposed for trimethylbenzene is a health based ESL.

Trimethylbenzene - $1250\mu g/m^3$ over a 1 hour period.

The odour detection threshold is $1.97\mu g/m^3$ or 0.4ppm.

Ethylbenzene - Ethylbenzene is discharged as a gas from the spray painting process. Ethylbenzene will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Acute (short-term) exposure to ethylbenzene in humans results in respiratory effects, such as throat irritation and chest constriction, irritation of the eyes, and neurological effects such as dizziness. The EPA has classified ethylbenzene as Group D, not classifiable as to human carcinogenicity.²¹ The threshold proposed for ethylbenzene is an odour based ESL.

Ethylbenzene - 1 hour for ethylbenzene is $740\mu g/m^3$.

The US EPA states that the odour detection threshold for ethylbenzene is 2.3ppm.

Toluene - Toluene is discharged as a gas from the spray painting process. Toluene will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Acute exposures to toluene can adversely affect the human nervous system, the kidneys, the liver, and the heart. Effects range from unsteadiness and tingling in fingers and toes to unconsciousness and death. These effects are not likely to occur at levels of toluene that are normally found in the environment.

Toluene can contribute to the formation of photochemical smog when it reacts with other volatile organic carbon substances in air.²² The threshold proposed for toluene is an odour based ESL.

Toluene - 1 hour average is $640\mu g/m^3$.

¹⁹ US Environmental Protection Agency, Technology Transfer Network, Air Toxics Website, *Xylenes (Mixed Isomers)*, January 2000

²⁰ Centres for Disease Control and Prevention, National Institute for Occupational Safety and Health – Pocket Guide to Chemical Hazards, 1,2,4-Trimethylbenzene, April 2011

²¹ US Environment Protection Agency – Integrated Risk Information System, Ethylbenzene, September 2012

²² Office of Pollution Prevention and Toxics, US Environmental Protection Agency, *Chemical Summary for Toluene*, August 1994

Heptan-2-one (heptanone, 2-) – Heptan-2-one is discharged as a gas from the spray painting process. Heptan-2-one will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Acute inhalation efects include eye, nose, and throat irritation; nausea; headache; vertigo; incoordination; CNS depression; narcosis; and cardiorespiratory failure can occur. In most cases, recovery is usually rapid and complete.²³ Heptan-2-one is a colourless liquid with low volatility and a penetrating fruity odour. The threshold used for Heptan-2-one is an odour based ESL.

Heptan-2-one – 1 hour average is 32ug/m³

Methyl isobutyl ketone – Methyl isobutyl ketone (MIBK) is discharged as a gas from the spray painting process. Methyl isobutyl ketone is used as a solvent for paints and will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Acute (short-term) exposure to methyl isobutyl ketone may irritate the eyes and mucous membranes, and cause weakness, headache, nausea, lightheadedness, vomiting, dizziness, incoordination, narcosis in humans. EPA has classified methyl isobutyl ketone as a Group D, not classifiable as to human carcinogenicity. Methyl isobutyl ketone occurs as a colorless, flammable liquid and has a faint ketonic and camphor odour.²⁴ The threshold proposed for (MIK) is a health based ESL.

MBIK – 1 hour average 820µg/m³

Isopropylbenzene (cumene) - Isopropylbenzene is discharged as a gas from the spray painting process. will be released as fugitive emissions during the painting processes of AHB maintenance. Exposure will be through the inhalation of ambient air. Acute exposure symptoms include irritation of the eyes, skin, mucous membrane; dermatitis; headache, narcosis, coma. Isopropylbenzene is a colourless liquid with characteristic petrol like odour.²⁵ The threshold proposed for cumene is an odour based ESL.

Cumene – 1 hour average is $230\mu g/m^3$ or 48ppb.

Isocyanates – Isocyanates are discharged as a volatile gas from the spray painting process. Isocyanates include compounds classified as potential carcinogens and symptoms of acute exposure include irritation of the eyes, skin, nose and throat. Occupational asthma is associated with acute isocyanate exposure, along with other lung problems. Isocyanates are known sensitizers.

²³ US National Library of Medicine, *Toxicology Data Network*, http://toxnet.nlm.nih.gov/, March 2014

²⁴ US Environmental Protection Agency, Technology Transfer Network, Air Toxics Website, Methyl Isobutyl Ketone (Hexone), January 2000

²⁵ Centres for Disease Control and Prevention, National Institute for Occupational Safety and Health – Pocket Guide to Chemical Hazards, Cumene, April 2011

38

The threshold propsoed for methylene bis phenyl diisocyanate (MDI) is a health based ESL. Methylene bis phenyl diisocyanate (MDI) 1 hour average is 0.5μ g/m³.

The threshold proposed for toluene diisocyanate monomer (TDI) is a health based ESL. Toluene diisocyanate (TDI) 1 hour average is 0.36μ g/m³.

7. APPENDIX 2: AHB AIR QUALITY MONITORING REPORT

TOTAL BRIDGE SERVICES AUCKLAND HARBOUR BRIDGE

AIR MATTERS REPORT 13001

Monitoring of particulate and metals from abrasive blasting and total volatile organic compounds and isocyanates from painting during maintenance

> Test Date: January-February 2013 Report Date: 16/04/2013

Report prepared for Total Bridge Services by Air Matters Limited

Report written by:

Robert Murray Environmental Scientist

Air Matters Report:	13001
Date:	16/04/2013
Status:	FINAL
Date:	03/04/2013
Status:	DRAFT

Report Checked by:

Carol McSweeney Principal

This report must not be reproduced, except in full, without the written consent of the signatory.

Table of Contents

1.	EXECUTIVE SUMMARY
2.	OBJECTIVES11
3.	INTRODUCTION
4.	METHODOLOGY
	Dust
	Total Dust (Inhalable)13
	PM ₁₀ 13
	Metals - Chromium, Iron, Lead and Zinc13
,	Volatile Organic Compounds (VOC) 13
	Total VOC
	Speciated VOC / Solvents
	Temperature and Wind speed14
	Field Blank
	Offsite Sampling Locations15
	Onsite Sampling Locations
5.	RESULTS
	Total Dust
	Fine Particulate PM_{10} (DustTrak ^m)
	Metals
	Speciated Volatile Organic Compounds 41
	Isocyanates
6.	DISCUSSION
	Total Dust
	Fine Particulate PM ₁₀
	Metals
	Total Volatile Organic Compounds (TVOC) 46
	Speciated Volatile Organic Compounds 46
	Isocyanates
7.	REFERENCES
AP	PENDIX 1: DATA SHEETS

3

	DUST - INHALABLE	. 49
	ELEMENTS - METALS	. 53
	SPECIATED VOC	. 68
	ISOCYANATES	. 71
APP	ENDIX 2: ANALYTICAL REPORTS	. 72
	DUST - INHALABLE	. 72
	ELEMENTS - METALS	. 77
	SPECIATED VOC	. 81
	ISOCYANATES	. 94
APP	PENDIX 3: BUFFER ZONES	. 95

1. EXECUTIVE SUMMARY

Sampling for dust, metals (specifically iron, lead, chromium and zinc), volatile organic compounds (VOC) and isocyanates was carried out during routine maintenance works on the Auckland Harbour Bridge (AHB). Sampling was carried out under varying meteorological conditions to assess compliance with air discharge consent 38519, and to assess any offsite effects and to better quantify the overall impact that maintenance work is having on the environment in relation to air quality.

Consent conditions have been put in place to ensure that discharges from maintenance operations have no adverse effects offsite particularly on sensitive receptors which include the Westhaven Marina, Sitting Duck Cafe, residential properties and recreational uses of the waterfront on Curran St. One specific condition restricts blasting work south of Pier 5 when the wind is from the NW quarter. Monitoring work was undertaken during abrasive blasting operations between Piers 5 and 6 when the winds varied from the WSW round to N. Results of offsite sampling were as follows:

- The 24 hour total dust sample located at the southern compound of the AHB was below the Auckland Council Dust Trigger Level for Highly Sensitive Receiving Environments.
- PM₁₀ measurements taken at offsite locations during abrasive blasting works were equivalent to background concentrations. Where data is extrapolated over a 24 hour average the National Environmental Standard (NES) of 50µg/m³ is not likely to be exceeded.
- Chromium concentrations measured offsite were below the Texas Commission for Environmental Quality Short Term Effects Screening Level (ESL).
- Iron concentrations measured offsite were below the ESL.
- One sample for lead measured offsite (SW of the AHB) was above the Ontario Ministry of the Environment Ontario Regulation 419/05 half hour Standard.

The consent condition restricting abrasive blasting based on wind direction is proving effective with the exception of the sample measured offsite to the SW of the AHB during work on the 29/01/2013 where guidelines were exceeded for lead. This contravenes Condition 32 of Air Discharge Consent 38519. This consent condition focussed more on the sensitive receptors to the SE of the AHB, where all results were below relevant guidelines. Further investigation should be carried out around this and Total Bridge Services (TBS) should look at controlling emissions from blasting for instance by implementing buffer zones, increasing the effectiveness of screens or installing enclosures with filtration/reclaim systems.

A second specific condition relates to the use of screens to prevent overspray from painting activities on the bridge when painting Pier 5 and south. Monitoring work was undertaken during stripe coating on Span 6 and spray painting in Pier 5 when the winds varied from the N round to NE. Results of offsite sampling were as follows:

- No VOCs found in the coating products were detected offsite during stripe coating work on the AHB.
- Levels of Total VOC found offsite during spray painting inside Pier 5 were equivalent to background concentrations.

• No isocyanates were detected offsite during painting work.

Results show that compliance with consent conditions are resulting in minimal effects at offsite locations sampled during this monitoring exercise. Note that no sampling was undertaken when works were carried out south of Pier 6.

Downwind effects of maintenance work have also been assessed in this monitoring exercise. Monitoring data was gathered at the source (or as close as practicable) of work and then at stepped downwind locations from the source. Data allowed for the quantification of contaminant concentrations and the nature of dispersion. Sampling results were as follows:

- Total dust concentrations measured at source during abrasive blasting were considered high but decrease rapidly with distance. At 30m downwind of the source concentrations have more than halved.
- PM₁₀ concentrations measured at source during abrasive blasting were considered high but decreases rapidly with distance. At 10m downwind of the source concentrations are below the NES of 50µg/m³.
- Using Advanced Technology Institute Emission Factors and the amount of PM₁₀ discharged from abrasive blasting using garnet can be estimated at approximately 0.4kg/hour.
- Elemental concentrations (chromium, iron, lead and zinc) measured at source during abrasive blasting are considered high and are influenced by the elemental makeup of surface coating being removed which appears to vary by location on the AHB.
- When the surface coating being removed by abrasive blasting contains a high percentage of chromium, measured concentrations of this element in the air up to 20m downwind from the blasting source have been found to exceed the ESL.
- An estimated buffer zone for chromium of 183m from land has been calculated from the results. At this point concentrations measured on land will be below the ESL.
- Measured concentrations of iron in the air up to 30m downwind from the blasting source have been found to exceed the ESL.
- An estimated buffer zone for iron of 49m from land has been calculated from the results. At this point concentrations measured on land will be below the ESL.
- When the surface coating being removed by abrasive blasting contains a high percentage of zinc, measured concentrations of this element in the air up to 30m downwind from the blasting source have been found to exceed the ESL.
- An estimated buffer zone for zinc of 216m from land has been calculated from the results. At this point concentrations measured on land will be below the ESL.
- When the surface coating being removed by abrasive blasting contains a high percentage of lead, measured concentrations of this element in the air up to 150m downwind from the blasting source have been found to exceed the Ontario Guideline.
- An estimated buffer zone for lead of 343m from land has been calculated from the results. At this point concentrations measured on land will be below the Ontario Guideline.
- Speciated VOCs measured during stripe coating were not detected in this sampling exercise.
- VOC concentrations measured for ethylbenzene, isopropylbenzene, trimethylbenzene,

toluene, xylene and methyl isobutyl ketone measured at source during spray painting exceed their associated ESL.

- VOC concentrations measured 5-10m downwind of spray painting for ethylbenzene, isopropylbenzene, trimethylbenzene, toluene, and methyl isobutyl ketone are below the ESL.
- Measured xylene concentrations up to 20m downwind from spray painting exceed the ESL. The ESL for xylene is based on odour effects as opposed to health effects.
- An estimated buffer zone for xylene odour effects of 152m from land has been calculated from the results. At this point concentrations measured on land will be below the ESL.
- Isocyanates measured during stripe coating were not detected in this sampling exercise.
- The methylene bisphenyl isocyanate (MDI) concentration measured at source during spray painting exceeded the ESL. The concentration of MDI measured 5-10m downwind was below the ESL.

Monitoring results and applied emission factors show that there is significant particulate (total dust and PM_{10}) discharge from the process of abrasive blasting. Monitoring indicates that the coarser particulate fraction measured drops out of the air within distance downwind. PM_{10} follows a similar pattern, however it is assumed that the finer particulate stays suspended for longer and is dispersed as it is transported off site. Overall, monitoring indicates that PM_{10} is unlikely to exceed the NES over a 24 hour period due to the frequency and duration of abrasive blasting activities.

High concentrations of chromium, iron, lead and zinc were measured at source during abrasive blasting. Concentrations decrease with distance downwind; however there were lead levels above the Ontario Guideline measured up to 150m downwind of the blasting source. Buffer zones have been calculated that vary from 49m (iron) up to 343m (lead). Further investigation should be carried out around this and TBS should look at controlling emissions from blasting for instance increasing the effectiveness of screens or installing enclosures with filtration/reclaim systems screens or enclosures with filtration/reclaim systems.

Stripe coating has minimal offsite effects in terms of VOC and isocyanate concentrations. Spray painting will have an odour impact greater than 20m downwind. A buffer of 152m from any sensitive receptors should be put in place when carrying out spray painting in order to minimise offsite odour effects. This will also suitably reduce the isocyanate risk associated with spray painting.

The particulate discharge from spray painting was not assessed in this exercise.

Summary of findings

	What did the data show	Compliance	Implication	Actions / Next Steps
Dust	Total dust concentrations measured at source during abrasive blasting were considered high but concentrations decrease rapidly with distance. At 30m downwind of the source concentrations have more than halved. Total Dust was not measured during spray painting.	One 24 hour total dust sample located at the southern compound of the AHB was below the Auckland Council Dust Trigger Level for Highly Sensitive Receiving Environments.	None	None
PM ₁₀	PM ₁₀ concentrations measured at source during abrasive blasting were considered high but decreases rapidly with distance. At 10m downwind of the source concentrations are below the NES of 50µg/m ³ . Concentrations were affected by the meteorological conditions on the day of sampling. PM ₁₀ was not measured during spray painting.	Concentrations measured offsite during blasting were below the NES of 50μ g/m ³ . Using Advanced Technology Institute Emission Factors and the amount of PM ₁₀ discharged from abrasive blasting using garnet can be estimated at approximately 0.4kg/hour.	None	None
Chromium	When the surface coating being removed by abrasive blasting contains a high percentage of chromium, measured concentrations of this element in the air up to 20m downwind from the blasting source have been	Concentrations of chromium measured offsite were below the Effects Screening Level.	An estimated buffer zone for chromium of 183m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.	Implement buffer zone or other form of containment.

	What did the data show	Compliance	Implication	Actions / Next Steps
	found to exceed the Effects Screening Level.			
Iron	Measured concentrations of iron in the air up to 30m downwind from the blasting source have been found to exceed the Effects Screening Level.	Concentrations of iron measured offsite were below the Effects Screening Level.	An estimated buffer zone for iron of 49m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.	Implement buffer zone or other form of containment.
Lead	When the surface coating being removed by abrasive blasting contains a high percentage of lead, measured concentrations of this element in the air up to 150m downwind from the blasting source have been found to exceed the Ontario Guideline.	Lead concentrations measured offsite at one downwind location were above the Ontario Guideline.	An estimated buffer zone for lead of 343m from land has been calculated from the results. At this point there is more certainty concentrations measured on land will be below the Ontario Guideline.	Implement buffer zone or other form of containment.
Zinc	When the surface coating being removed by abrasive blasting contains a high percentage of zinc, measured concentrations of this element in the air up to 30m downwind from the blasting source have been found to exceed the Effects Screening Level.	Concentrations of zinc measured offsite were below the Effects Screening Level.	An estimated buffer zone for zinc of 216m from land has been calculated from the results. At this point there is more certainty that concentrations measured on land will be below the Effects Screening Level.	Implement buffer zone or other form of containment.
Other Metals	Cadmium, Calcium, Cobalt, Magnesium, Manganese, Nickel, and Phosphorus were detected at source above their associated Effects Screening Levels.	Levels of Cadmium, Calcium, Cobalt, Magnesium, Nickel, and Phosphorus drop below their respective Effects Screening Levels	None.	Implementation of buffer zone for other metals (chromium, iron, lead and zinc) will adequately cover the risk associated with these metals

	What did the data show	Compliance	Implication	Actions / Next Steps
		5-10m downwind of the source. Manganese concentrations measured 10-20m downwind are below the Effects Screening Levels.		
VOCs	Speciated VOCs measured during stripe coating were not detected in this sampling exercise. VOC concentrations for ethylbenzene, isopropylbenzene, 1,2,4 trimethylbenzene, 1,2,5 trimethylbenzene, toluene, xylene and methyl isobutyl ketone measured at source during spray painting exceeded their respective Effects Screening Levels.	VOC concentrations measured 5- 10m downwind of spray painting for ethylbenzene, isopropylbenzene, toluene, and methyl isobutyl ketone are below the Effects Screening Levels. Measured xylene concentrations up to 20m downwind from spray painting exceed the ESL. The ESL for xylene is based on odour effects as opposed to health effects	An estimated buffer zone for xylene (odour effects) of 152m from land has been calculated. At this point concentrations measured on land will be below the Effects Screening Level for odour.	Implement buffer zone or other form of containment
Isocyanates	No isocyanates were detected during stripe coating. High levels of methylene bisphenyl isocyanate (MDI) were measured at source during spray painting	The concentration of MDI measured 5-10m downwind was below the ESL	Any buffer zone implemented for xylene will suitably reduce any isocyanate risk associated with spray painting	None

2. OBJECTIVES

- 1. To carryout sampling for dust and metals during abrasive blasting. Results are to be compared with the current consent conditions to ensure compliance.
- 2. To carryout sampling for volatile organic compounds and isocyanates during painting. Results are to be compared with the current consent conditions to ensure compliance.
- 3. To carryout sampling for dust and metals during abrasive blasting in order to assess the environmental footprint against acute ambient air quality standards and human health effects.
- To carryout sampling for volatile organic compounds and isocyanates during painting in order to assess the environmental footprint against acute ambient air quality standards and human health effects.

3. INTRODUCTION

A resource consent application pertaining to the environmental discharges resulting from maintenance work carried out on the AHB was submitted to the Auckland Council in 2011. The air discharge application was submitted based largely on theoretical data and minimal measured data. Air Discharge Consent 38519 was granted by the Auckland Council on 31 August 2011. Data from this monitoring exercise will be used to verify the consent conditions in place are appropriate. Additionally, this monitoring exercise sits within the requirements of New Zealand Transport Agency (NZTA) project plan "Auckland Harbour Bridge Maintenance Works – State of the Environment" and Air Discharge Consent 38519. The data collected will provide the NZTA with further information on contaminant discharges to air pre containment (2011-2014) when the current consent conditions 30-34 are in place.

<u>Condition 33</u>. No dry abrasive blasting shall be undertaken when wind speeds are greater than 7m/s, averaged over 5 minutes, or when;

a) undertaking maintenance work north of Pier 1 when the wind is blowing from the southwest or southeast quarters.

b) undertaking maintenance work south of Pier 5 when the wind is from the northwest quarter.

<u>Condition 34</u>. That in order to minimise the drift of blast debris and paint spray, suitable screens shall be used at all times when undertaking dry abrasive blasting and/or spray painting of the AHB and extensions north of Pier 1 and south of Pier 5.

The air discharges to be monitored will be: suspended particulate (total dust), PM_{10} , metals in particulate, paint solvents including isocyanates. Monitoring results will be assessed against Conditions 30 to 32.

<u>Condition 30</u>. Beyond the boundary of the site there shall be no dust or odour caused by discharges from the site, which in the opinion of an enforcement officer, is noxious, offensive or

objectionable.

<u>Condition 31</u>. No discharges from any activity on site shall give rise to visible emissions, other than water vapour and clean steam, to an extent which, in the opinion of an enforcement officer, is noxious, dangerous, offensive or objectionable.

<u>Condition 32</u>. Beyond the boundary of the site, there shall be no discharges to air of any hazardous air pollutant, caused by discharges from the site, which is present at a concentration that causes, or is likely to cause adverse effects to human health, the environment or property.

Total Bridge Services (TBS) holds the maintenance contract for the AHB. Part of the maintenance involves cleaning and repainting of the Bridge. Some sections of the bridge surface which require repainting are initially prepared by dry abrasive blasting followed by zinc coating and repainting. Only small sections of the bridge are prepared at a time using this technique as exposure of the bare metal to the atmosphere is to be minimised. Garnet is the abrasive material used in the process.

The abrasive blasting process generates particulate from both the garnet used as the abrasive agent and the paint which is removed. Historically the AHB has been coated with paint that is known to contain zinc chromate and certain sections have been coated with lead based paint.

The current painting system includes Wasser MC Zinc Coating, Wasser Mio Mastic, MC Ferrox A Columbia Grey and Wasser Thinner R175. The main components of these coatings are listed in Table 1.

	MC Zinc	Wasser Mio Mastic	MC Ferrox A Columbia Grey	Wasser Thinner R175
Iron oxide			\checkmark	
Zinc Dust	\checkmark	\checkmark		
Aromatic Hydrocarbon Mixture (naphtha)	\checkmark	\checkmark	√	
Xylene	\checkmark	\checkmark	\checkmark	\checkmark
1,2,4 trimethylbenzene	\checkmark	\checkmark		
Ethylbenzene	\checkmark	\checkmark	\checkmark	\checkmark
Toluene				\checkmark
Heptan-2-one			\checkmark	
Methyl isobutyl Ketone				\checkmark
Methylene Diphenyl Diisocyanate (MDI)	\checkmark	\checkmark	√	
Total Isocyanate	\checkmark	\checkmark	√	
Quartz		\checkmark	\checkmark	

Table 1: Bridge Surface Coatings and Components

Monitoring has been carried out around the abrasive blasting process in 2011 and results can be found in Air Matters Reports 11013-1 and 11013-2 in Appendix 1.

4. METHODOLOGY

Dust

Total Dust (Inhalable)

Sampling was carried out in accordance with AS/NZS 3640-2009 for particulates. Samples were collected using an IOM inhalable dust sampler and filter. This was connected to a calibrated sampling pump running at a rate of 2L/min. Samples were set up at various locations in relation to the work, sensitive receptors and wind direction. Samples were collected over various timeframes depending on the abrasive blasting process. Filters were subsequently weighed by Air Matters. The method followed was based on the Australian Standard for inhalable particulate. This method was used as opposed to Total Suspended Particulate (TSP) by other ambient air monitoring equipment due to the nature of the works and the sampling locations making ambient standard method samplers impracticable in this situation.

PM₁₀

Dust levels were also monitored using a DustTrakTM Aerosol Monitor DRX 8533. The DustTrakTM gives a real-time digital readout of dust concentration by using laser photometer. The DustTrakTM was set up to measure PM_{10} . The unit takes a reading every second and was set to data log one minute averages. The unit was shifted to various locations throughout the abrasive blasting process.

Metals - Chromium, Iron, Lead and Zinc

Metal samples were collected on the same filter as the inhalable dust samples. Analysis was carried out by Hill Laboratories using ICP mass spectrometry in accordance with NIOSH Method 7300.

Volatile Organic Compounds (VOC)

Total VOC

A real time datalogging photo ionisation detector (PID), MultiRae Plus PGM-50 was used to collect data on the concentration of Total Volatile Organic Compounds (TVOC). This monitor was calibrated on the 26/01/2013 using *100ppm of* isobutylene by APC Techsafe in accordance with Calibration Certificate 165499 and 168955. The instrument was set up to log 60 or 30 second averages. The unit was shifted to various locations in relation to the work, sensitive receptors and wind direction.

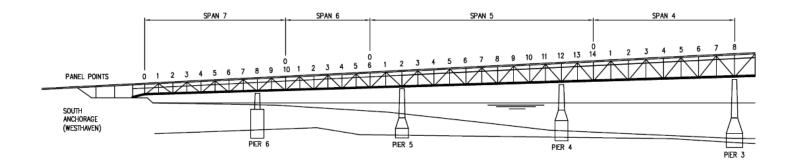
Speciated VOC / Solvents

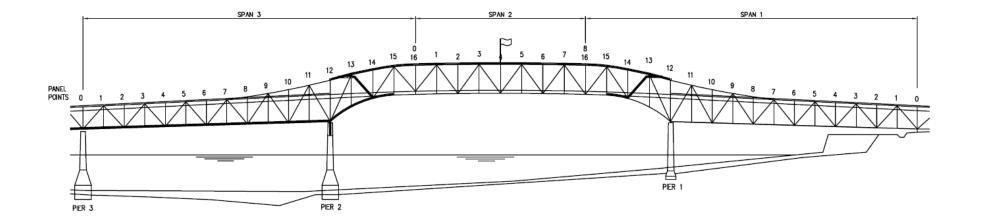
Sampling was carried out according to 1500. Air samples were collected on charcoal sorbent tubes (SKC 226-01) with the sampling pumps calibrated at a maximum flow of 0.2L/minute. Samples were set up at various locations in relation to the work, sensitive receptors and wind direction. Samples were collected over various timeframes depending on the painting process. Analysis of the tubes was carried out by TestSafe Australia by GC FID analysis according to the NIOSH method.

Temperature and Wind speed

Temperature and wind speed as measured using a handheld anemometer EA-3010.

Field Blank


Field blanks were taken for quality control purposes.


14

Offsite Sampling Locations

Onsite Sampling Locations

5. RESULTS

Total Dust

Background concentrations measured when no abrasive blasting was taking place on the AHB. Sampling was then undertaken on a number of days when abrasive blasting was being carried out at various locations in Span 7, Span 6 and Pier 5. Results for various sampling locations for total dust are displayed below in Tables 2, 3, 4 and Chart 1.

Table 2: Background Total Dust Concentrations

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration
No work on Bridge.		Span 7 PP7 Diagonal	WNW Start NNE Finish 3km/hr	<20µg/m ³
08/02/2013	08/02/2013 Background Concentration	SE of Bridge outside Ponsonby Cruising Club	WNW Start NNE Finish 1.6km/hr	140µg/m³

Table 3: Total Dust Concentrations Measured During Abrasive Blasting activities on the AHB

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	
	 Span 6 Panel Point 4-3 (West Diagonal & West Post) Panel Point 3 (East Diagonal & East Post) 	SW of Bridge outside TBS Compound	SW – 20km/hr	90µg/m³	
08/01/2103		Diagonal & West Post) • Panel Point 3 (East	SE of Bridge outside Ponsonby Cruising Club	SSW – 10km/hr	50µg/m³
			SE of Bridge outside Sitting Duck Cafe	SSW – 0-5km/hr	<20µg/m³
00/01/2012	Span 6 • Panel Point 4-5 (West	*On Bridge between east and west blasting locations	SW - 5km/hr NE – 3.6km/hr	660µg/m³	
09/01/2013	Diagonal & West Post) • Panel Point 3-4 (East Diagonal & East Post)	SW of Bridge outside TBS Compound	WSW – 5.5km/hr ENE – 2.5km/hr	240µg/m ³	

	Top of Pier 6	SE of Bridge outside Ponsonby Cruising Club	SW – 2.5km/hr NE – 3.6km/hr	120µg/m ³
		SE of Bridge outside Sitting Duck Cafe	SW - <0.5km/hr NE - <0.5km/hr	80µg/m³
		Panel Point 9 Apex(East) – At Source	NNE - 10km/hr	8,110µg/m ³
20/01/2012	Span 7 • Panel Point 9 Apex	West walkway 30m Downwind (Span 7 Panel Point 9)	NNE - 5km/hr	2,980µg/m ³
• Pan	(East) • Panel Point 9 Diagonal (West)	SW of Bridge outside TBS Compound	NNE - 5km/hr	300µg/m ³
		SW of Bridge outside Climb and Bungy	NNE - 11km/hr	1,230µg/m ³
		Inside Pier 5 – At source	None	14,640µg/m ³
12/02/2013	Pier 5	Span 5 Panel Point 2 Diagonal (east walkway). Approx 5-10m downwind	WSW 0-15km/hr	8,000µg/m ³
		Pier 5 eastern end (north). Approx 10-20m downwind	WSW 0-15km/hr	5,630µg/m ³

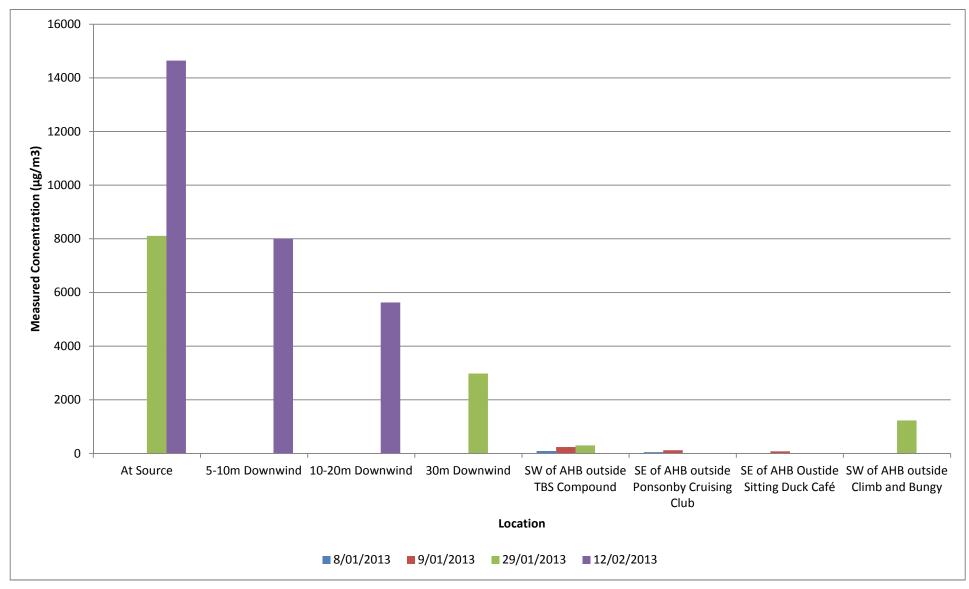

*Wind change after samples were set up results therefore not included in the related Charts

Table 4: Total Dust Concentration Measured over a 24 hour period

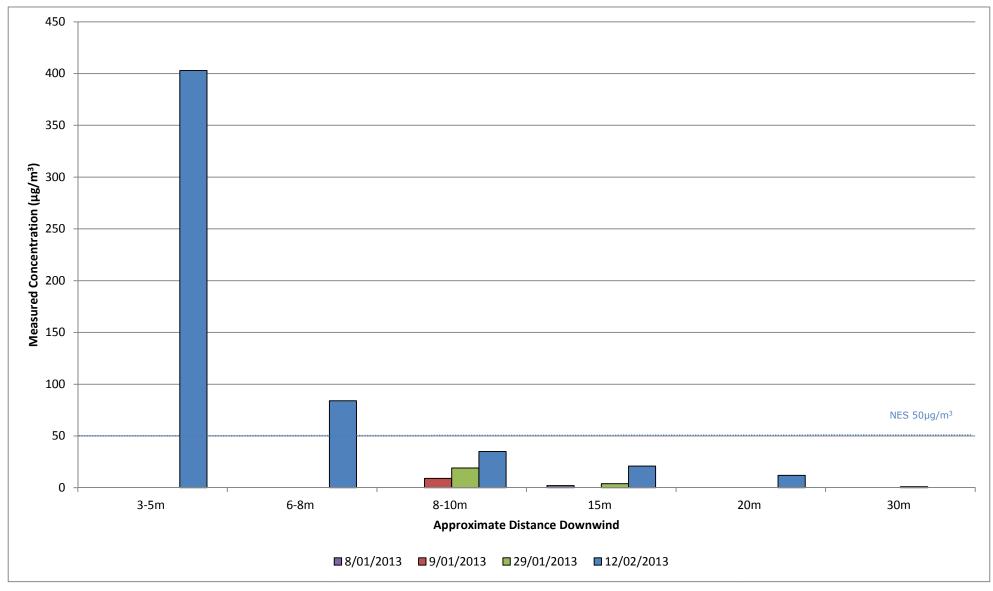
Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	Auckland Council TSP Trigger Level
29/01/2013 - 30/01/2013	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West)	South end of Bridge	NNE/NE - Various	60µg/m ³	80µg/m³

Fine Particulate PM₁₀ (DustTrak[™])

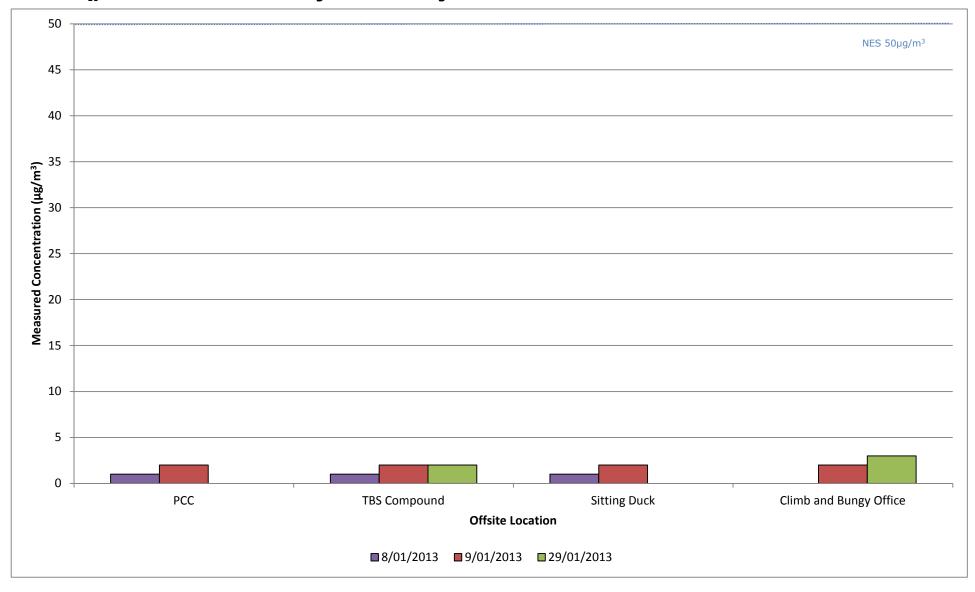
Background concentrations were measured when no abrasive blasting was taking place on the bridge. Sampling was then undertaken on a number of days when abrasive blasting was being carried out at various locations in Span 7, Span 6 and Pier 5. Results for various sampling locations for PM₁₀ are displayed in Tables 5, and 6 and Charts 2 and 3.

Date	Sampling Location	General Wind Direction & Speed	Measured Concentration	National Environmental Standard
	On bridge next to work location	SW - 15-20km/hr	1µg/m³	
08/01/2103	SW of Bridge outside TBS Compound	SW - 20km/hr	1µg/m³	
,	SE of Bridge outside Ponsonby Cruising Club	SSW - 10km/hr	1µg/m³	
	SE of Bridge outside Sitting Duck Cafe	SSW - 0-5km/hr	1µg/m³	
00/01/2012	On Bridge between east and west blasting locations	SW - 5km/hr	2µg/m³	
09/01/2013	On east walkway between Pier 6 and land	SW - 5km/hr	2µg/m³	F0a/m ³
	10m downwind of blasting location	NNE - 10km/hr	1µg/m³	50µg/m ³
20/01/2012	30m downwind of blasting location	NNE - 5km/hr	1µg/m³	
29/01/2013	SW of Bridge outside TBS Compound	NNE - 15km/hr	2µg/m³	
	SW of Bridge outside Climb and Bungy Office	N - 11km/hr	2µg/m³	
12/02/2012	Pier 5 east	WSW - 0-3km/hr	1µg/m³	
12/02/2013	Pier 5 west	WSW - 8km/hr	<1µg/m ³	

Table 5: Background PM₁₀ Concentrations Measured on the Bridge and at Offsite Locations


Table 6: PM ₁₀ Concentrations Measured Duri	ng Sampling
--	-------------

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	National Environmental Standard
	Span 6	15m Downwind of Blasting on Bridge	SW - 15-20km/hr	2µg/m³	
08/01/2013	 Panel Point 4-3 (West Diagonal & West Post) 	SW of Bridge outside TBS Compound	SW - 18km/hr	1µg/m³	50µg/m³
	Panel Point 3 (East Diagonal & East Post)	SE of Bridge outside Ponsonby Cruising Club	SSW - 10km/hr	1µg/m³	50µg/m
		SE of Bridge outside Sitting Duck Cafe	Swirling - 0-5km/hr	1µg/m³	
		10m downwind (P6 work (west walkway - downwind)	NE - 8km/hr	9µg/m³	
	Span 6 • Panel Point 4-5 (West Diagonal & West Post) • Panel Point 3-4 (East Diagonal & East Post)	SW of Bridge outside TBS Compound	WSW - 5.5km/hr	1µg/m³	50µg/m³
		SE of Bridge outside Sitting Duck Cafe	<0.5km/hr	2µg/m³	
09/01/2013		SE of Bridge outside Ponsonby Cruising Club	SW - 2.5km/hr	2µg/m³	
	Top of Pier 6	SW of Bridge outside TBS Compound	ENE - 2.5km/hr	2µg/m³	
		SW of Bridge outside Climb and Bungy Office	NE - 8.5km/hr	2µg/m³	
		Inside TBS Compound	<0.5km/hr	1µg/m³	
	Span 7	10m Downwind	NNE - 10km/hr	19µg/m³	
29/01/2013	Panel Point 9 (West Diagonal)	15m Downwind	NNE - 10km/hr	4µg/m³	50µg/m ³
	• Panel Point 9 (East Apex)	30m Downwind	NNE - 10km/hr	1µg/m³	
		SW of Bridge outside Climb and Bungy Office	NNE - 10km/hr	3µg/m³	



	-	3.5m downwind	WSW - 7.9km/hr	403µg/m ³	50µg/m ³
		6-8m downwind	WSW - 15km/hr	84µg/m ³	
12/02/2012	Dian C	10m downwind	WSW - 7.9km/hr	35µg/m ³	
12/02/2013	2	15m downwind	WSW - 7.9km/hr	21µg/m ³	
		20m downwind	WSW - 7.9km/hr	12µg/m ³	
		30m downwind	WSW - 7.9km/hr	<0.1µg/m ³	

Metals

Background concentrations were measured when no abrasive blasting was taking place on the bridge. Sampling was then undertaken on a number of days when abrasive blasting was being carried out at various locations in Span 7, Span 6 and Pier 5. Results have been compared with the Texas Commission on Environmental Quality Effects Screening Levels for 1 hour averages. The Effects Screening Levels (ESLs) are used to evaluate the potential for effects to occur as a result of exposure to concentrations of constituents in the air. ESLs are based on data concerning health effects, the potential for odours to be a nuisance, effects on vegetation, and corrosive effects. ESLs are not ambient air standards. If predicted or measured airborne levels of a constituent do not exceed the screening level, adverse health effects are not expected. If ambient levels of constituents in air exceed the screening levels, it does not necessarily indicate a problem but rather triggers a review in more depth.

Lead results have been compared to Ontario Ministry of the Environment 'Ontario Regulation 419/05 – Air Pollution – local Air Quality. These standards and guidelines are based on human health or environmental effects or nuisance effects such as odour

Results for various sampling locations for metals are displayed in Tables 6, 7, 8, 9 10, 11 and Charts 4, 5, 6, 7 below.

Table 6: Background Metal Concentrations

Date	Location	Chromium	Iron	Lead	Zinc
08/02/20113	On AHB - Span 7 PP7 Diagonal	<blank< td=""><td>0.3µg/m³</td><td><blank< td=""><td>23.6µg/m³</td></blank<></td></blank<>	0.3µg/m³	<blank< td=""><td>23.6µg/m³</td></blank<>	23.6µg/m ³
	SE of Bridge outside Ponsonby Cruising Club	<blank< td=""><td><blank< td=""><td><blank< td=""><td><blank< td=""></blank<></td></blank<></td></blank<></td></blank<>	<blank< td=""><td><blank< td=""><td><blank< td=""></blank<></td></blank<></td></blank<>	<blank< td=""><td><blank< td=""></blank<></td></blank<>	<blank< td=""></blank<>

The background concentrations have been blank corrected for sample mass prior to concentrations being calculated.

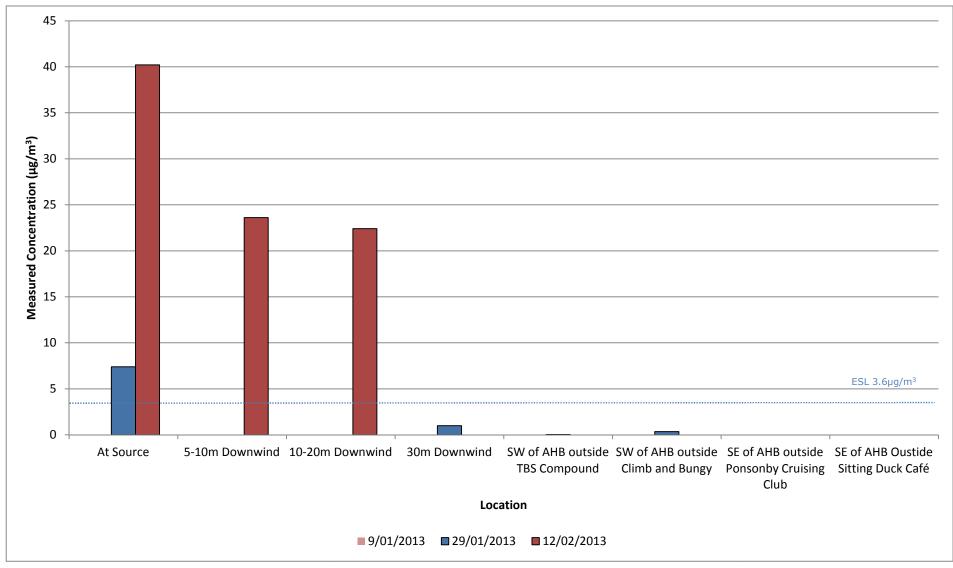
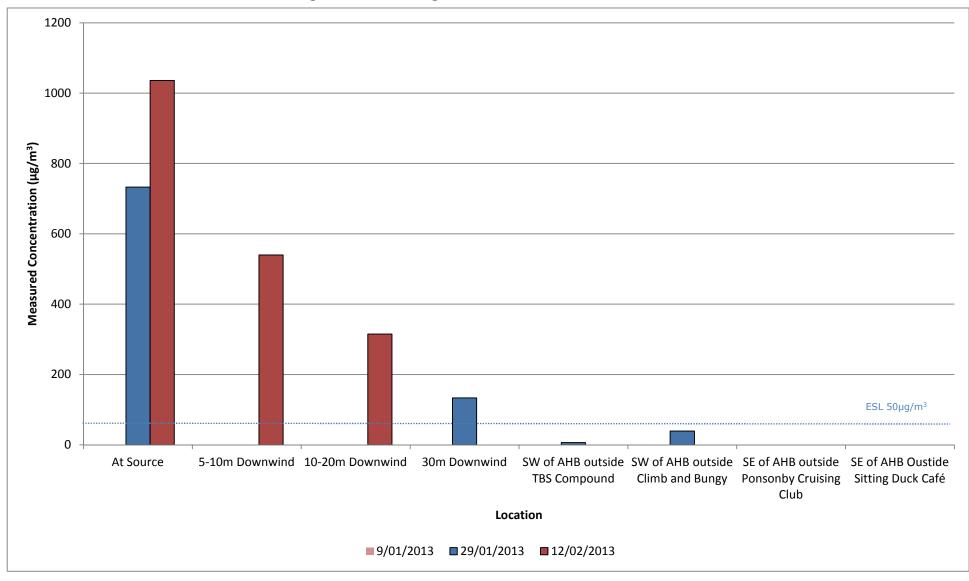


Table 7: Chromium Concentrations

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	*TCEQ Short Term Effects Screening level – 1 hour average
	Span 6	*On Bridge between east and west blasting locations	SW - 5km/hr NE – 3.6km/hr	0.2µg/m ³	
09/01/2013	 Panel Point 4-5 (West Diagonal & West Post) 	SW of Bridge outside TBS Compound	WSW – 5.5km/hr ENE – 2.5km/hr	0.02µg/m ³	
09/01/2015	Panel Point 3-4 (East Diagonal & East Post)	SE of Bridge outside Ponsonby Cruising Club	SW – 2.5km/hr NE – 3.6km/hr	< Blank	
	Top of Pier 6	SE of Bridge outside Sitting Duck Cafe	SW - <0.5km/hr NE - <0.5km/hr	0.04µg/m ³	
		At Source - Panel Point 9 Apex (East)	NNE - 10km/hr	7.4µg/m ³	3.6µg/m ³
	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West)	30m Downwind - West walkway (Span 7 Panel Point 9)	NNE - 5km/hr	1.0µg/m³	
29/01/2013		SW of Bridge outside TBS Compound	NNE - 5km/hr	0.03µg/m ³	
		SW of Bridge outside Climb and Bungy	NNE - 11km/hr	0.4µg/m ³	
		^{\$} South end of Bridge	NNE/NE - Various	0.02µg/m ³	
12/02/2013		At source - Inside Pier 5	None	40.2µg/m ³	
	Pier 5	Approx 5-10m downwind - Span 5 Panel Point 2 Diagonal (east walkway).	WSW 0-15km/hr	23.6µg/m ³	
		Approx 10-20m downwind - Pier 5 eastern end (north).	WSW 0-15km/hr	22.4µg/m ³	

•Chromium metal and chrome 3 *Wind change after samples were set up results therefore not included in the related Charts *24 hour sample therefore not included in the related Charts

Chart 4: Chromium Concentrations Measured During Abrasive Blasting at Various Locations – Onsite and Offsite


Table 9: Iron Concentrations

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	TCEQ Short Term Effects Screening level – 1 hour
	Span 6	*On Bridge between east and west blasting locations	SW 5km/hr NE 3.6km/hr	31µg/m ³	
09/01/2013	 Panel Point 4-5 (West Diagonal & West Post) 	SW of Bridge outside TBS Compound	WSW 5.5km/hr ENE 2.5km/hr	0.4µg/m ³	
09/01/2015	Panel Point 3-4 (East Diagonal & East Post)	SE of Bridge outside Ponsonby Cruising Club	SW 2.5km/hr NE 3.6km/hr	0.8µg/m ³	
	Top of Pier 6	SE of Bridge outside Sitting Duck Cafe	<0.5km/hr	0.8µg/m ³	
		At Source - Panel Point 9 Apex(East) At Source	NNE - 10km/hr	732.9µg/m ³	50µg/m³
	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West) Pier 5	30m Downwind - West walkway (Span 7 Panel Point 9)	NNE - 5km/hr	133.3µg/m³	
29/01/2013		SW of Bridge outside TBS Compound	NNE - 5km/hr	6.4µg/m ³	
		SW of Bridge outside Climb and Bungy	NNE - 11km/hr	39µg/m ³	
		^{\$} South end of Bridge	NNE/NE - Various	1.3µg/m ³	
		Inside Pier 5 – At source	None	1035.9µg/m³	
12/02/2013		Approx 5-10m downwind - Span 5 Panel Point 2 Diagonal (east walkway)	WSW 0-15km/hr	539.8µg/m ³	
•Iron as iron oxide		Approx 10-20m downwind - Pier 5 eastern end (north).	WSW 0-15km/hr	315µg/m ³	

Iron as iron oxide

*Wind change after samples were set up results therefore not included in the related Charts ²4 hour sample therefore not included in the related Charts

Table 9: Lead Concentrations

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	Ontario Ministry of the Environment Standard – half hour
	Span 6	*On Bridge between east and west blasting locations	SW 5km/hr NE 3.6km/hr	1.4µg/m ³	
09/01/2013	 Panel Point 4-5 (West Diagonal & West Post) 	SW of Bridge outside TBS Compound	WSW 5.5km/hr ENE 2.5km/hr	0.004µg/m ³	
09/01/2013	Panel Point 3-4 (East Diagonal & East Post)	SE of Bridge outside Ponsonby Cruising Club	SW 2.5km/hr NE 3.6km/hr	0.01µg/m ³	
	Top of Pier 6	SE of Bridge outside Sitting Duck Cafe	<0.5km/hr	0.01µg/m ³	
	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West)	At Source - Panel Point 9 Apex(East)	NNE - 10km/hr	104.4µg/m ³	1.5µg/m³
29/01/2013		30m Downwind - West walkway (Span 7 Panel Point 9)	NNE - 5km/hr	11.7µg/m ³	
23/01/2013		SW of Bridge outside TBS Compound	NNE - 5km/hr	0.3µg/m ³	
		SW of Bridge outside Climb and Bungy	NNE - 11km/hr	2.7µg/m ³	
		At source - Inside Pier 5	None	7.9µg/m ³	
12/02/2013	Pier 5	Approx 5-10m downwind - Span 5 Panel Point 2 Diagonal (east walkway)	WSW 0-15km/hr	3.7µg/m ³	
		Approx 10-20m downwind - Pier 5 eastern end (north)	WSW 0-15km/hr	2.7µg/m ³	

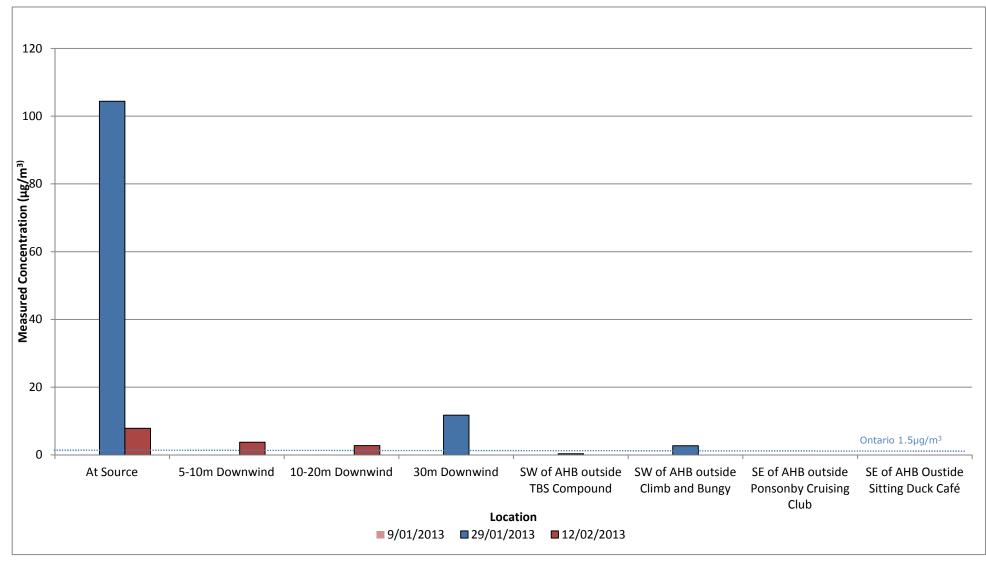
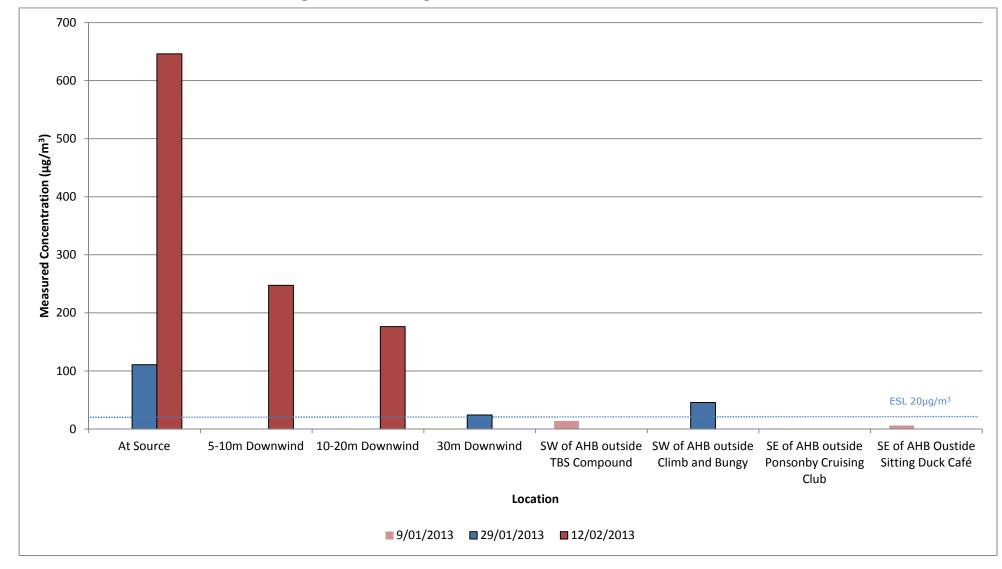

*Wind change after samples were set up results therefore not included in the related Charts

Table 10: 24 Hour Lead Concentration

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	°Ontario Ministry of the Environment Standard – 24 hour
29/01/2013	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West)	South end of Bridge	NNE/NE - Various	0.1µg/m ³	0.5µg/m ³

24 hour sample therefore not included in the related Charts

Chart 6: Lead Concentrations Measured During Abrasive Blasting at Various Locations – Onsite and Offsite


Table 11: Zinc Concentrations

Date	Works Location	Sampling Location	General Wind Direction & Speed	Measured Concentration	*TCEQ Short Term Effects Screening level – 1 hour
	Span 6	*On Bridge between east and west blasting locations	SW 5km/hr NE 3.6km/hr	22.1µg/m ³	
09/01/2013	Panel Point 4-5 (West Diagonal & West Post)	SW of Bridge outside TBS Compound	WSW 5.5km/hr ENE 2.5km/hr	14.1µg/m ³	
09/01/2013	Panel Point 3-4 (East Diagonal & East Post)	SE of Bridge outside Ponsonby Cruising Club	SW 2.5km/hr NE 3.6km/hr	< Blank	
	Top of Pier 6	SE of Bridge outside Sitting Duck Cafe	<0.5km/hr	5.9µg/m ³	
		At Source - Panel Point 9 Apex (East)	NNE - 10km/hr	110.6µg/m³	20µg/m ³
	Span 7 • Panel Point 9 Apex (East) • Panel Point 9 Diagonal (West) Pier 5	30m Downwind - West walkway (Span 7 Panel Point 9)	NNE - 5km/hr	24.2µg/m ³	
29/01/2013		SW of Bridge outside TBS Compound	NNE - 5km/hr	< Blank	
		'SW of Bridge outside Climb and Bungy	NNE - 11km/hr	45.7µg/m ³	
		^{\$} South end of Bridge	NNE/NE - Various	2.0µg/m ³	
		At source - Inside Pier 5	None	646.1µg/m ³	
12/02/2013		Approx 5-10m downwind - Span 5 Panel Point 2 Diagonal (east walkway).	WSW 0-15km/hr	247.6µg/m ³	
•Zinc and compounds		Approx 10-20m downwind - Pier 5 eastern end (north).	WSW 0-15km/hr	176.4µg/m ³	

*Zinc and compounds

*Wind change after samples were set up results therefore not included in the related Charts ⁶24 hour sample therefore not included in the related Charts ⁷Value discarded from Buffer Zone calculations due to concentration being greater than that measured at 30m downwind. Note: blank glass fibre filter has high zinc concentration.

The samples taken on the 12/02/2013 when abrasive blasting was undertaken in Pier 5 were analysed for a suite of 36 elements. The elements that were detected at a concentration above their respective ESLs at source were:

- 1. Cadmium
- 2. Calcium
- 3. Cobalt
- 4. Magnesium
- 5. Manganese
- 6. Nickel
- 7. Phosphorus

All of these elements were below the ESL 5-10m downwind with the exception of manganese which was below the ESL at 10-20m downwind from the source of blasting.

Total Volatile Organic Compounds (TVOC)

Background concentrations were measured when no painting was taking place on the bridge. Sampling was then undertaken on a number of days when painting was being carried out at various locations in Span 7, Span 6 and Pier 5. Results for various sampling locations for TVOC are displayed below.

Sampling was carried out when no work was being undertaken on the Bridge to determine background concentrations. Results for background concentrations are displayed in Table 12 and 13 and Chart 8.

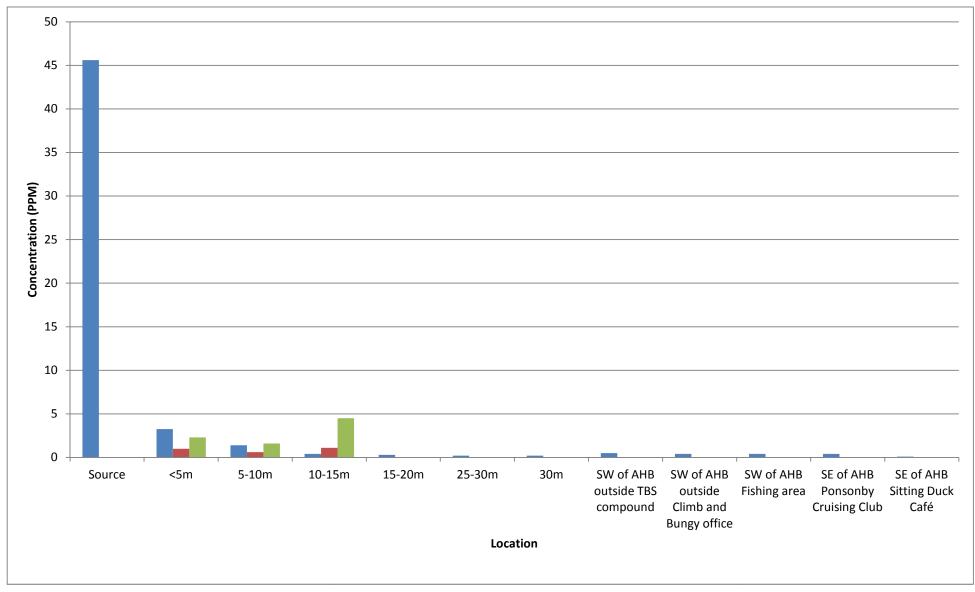
Table 12: Background TVOC Concentrations

Date	Works Location	Sampling Location	Wind Direction	Average Wind speed	Measured Concentration
29/01/2013	No Painting on Bridge	Various points around Span 7	NNE	10km/hr	<0.1ppm
		Pier 5 – west side paint/thinners mixing area	NE	5.5km/hr	1.2pmm
		Inside Pier 5 – upper level	NE	5.5km/hr	<0.1ppm
		West and east walkways (south of Pier 5)	NE	5.5km/hr	
		Pier 5 (east side)	NE	5.5km/hr	0.3ppm
18/02/2013	Pier 5 Spray painting with Mio	East walkway (South of Pier 5)	NE	5.5km/hr	0.4ppm
18/02/2015	Mastic	Ponsonby Cruising Club	NE	5.5km/hr	0.5ppm
		Sitting Duck café	NE	5.5km/hr	0.4ppm
		Outside TBS Compound	NE	5.5km/hr	0.5ppm
		Climb and Bungy	NE	5.5km/hr	0.4ppm
		Fishing area	NE	5.5km/hr	0.2ppm

		Outside TBS Compound	ESE	5.0km/hr	0.9pmm
		Ponsonby Cruising Club	ESE	5.0km/hr	0.8ppm
		West walkway out to Pier 5	ESE	5.0km/hr	0.7ppm
		Inside Pier 5 upper level	ESE	5.0km/hr	0.5ppm
		Inside Pier 5 lower level	ESE	5.0km/hr	0.4ppm
22/02/2012	Pier 5	Pier 5 west side mixing area – open cans	ESE	5.0km/hr	6.9pm
22/02/2013	<i>Stripe Coating and spray painting with Ferrox</i>	5m south of Pier 5	ESE	5.0km/hr	0.4ppm
		20m south of Pier 5	ESE	5.0km/hr	0.3ppm
		25-30m south of Pier 5	ESE	5.0km/hr	0.3ppm
		West walkway above Pier 5	ESE	5.0km/hr	0.3ppm
		5m north of Pier 5	ESE	5.0km/hr	0.2ppm
		10m north of Pier 5	ESE	5.0km/hr	0.2ppm

37

Table 13: TVOC Concentrations Measured During Sampling


Date	Works Location	Sampling Location	Wind Direction	Average Wind speed	Measured Concentration
		Pier 5 Paint/Thinners mixing area (west)	NE	5.5km/hr	2.1pmm
		Pier 5 west side (paint refilling)	NE	5.5km/hr	1.1ppm
		Inside Pier 5 during spraying	NE	5.5km/hr	22.0ppm
		Entrance to Pier 5	NE	5.5km/hr	3.2ppm
		5-10m downwind of spraying	NE	5.5km/hr	0.3ppm
	Pier 5	5-10m downwind of spraying	NE	5.5km/hr	0.3ppm
18/02/2013	Spray painting with Mio	15m downwind of spraying	NE	5.5km/hr	0.1ppm
	Mastic	15m downwind of spraying	NE	5.5km/hr	0.4ppm
		20m downwind of spraying	NE	5.5km/hr	0.3ppm
		30m downwind of spraying	NE	5.5km/hr	0.4ppm
		50-60m downwind of spraying	NE	5.5km/hr	<0.1ppm
		Upwind of spraying	NE	5.5km/hr	<0.1ppm
		East walkway (upwind)	NE	5.5km/hr	<0.1ppm
		Inside P5 - 2m from spraying	N/A	<0.1km/hr	45.6ppm
		3m from spraying	ENE	9km/hr	3.25ppm
22/02/2013	Pier 5 Spray painting with	Entrance to P5, 2-3m from spraying	ENE	9km/hr	1ppm
	Ferrox	Walkway over P5 (<5m from spraying)	ENE	2.5km/hr	2.3ppm
		End of Pier 5 West (5-10m from spraying)	ESE	5km/hr	1.4ppm

		End of Pier 5 West (5-10m from spraying)	ENE	9km/hr	0.6ppm
		5-10m downwind from spraying	ENE	9km/hr	1.6ppm
		10m downwind from spraying	ENE	9km/hr	0.4ppm
		10m from spraying	ENE	2.5km/hr	1.1ppm
		10-15m from spraying	ESE	5km/hr	4.5ppm
		15-20m downwind of spraying	ENE	5km/hr	0.3ppm
		25-30m south of spraying	ENE	2.5km/hr	0.2ppm
		30m downwind of spraying	ENE	9km/hr	0.2ppm
		5-10m upwind	ENE	2.5km/hr	0.15ppm
		Outside TBS compound	ENE	3.5km/hr	0.5ppm
		Outside Climb and Bungy office	ENE	3.5km/hr	0.4ppm
		Fishing area	ENE	3.5km/hr	0.4ppm
		Ponsonby Cruising Club	ENE	3.5km/hr	0.4ppm
		Sitting Duck Café	N/A	<0.1km/hr	0.1ppm
		1.5m north of painting	ENE	4km/hr	0.1ppm
22/02/2013	<i>Span 7 Panel Point 8</i> <i>Stripe Coating with Mio</i>	1.5m south of painting (downwind)	ENE	4km/hr	0.1ppm
	Mastic	5m south of painting (downwind)	ENE	4km/hr	0.1ppm

Speciated Volatile Organic Compounds

Background concentrations measured when no painting was taking place on the bridge. Sampling was then undertaken on a number of days when painting was being carried out at various locations in Span 6 and Pier 5. Results for various sampling locations for Speciated VOC are displayed below.

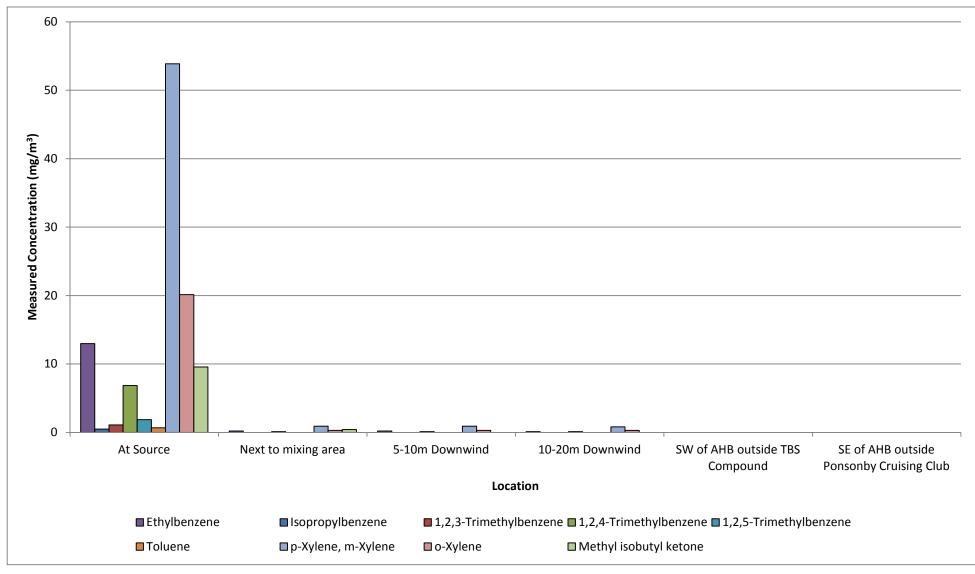

Sampling was carried out when no work was being undertaken on the Bridge to determine background concentrations. Results for background concentrations were all below the laboratory level of detection. Results are summarised in Table 14 and displayed in Chart 9.

Table 14: Speciated VOC Concentrations Measured During Spray Painting

Date	Location	Ethylbenzene	Isopropylbenzene	1,2,3- Trimethylbenzene	1,2,4- Trimethylbenzene	1,2,5- Trimethylbenzene	Toluene	p-Xylene, m- Xylene	o-Xylene	Methyl isobutyl ketone
	At Source	13000µg/m ³	500µg/m ³	1100µg/m ³	6800µg/m ³	1900µg/m ³	700µg/m ³	53900µg/m ³	20100µg/m ³	9500µg/m ³
	Next to mixing area	200µg/m ³	ND	ND	100µg/m ³	ND	ND	900µg/m ³	300µg/m ³	400µg/m ³
18/02/2013	5-10m Downwind	200µg/m ³	ND	ND	100µg/m ³	ND	ND	900µg/m ³	300µg/m ³	ND
	10-20m Downwind	100µg/m ³	ND	ND	100µg/m ³	ND	ND	800µg/m ³	300µg/m ³	ND
	AHB between painting work	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/01/2013	SW of AHB outside TBS Compound	ND	ND	ND	ND	ND	ND	ND	ND	ND
	SE of AHB outside Ponsonby Cruising Club	ND	ND	ND	ND	ND	ND	ND	ND	ND
TCEQ Short Term Effects Screening level – 1 hour		740µg/m³	500µg/m³	1250µg/m³	1250µg/m³	1250µg/m³	640µg/m³	350µg/m³ (Odour)	1600µg/m³	820µg/m³

Isocyanates

Background concentrations were measured when no painting was taking place on the bridge. Sampling was then undertaken on a number of days when painting was being carried out at various locations in Span 6 and Pier 5. Results for various sampling locations for isocyanates are displayed below.

Sampling was carried out when no work was being undertaken on the Bridge to determine background concentrations. Results for background concentrations were all below the laboratory level of detection. Results are summarised in Table 15.

Table 15: Isocyanate Concentrations Measured During Spray Painting

Date	Location	MDI			
	At Source	20µg/m ³			
18/02/2013	Next to mixing area	<0.2µg/m ³			
	5-10m Downwind	0.2µg/m ³			
	10-20m Downwind	0.2µg/m ³			
	AHB between painting work	<0.2µg/m ³			
10/01/2013	SW of AHB outside TBS Compound	<0.2µg/m ³			
	SE of AHB outside Ponsonby Cruising Club	<0.2µg/m ³			
TCEQ Short Te	rm Effects Screening level – 1 hour	0.5µg/m ³			

6. DISCUSSION

Total Dust

Background concentrations measured when no work was being undertaken varied from below the level of detection on the AHB to an offsite concentration of $140\mu g/m^3$ measured at the Ponsonby Cruising Club.

Concentrations measured at the source of abrasive blasting are considered to be high with the maximum recorded concentration of $13,440\mu g/m^3$ being measured during blasting works on Pier 5. Blasting was undertaken inside the Pier therefore it was sheltered and represents a worst case scenario. The other at source location (Span 7, Panel Point 9 Apex – East) is more exposed to the atmosphere therefore increased dispersion is expected; this is reflected in the measured concentration being significantly less ($8,110\mu g/m^3$). Total dust levels decrease considerably with distance from source in a downwind direction. Concentrations measured offsite are significantly lower than those measured on the Bridge with the exception of the sample measured to the SW of the Bridge outside the Climb and Bungy Office.

Environmental Standards for total dust are based on a 24 hour averaging period and the Auckland Council has set out Dust Trigger Levels for the Auckland Region in order to quantify nuisance dust levels. During this monitoring programme one sample was set to run for 24 hours. The sample was located at the south end of the Bridge (Span 7, Panel Point 0) and blasting took place for approximately three hours in that 24 hour period. The concentration measured was below this trigger level for Highly Sensitive Receiving Environments which includes residential areas.

Fine Particulate PM₁₀

Background concentrations measured ranged from $<1\mu$ g/m³ to 2μ g/m³. The National Environmental Standard (NES) for PM₁₀ is 50μ g/m³ averaged over a 24 hour period; therefore, direct comparison to this Standard is not entirely applicable as the data in this report is based on averages less than one hour. For indicative purposes, PM₁₀ concentrations measured at source are well above the NES at source but are below 50μ g/m³ 10m downwind of the blasting location showing how the concentrations disperse significantly with distance. In addition to this, abrasive blasting work is only undertaken for a part of the working day, therefore levels outside of this time will be significantly lower and therefore the expected concentration over a 24 hour period would be expected to be less than 50μ g/m³. Visual observation on site indicated that measurement of PM₁₀ was influenced by wind speed, wind direction, blasting area (i.e. apex or pier), the duration of blasting and the angle of blasting.

The levels of $\ensuremath{\mathsf{PM}_{10}}$ measured at offsite locations were well below the NES.

Emission factors for dry abrasive blasting using Garnet have been used to calculate the mass emission of PM10. These factors were calculated in a controlled environment where painted panels of iron were blasted. The PM10 emission from the AHB is displayed in Table 16.

Particle size (microns)	Cumulative mass (%)	*Garnet use (kg/hr)	Particulate emission rate from AHB operations
10	0.36		0.4 kg/hr
15	0.49		0.5 kg/hr
20	0.93	100	1.0 kg/hr
25	1.61	108	1.7 kg/hr
30	2.20		2.4 kg/hr
400	100.00	108 kg/hr	

Table 16: Particle Size Emission Calculations

*Garnet use calculated from sampling carried out on the 12/02/2013 where 325kg was used over 3 hours

The mass emission of PM_{10} from dry abrasive blasting on the AHB is estimated at 0.4kg/hr.

Metals

The highest metal concentrations were recorded at source, all of which are above relevant Guidelines or Effects Screening Levels. Concentrations decrease with distance downwind from the source. Results are summarised below:

- Chromium concentrations measured 20m downwind of blasting were above the TCEQ Short Term Effects Screening Level
- Chromium concentrations measured offsite were all below the TCEQ Short Term Effects Screening Level.
- Iron concentrations measured 30m downwind of blasting were above the TCEQ Short Term Effects Screening Level.
- Iron concentrations measured offsite were all below the TCEQ Short Term Effects Screening Level.
- Lead levels measured at all locations on the Bridge downwind of blasting were above the Ontario Air Quality Guideline.
- Lead levels measured offsite during work on Span 6 (09/01/2013) were below the Ontario Air Quality Guideline.
- The lead level measured at one offsite location (SW of AHB Climb and Bungy) during work on Span 7 (29/01/2013) was above the Ontario Air Quality Guideline.
- The 24 hour lead level measured at the southern end was below the Ontario Air Quality Guideline.
- Zinc levels measured at all locations on the Bridge downwind of blasting were above the TCEQ Short Term Effects Screening Level.
- Zinc levels measured offsite were below the TCEQ Short Term Effects Screening Level.

Offsite concentrations of metals are dependent on meteorological conditions and the surface coating being blasted. Iron levels measured in the dust are more consistent between locations, but some areas contain a greater proportion of lead, chromium and zinc.

Buffer zones have been calculated by extrapolating data using the most conservative distances measured. Results are displayed in Table 17.

Metal	Environmental Standard/Guideline (µg/m ³)	Maximum concentration Measured (µg/m ³)	*Calculated decrease in concentration with distance (µg/m ³ per m)	Required buffer zone (m)
Chromium	3.6	40.2	0.2	183
Iron	50	1035.9	20	49
Lead	1.5	104.4	0.3	343
Zinc	20	646.1	0.4	216

Table 17: Metals Buffer Zone Calculations

*Calculated using the most conservative decrease in concentration measured downwind of the source

Buffer distances are illustrated in Appendix 3.

Total Volatile Organic Compounds (TVOC)

TVOC concentrations are high at source and disperse according to the varying atmospheric conditions which are present on the Bridge. This is evident with varying TVOC concentrations measured at the same locations on the same day. Data indicates that TVOC concentrations decrease rapidly with distance from source. Results are summarised as follows:

- TVOC concentrations resulting from stripe coating are just above background levels
- TVOC concentrations measured from spray painting are high but disperse quickly
- Both strip and spray painting monitored in this exercise resulted in no effect at offsite locations

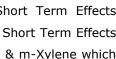
Speciated Volatile Organic Compounds

Speciated VOC concentrations are high at source and disperse according to the varying atmospheric conditions which are present on the Bridge. Results are summarised as follows:

- Speciated VOCs on the target list were not detected during stripe coating
- The following VOCs on the target list were detected during spray painting:
 - Ethylbenzene
 - o Isopropylbenzene
 - o 1,2,3-Trimethylbenzene
 - o 1,2,4-Trimethylbenzene
 - o 1,2,5-Trimethylbenzene
 - \circ Toluene
 - o p-Xylene, m-Xylene
 - o o-Xylene
 - Methyl isobutyl ketone

Concentrations measured at source were high and above the TCEQ Short Term Effects Screening Levels. Concentrations disperse quickly and are below the TCEQ Short Term Effects Screening Level 5-10m from spray painting with the exception of p-Xylene & m-Xylene which above the ESL 10-20m downwind. This screening level is odour based.

A buffer zone has been calculated for xylene using TVOC results and assuming that all TVOC measured was xylene. Details can be viewed in Table 18.


voc	Environmental Standard/Guideline (µg/m ³)		*Calculated decrease in concentration with distance (µg/m ³ per m)	Required buffer zone (m)
Xylenes	ylenes 350 198		1,300	152

Buffer distances are illustrated in Appendix 3.

Isocyanates

Isocyanate concentrations are high at source and disperse according to the varying atmospheric conditions which are present on the Bridge. Results are summarised as follows:

- No isocyanates were detected during stripe coating either on the Bridge or offsite. •
- Isocyanate levels detected at source during spray painting were 40 times above the TCEQ • Short Term Effects Screening Level.
- Isocyanate levels were detected at 10-20m downwind of spray painting but levels were below the TCEQ Short Term Effects Screening Level

7. REFERENCES

- 1. Workplace Exposure Standards for New Zealand, 2012, New Zealand Department of Labour.
- 2. National Institute for Occupational Safety and Health (NIOSH), Manual of Analytical Methods (NMAM), Fourth Edition, August 1994.
- Methods for the Determination of Hazardous Substances (MDHS) Health and Safety Executive. Third Edition 1999.
- 4. Air Sampling Guide SKC Publication.
- Bhaskar Kura, Residual Risk from Abrasive Blasting Emissions: Particle Size and Metal Speciation, Advanced Technology Institute, 2005.
- 6. American Conference of Governmental Industrial Hygienists, <u>http://www.acgih.org/home.htm</u>
- Ministry for the Environment, National Environmental Standards, <u>http://www.mfe.govt.nz/laws/standards/air-quality/index.html</u>
- 8. Auckland Regional Council, April 2002. Technical Publication 152. Assessing Discharges of Contaminants into Air.
- World Health Organisation, 2000. Air Quality Guidelines for Europe, Second Edition, Part Two, WHO Regional Publications, European Series, No. 91.
- 10. Texas Commission on Environmental Quality, Effects Screening Levels, http://www.tceq.texas.gov/assets/public/implementation/tox/esl/list/jul2011.pdf
- Ontario Ministry of the Environment, Summary of Standards and Guidelines to support Ontario Regulation 419/05 – Air Pollution – Local Air Quality, 2012.

APPENDIX 1: DATA SHEETS

DUST - INHALABLE

Industry: AHB Project Number: 13001

Contaminant: Dust

			Time		Sampling Details					
Date	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (mg)	Blank corrected sample mass (mg)	Contaminant Concentration (mg/m ³)
	13001 AA1	SW of AHB outside TBS Compound	10:19	15:13	294	1.987	0.5842	0.16	0.05	0.09
0/01/2012	13001 AA2	SE of AHB outside Ponsonby Cruising Club	10:21	15:17	296	2.001	0.5923	0.14	0.03	0.05
8/01/2013	13001 AA3	Outside Sitting Duck Café	10:22	15:19	297	1.991	0.5913	0.11	0.00	0.00
	13001 AA4	Blank	-	_	-	-	-	0.11	-	-

Industry: AHB

Project Number: 13001

Contaminant: Dust

			Time		Sampling Details					
Date	Sample number	Location of test point		Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (mg)	Blank corrected sample mass (mg)	Contaminant Concentration (mg/m ³)
	13001 AB1	SW of AHB outside TBS Compound	8:22	12:31	249	1.992	0.4960	0.02	0.12	0.24
	13001 AB2	SE of AHB outside Ponsonby Cruising Club	8:20	12:34	254	1.993	0.5062	-0.04	0.06	0.12
9/01/2013	13001 AA3	Outside Sitting Duck Café	8:21	12:36	255	1.998	0.5095	-0.06	0.04	0.08
	13001 AA4	On AHB between blasting locations	8:17	12:43	266	2.038	0.5421	0.26	0.36	0.66
	13001 AB5	Blank	_	-	-	-	-	-0.1	-	-

			Time		Sampling Details						
Date	Sample number	Location of test point		Off	Minutes on	Flow rate (L/min)	Volume (m ³)	Sample mass (mg)	Blank corrected sample mass (mg)	Contaminant Concentration (mg/m ³)	
	13001 AC2	30m Downwind of Blasting - W (S7 PP5)	15:38	18:01	143	2.019	0.2887	0.77	0.86	2.98	
	13001 AC3	At Source - Blasting location East Apex S7 PP9	15:28	18:06	158	2.06	0.3255	2.55	2.64	8.11	
20/01/2012	13001 AC4	SW of AHB outside TBS Compound	15:43	18:09	146	2.034	0.2970	0	0.09	0.30	
29/01/2013	13001 AC5	SW of AHB outside Climb and Bungy	15:47	18:10	143	1.99	0.2846	0.26	0.35	1.23	
	13001 AC6	Southend of Bridge - 24 hour sample	15:56	16:20	1464	2.012	2.9456	0.09	0.18	0.06	
	13001 AC7	Blank	-	-	-	-	-	-0.09	-	-	

Industry:AHBProject Number:13001Contaminant:Dust

			Time		Sampling Details			_			
Date	Sample number	Location of test point		Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (mg)	Blank corrected sample mass (mg)	Contaminant Concentration (mg/m ³)	
	13001 AE1	Inside Pier 5 - East end on portal	12:29	17:32	224	1.976	0.4426	6.49	6.48	14.64	
	13001 AE2	Span 5 PP2 North Diagonal - East side. 5-10m Downwind	15:13	17:23	183	1.878	0.3437	2.76	2.75	8.00	
12/02/2013	13001 AE3	Pier 5 outer arm - East side. 10-20m Downwind	15:13	17:25	179	1.995	0.3571	1.93	2.01	5.63	
	13001 AE4	Blank	-	-	-	-	-	-0.08	-	-	
		Lab Blank - Button Samplers (AE1 and AE2)	-	-	-	-	-	0.01	-	-	

ELEMENTS - METALS

Measured Blank Values											
	Chromium	0.1	µg/sample								
Sample 13001 AE04	Iron	1.5	µg/sample								
	Lead	0.021	µg/sample								
	Zinc	124	µg/sample								

Location: TBS Compound

Date Sample number			Time		Sampling Details				Blank		
	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)		
		Chromium					0.4960	0.11	0.01	0.02	
0/01/2012	12001 401	Iron	0.22	12.21	240	1 002		1.7	0.2	0.4	
9/01/2013 13001 /	13001 AB1	Lead	8:22	12:31	249	1.992		0.023	0.002	0.004	
		Zinc						131	7	14.1	

Location: Ponsonby Cruising Club

			Time		Sampling Details					
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.1	-	<blk< td=""></blk<>
0 (04 (004 0		Iron	0.00	12.24	254	1 000	0 5060	1.9	0.4	0.8
9/01/2013 13001 AB2	13001 AB2	Lead	8:20	12:34	254	1.993	0.5062	0.027	0.006	0.01
		Zinc						121	-	<blk< td=""></blk<>

Location: Sitting Duck Café

		Contaminant	Time		Sa	mpling Detai	ils			
Date	Sample number		On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.12	0.02	0.04
0 (01 (2012	9/01/2013 13001 AB3	Iron	0.01	12.26	255	1 000		1.9	0.4	0.8
9/01/2013		Lead	8:21	12:36	255	1.998	0.5095	0.026	0.005	0.01
		Zinc						127	3	5.9

Location: AHB Between Blasting Locations

			Ti	me	Sampling Details					
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.21	0.11	0.2
0 (01 (0010		Iron	0.47	10.10	266	2 2 2 2	0 5 4 9 4	18.3	16.8	31.0
9/01/2013 13001	13001 AB4	Lead	8:17	12:43	266	2.038	0.5421	0.79	0.769	1.4
		Zinc						136	12	22.1

Location: 30m Downwind

			Time		Sa	mpling Deta	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m ³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (μ g.m ⁻³)
		Chromium						0.38	0.28	1.0
20/01/2012		Iron	15.20	10.01	140	2.010	0 2007	40	38.5	133.3
29/01/2013 13001	13001 AC2	Lead	15:38	18:01	143	2.019	0.2887	3.4	3.379	11.7
		Zinc						131	7	24.2

Location:	At Source
-----------	-----------

			Time		Sampling Details					
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						2.5	2.4	7.4
20/01/2012		Iron	15.00	10.00	150	2.0505		240	238.5	732.9
29/01/2013 13	13001 AC3	Lead	15:28	18:06	158	2.0595	0.3254	34	33.979	104.4
		Zinc						160	36.00	110.6

Location TBS Compound

	l		Time		Sa	mpling Detai	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m ³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.11	0.01	0.03
29/01/2013 13001 AC4	Iron				2.024		3.4	1.9	6.4	
	13001 AC4	Lead	15:43	18:09	146	2.034	0.2970	0.118	0.097	0.3
	Zinc						112	-12	<blk< td=""></blk<>	

			Time		Sa	mpling Detai	ls			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.2	0.1	0.4
20/01/2012		Iron		10.10	1.12	1.00	0.0046	12.6	11.1	39.0
29/01/2013 13001 AC5	13001 AC5	Lead	15:47	18:10	143	1.99	0.2846	0.79	0.769	2.7
		Zinc						137	13	45.7

Location: South End of Bridge 24 hour sample

	Date Sample number		Time		Sa	mpling Detai	ils			
Date		Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m ³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Chromium						0.15	0.05	0.02
20/01/2012		Iron		16.20				5.3	3.8	1.3
29/01/2013 130	13001 AC6	Lead	15:56	16:20	1464	2.012	2.9456	0.181	0.16	0.05
		Zinc						130	6	2.0

Location:	AHB Backg								1	. <u> </u>
			Ti	me	Sa	mpling Detai	ls			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Aluminium						77	2	6.7
		Antimony						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Arsenic	-					<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Barium						164	7	23.6
		Berylium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Bismuth						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Boron						132	3	10.1
		Bromine						<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
9/02/2013	13001 AD1	Cadmium	13:09	15:34	145	2.046	0.2967	<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Caesium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Calcium						55	9	30.3
		Chromium						0.09	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Cobalt						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Copper						0.07	0.01	0.03
		Iron						1.6	0.1	0.3
		Lanthanum						0.006	0.001	0.003
		Lead						0.019	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>

Lithium]		į	0.023	<blk< th=""><th><blk< th=""></blk<></th></blk<>	<blk< th=""></blk<>
Magnesium	-			6.9	0.6	2.0
Manganese	-			0.04	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Mercury				<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Molybdenum				<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Nickel				<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Phosphorus				<1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Potassium				118	4	13.5
Rubidium				0.071	0.003	0.01
Selenium				<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver				<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Sodium				290	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Strontium				3.3	0.1	0.3
Sulphur				<500	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Thallium				<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin				<0.03	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Uranium				0.0028	0.0009	0.003
Vanadium				<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc				131	7	23.6

			Ti	me	Sai	mpling Deta	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m ³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Aluminium						61	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Antimony						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Arsenic						<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Barium						135	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Berylium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Bismuth						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Boron						107	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Bromine						<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Cadmium						<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Caesium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
9/02/2013	13001 AD2	Calcium	13:14	15:39	145	1.973	0.2861	41	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
9/02/2013	13001 AD2	Chromium	15.14	13.35	145	1.975	0.2001	0.08	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Cobalt						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Copper						0.07	0.01	0.03
		Iron						1.3	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Lanthanum						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Lead						0.017	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Lithium						0.017	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Magnesium						5.5	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Manganese						0.03	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Mercury						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Molybdenum						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Location: Ponsonby Cruising Club Background

	-	1	 	1			
Nickel					<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Phosphorus					<1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Potassium					96	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Rubidium					0.058	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Selenium					<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver					<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Sodium					260	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Strontium					2.7	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Sulphur					<500	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Thallium					<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin					<0.03	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Uranium					0.0016	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Vanadium					<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc					104	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>

Location:	At Source P5		r							
			Ti	me	Sai	mpling Detai	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (μ .m ⁻³)
		Aluminium						96	21	47.4
		Antimony						0.02	0.01	0.02
		Arsenic						0.18	0.13	0.3
		Barium						57	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Berylium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Bismuth						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Boron						44	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Bromine						<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
12/02/2013	13001 AE1	Cadmium	12:29	17:32	224	1.976	0.4426	0.092	0.089	0.2
		Caesium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Calcium						88	42	94.9
		Chromium						17.9	17.8	40.2
		Cobalt						0.33	0.32	0.7
		Copper						1	0.94	2.1
		Iron						460	458.5	1035.9
		Lanthanum						0.154	0.149	0.3
		Lead						3.5	3.479	7.9
		Lithium						0.036	0.012	0.03

	i i	I	I I	I	i			
Magnesium						34	27.7	62.6
Manganese						6.2	6.16	13.9
Mercury						0.01	0.005	0.01
Molybdenum						0.12	0.11	0.2
Nickel						0.48	0.43	1.0
Phosphorus						3	2	4.5
Potassium						64	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Rubidium						0.088	0.02	0.05
Selenium						0.05	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Silver						0.008	0.003	0.007
Sodium						151	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Strontium						1.41	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Sulphur						<500	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Thallium						<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin						0.14	0.11	0.2
Uranium						0.0052	0.0033	0.007
Vanadium						<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc						410	286	646.1

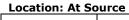
Location:	5-10m Dowr	wind	1		1					
			Tiı	me	Sa	mpling Deta	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Aluminium						64	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Antimony						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Arsenic						<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Barium						92	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Berylium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Bismuth						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Boron						74	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Bromine						<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Cadmium						0.038	0.035	0.1
		Caesium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
12/02/2013	13001 AE2	Calcium	12:47	17:23	183	1.898	0.3473	56	10	28.8
12/02/2015	13001 ALZ	Chromium	12.47	17.25	105	1.090	0.5475	8.3	8.2	23.6
		Cobalt						0.126	0.026	0.07
		Copper						0.35	0.29	1.0
		Iron						189	187.5	539.8
		Lanthanum						0.065	0.06	0.2
		Lead						1.31	1.289	3.7
		Lithium						0.025	0.001	0.003
		Magnesium						16.6	10.3	29.7
		Manganese						2.2	2.16	6.2
		Mercury						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Molybdenum						0.035	0.025	0.07

Nickel			İ	0.15	0.1	0.3
Phosphorus				<1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Potassium				80	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Rubidium				0.072	0.004	0.01
Selenium				<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver				0.007	0.002	0.006
Sodium				210	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Strontium				1.94	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Sulphur				<500	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Thallium				<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin				0.05	0.02	0.06
Uranium				0.0026	0.0007	0.002
Vanadium				<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Zinc				210	86	247.6

Total Bridge Services 16/04/2013 Report: 13001

Location:	20-30m Dov	vnwind								
			Ті	me	Sa	mpling Detai	ils			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (µg)	Blank corrected Sample mass (µg)	Contaminant Concentration (µg.m ⁻³)
		Aluminium						66	<blk< td=""><td>0.2</td></blk<>	0.2
		Antimony						<0.010	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Arsenic						<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Barium						114	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Berylium						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Bismuth	_					<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Boron	_					87	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Bromine	_					<0.3	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Cadmium	_					0.027	0.024	0.07
		Caesium	_					<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
12/02/2013	13001 AE3	Calcium	12:53	17:25	179	1.995	0.3571	57	11	30.8
12/02/2015	13001 ALS	Chromium	12.55	17.25	1/5	1.995	0.5571	8.1	8	22.4
		Cobalt	_					0.099	0.089	0.2
		Copper	_					0.27	0.21	0.8
		Iron	_					114	112.5	315.0
		Lanthanum	_					0.041	0.036	0.1
		Lead						1	0.979	2.7
		Lithium						0.022	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
		Magnesium						11.8	5.5	15.4
		Manganese						1.27	1.23	3.4
		Mercury						<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
		Molybdenum						0.024	0.014	0.04

	-	1	1	i			
Nickel					0.09	0.04	0.1
Phosphorus					<1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Potassium					89	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Rubidium					0.064	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Selenium					<0.05	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Silver					<0.005	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Sodium					230	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Strontium					2.4	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Sulphur					<500	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Thallium					<0.003	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Tin					0.03	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Uranium					0.0024	0.0005	0.001
Vanadium					<0.3	<blk< td=""><td><blk< td=""></blk<></td></blk<>	<blk< td=""></blk<>
Zinc					187	63	176.4



SPECIATED VOC

All results corrected to 25°C and 1 atmosphere pressure

18/02/2013 Pm = 1023 HPa Pm = 767 mmHg

			Tim	e		Samplin	g Details			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Contaminant Concentration (mg/m ³)
		Ethylbenzene							216	13.0
		Isopropylbenzene							8	0.5
		1,2,3-Trimethylbenzene							18	1.1
		1,2,4-Trimethylbenzene							114	6.8
18/02/2013	13001 CC1	1,2,5-Trimethylbenzene	13:40	15:02	82	0.1984	0.0163	294	31	1.9
		Toluene							11	0.7
		p-Xylene, m-Xylene							897	53.9
		o-Xylene							335	20.1
		Methyl isobutyl ketone							159	9.5

Location:	Pier 5 - Mixing Area (7	/m from source)			r					
			Time		Sampling Details					
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Contaminant Concentration (mg/m ³)
		Ethylbenzene							3	0.2
		1,2,4-Trimethylbenzene							1	0.1
18/02/2013	13001 CC2	p-Xylene, m-Xylene	13:47	15:04	77	0.2223	0.0171	294	16	0.9
		o-Xylene							6	0.3
		Methyl isobutyl ketone							7	0.4

Location:	5-10m Downwind									
			Time			Samplin				
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Contaminant Concentration (mg/m ³)
		Ethylbenzene							3	0.2
		1,2,4-Trimethylbenzene							1	0.1
18/02/2013	13001 CC3	p-Xylene, m-Xylene	13:47	15:15	88	0.1997	0.0176	294	16	0.9
		o-Xylene							6	0.3
		2-Methylbutane							44	2.4

Location:	20m Downwind									
			Tim	e		Sampling	g Details			
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Contaminant Concentration (mg/m ³)
		Ethylbenzene							2	0.1
19/02/2012	12001 CC4	1,2,4-Trimethylbenzene	12,47	15.20		0 109	0.0184	294	1	0.1
18/02/2013	13001 CC4	p-Xylene, m-Xylene	13:47	15:20	93	0.198	0.0184	294	15	0.8
		o-Xylene							5	0.3

Location:	30m Downwind									
			Tim	Time		Sampling Details				
Date	Sample number	Contaminant	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Contaminant Concentration (mg/m ³)
		Ethylbenzene			103				2	0.1
19/02/2012	13001 CC5	1,2,4-Trimethylbenzene	13:47	15:30		0.2075	0.0214	294	1	0.0
18/02/2013	13001 CC5	p-Xylene, m-Xylene	15:47	15:50		0.2075	0.0214	294	15	0.7
		o-Xylene							5	0.2

ISOCYANATES

	Sample number		Time			Samplin	g Details				
Date		Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (µg)	Blank/Spike corrected Sample mass (µg)	Contaminant Concentration (mg/m ³)
	13001 BC1	At source - inside Pier 5	13:40	15:02	82	1.031	0.0845	294	1.74	1.74	0.0201
18/02/2013	13001 BC2	West end of Pier 5 - near mixing area/work station	13:47	15:04	77	1.054	0.0812	294	<0.02	<0.02	<0.0002
10/02/2015	13001 BC3	5-10m downwind (west walkway)	13:47	15:15	88	1.068	0.0940	294	0.02	0.02	0.0002
	13001 BC4	20m downwind (west walkway)	13:47	15:20	93	1.047	0.0974	294	0.02	0.02	0.0002

APPENDIX 2: ANALYTICAL REPORTS

DUST - INHALABLE

Sampling Date: 08/01/2013							
Sample Type: IOM sampler containing filter and foam insert	t - Inhalable D	Dust					
Sample Number	13001AA1	13001AA2	13001AA3	13001AA4			
Initial weight of filter prior to collection (g)	1.15878	1.15895	1.15627	1.15909			
Final weight of filter after collection (g)	1.15894	1.15909	1.15638	1.1592			
Net weight gain due to particulate matter (g)	0.00016	0.00014	0.00011	0.00011			
Conversion to milligrams (mg)	0.16	0.14	0.11	0.11			
Pre Weigh Filters: HET Date: 14/12/2012			Post Weigh Date:	Filters:	RJM 11/01/2013		

Sampling Date: 09/01	/2013						 	
Sample Type: IOM sar	mpler containing filter and foam ins	ert - Inhalable	e Dust					
Sample Number	13001AB1	13001AB2	13001AB3	13001AB4	13001AB5			
Initial weight of filter	prior to collection (g)	1.16491	1.167	1.16599	1.16375	1.16558		
Final weight of filter a	1.16493	1.16696	1.16593	1.16401	1.16548			
Net weight gain due to particulate matter (g)		0.00002	-0.00004	-0.00006	0.00026	-0.00010		
Conversion to milligra	0.02	-0.04	-0.06	0.26	-0.1			
Pre Weigh Filters: Date:	RJM 21/12/2012			Post Weigh Date:	Filters:	RJM 11/01/2013		

Sampling Date: 29/01	/2013								
Sample Type: IOM sa	mpler containing filter and foam insert -	Inhalable D	ust						
Sample Number		13001AC1	13001AC2	13001AC3	13001AC4	13001AC5	13001AC6	13001AC7	
Initial weight of filter	prior to collection (g)	1.16097	1.16881	0.0317	1.15933	1.15982	1.15925	1.16193	
Final weight of filter after collection (g)		1.16916	1.16958	0.03425	1.15933	1.16008	1.15934	1.16184	
Net weight gain due to particulate matter (g)		0.00819	0.00077	0.00255	0.00000	0.00026	0.00009	-0.00009	
Conversion to milligra	8.19	0.77	2.55	0.00	0.26	0.09	-0.09		
Pre Weigh Filters: Date:	RJM 21/12/2012, 22/01/2013, 23/01/2013			Post Weigł Date:	n Filters:	RJM 11/01/2013			

Sampling Date: 08/02	2/2013							
Sample Type: IOM sai	mpler containing filter and foan	n insert - Inhalable	Dust					
Sample Number	13001AD1	13001AD2	13001AD3					
Initial weight of filter	1.15847	1.16136	1.15841					
Final weight of filter a	1.15837	1.16143	1.15844					
Net weight gain due t	-0.00010	0.00007	0.00003					
Conversion to milligra	-0.1	0.07	0.03					
Pre Weigh Filters:	RJM			Post Weigh	Filters:	RJM		
Date:	22/01/2013			Date:	11/01/2013			

Sampling Date: 12/02,	/2013						
			-				
Sample Type: IOM san	npler containing filter and foam ins	sert - Inhalable	Dust	r		r	
Sample Number	13001AE1	13001AE2	13001AE3	13001AE4	B BLANK		
Initial weight of filter p	prior to collection (g)	0.03196	0.03216	1.16028	1.15851	0.03176	
Final weight of filter after collection (g)		0.03845	0.03492	1.16221	1.15843	0.03177	
Net weight gain due to	0.00649	0.00276	0.00193	-0.00008	0.00001		
Conversion to milligra	6.49	2.76	1.93	-0.08	0.01		
Pre Weigh Filters:	RJM			Post Weigh	Filters:	RJM	
Date:	23/01/2013			Date:		14/02/2013	

ELEMENTS - METALS

Email mail@hill-labs.co.nz

Page 1 of 4

ANALYSIS REPORT

Client: Contact:	Air Matters Limited Robert Murray C/- Air Matters Limited PO Box 96 256 Balmoral AUCKLAND 1342		Dat Dat Que Ord Clie	o No: e Registered: e Reported: ote No: ler No: ent Reference: omitted By:	1103531 23-Feb-2013 12-Mar-2013 Robert Murray	SPv1
Sample Ty	pe: Miscellaneous filter type	less than 50 m	m diameter			
	Sample Name:	13001 AB1	13001 AB2	13001 AB3	13001 AB4	13001 AC2 29-Jan-2013
	Lab Number:	1103531.1	1103531.2	1103531.3	1103531.4	1103531.5
Chromium	µg/sample	0.11	0.10	0.12	0.21	0.38
Iron	µg/sample	1.7	1.9	1.9	18.3	40
Lead	µg/sample	0.023	0.027	0.026	0.79	3.4
Zinc	µg/sample	131	121	127	136	131
	Sample Name:	13001 AC3 29-Jan-2013	13001 AC4 29-Jan-2013	13001 AC5 29-Jan-2013	13001 AC6 29-Jan-2013	13001 AD1 08-Feb-2013
	Lab Number:	1103531.6	1103531.7	1103531.8	1103531.9	1103531.10
Aluminium	µg/sample	-	-	-	-	77
Antimony	µg/sample	-	-	-	-	< 0.010
Arsenic	µg/sample	-	-	-	-	< 0.05
Barium	µg/sample	-	-	-	-	164
Beryllium	µg/sample	-	-	-	-	< 0.005
Bismuth	µg/sample	-	-	-	-	< 0.005
Boron	µg/sample	-	-	-	-	132
Bromine	µg/sample	-	-	-	-	< 0.3
Cadmium	µg/sample	-	-	-	-	< 0.003
Caesium	µg/sample	-	-	-	-	< 0.005
Calcium	µg/sample	-	-	-	-	55
Chromium	µg/sample	2.5	0.11	0.20	0.15	0.09
Cobalt	µg/sample	-	-	-	-	< 0.010
Copper	µg/sample	-	-	-	-	0.07
Iron	µg/sample	240	3.4	12.6	5.3	1.6
Lanthanum	µg/sample	-	-	-	-	0.006
Lead	µg/sample	34	0.118	0.79	0.181	0.019
Lithium	µg/sample	-	-	-	-	0.023
Magnesium	µg/sample	-	-	-	-	6.9
Manganese	µg/sample	-	-	-	-	0.04
Mercury	µg/sample	-	-	-	-	< 0.005
Molybdenum	µg/sample	-	-	-	-	< 0.010
Nickel	µg/sample	-	-	-	-	< 0.05
Phosphorus	µg/sample	-	-	-	-	< 1.0
Potassium	µg/sample	-	-	-	-	118
Rubidium	µg/sample	-	-	-	-	0.071
Selenium	µg/sample	-	-	-	-	< 0.05
Silver	µg/sample	-	-	-	-	< 0.005
Sodium	µg/sample	-	-	-	-	290
Strontium	µg/sample	-	-	-	-	3.3
Sulphur	µg/sample	-	-	-	-	< 500
Thallium	µg/sample	-	-	-	-	< 0.003
Tin	µg/sample	-	-	-	-	< 0.03
Uranium	µg/sample	-	-	-	-	0.0028

Lab No: 1103531 v 1

Hill Laboratories

Page 1 of 4

Sample Type:	Miscellaneous filter type	less than 50 m	m diameter			
	Sample Name:	13001 AC3 29-Jan-2013	13001 AC4 29-Jan-2013	13001 AC5 29-Jan-2013	13001 AC6 29-Jan-2013	13001 AD1 08-Feb-2013
	Lab Number:	1103531.6	1103531.7	1103531.8	1103531.9	1103531.10
√anadium	µg/sample	-	-	-	-	< 0.3
Zinc	µg/sample	160	112	137	130	131
	Sample Name:	13001 AD2 08-Feb-2013	13001 AE01 12-Feb-2013	13001 AE02 12-Feb-2013	13001 AE03 12-Feb-2013	13001 AE04 Blank 12-Feb-2013
	Lab Number:	1103531.11	1103531.12	1103531.13	1103531.14	1103531.15
Aluminium	µg/sample	61	96	64	66	75
Antimony	µg/sample	< 0.010	0.020	< 0.010	< 0.010	< 0.010
Arsenic	µg/sample	< 0.05	0.18	< 0.05	< 0.05	< 0.05
Barium	µg/sample	135	57	92	114	157
Beryllium	µg/sample	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Bismuth	µg/sample	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Boron	µg/sample	107	44	74	87	129
Bromine	µg/sample	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Cadmium	µg/sample	< 0.003	0.092	0.038	0.027	< 0.003
Caesium	µg/sample	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Calcium	µg/sample	41	88	56	57	46
Chromium	µg/sample	0.08	17.9	8.3	8.1	0.10
Cobalt	µg/sample	< 0.010	0.33	0.126	0.099	< 0.010
Copper	µg/sample	0.07	1.00	0.35	0.27	0.06
ron	µg/sample	1.3	460	189	114	1.5
anthanum	µg/sample	< 0.005	0.154	0.065	0.041	0.005
_ead	µg/sample	0.017	3.5	1.31	1.00	0.021
_ithium	µg/sample	0.017	0.036	0.025	0.022	0.024
Magnesium	ug/sample	5.5	34	16.6	11.8	6.3
Manganese	µg/sample	0.03	6.2	2.2	1.27	0.04
Mercury	µg/sample	< 0.005	0.010	< 0.005	< 0.005	< 0.005
Molybdenum	µg/sample	< 0.010	0.120	0.035	0.024	< 0.010
Nickel	µg/sample	< 0.05	0.48	0.15	0.09	< 0.05
Phosphorus	µg/sample	< 1.0	3.0	< 1.0	< 1.0	< 1.0
Potassium	µg/sample	96	64	80	89	114
Rubidium	µg/sample	0.058	0.088	0.072	0.064	0.068
Selenium	µg/sample	< 0.05	0.05	< 0.05	< 0.05	< 0.05
Silver	µg/sample	< 0.005	0.008	0.007	< 0.005	< 0.005
Sodium	µg/sample	260	151	210	230	290
Strontium	µg/sample	2.7	1.41	1.94	2.4	3.2
Sulphur	µg/sample	< 500	< 500	< 500	< 500	< 500
Fhallium	µg/sample	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Fin	µg/sample	< 0.003	0.14	0.05	0.03	< 0.003
Jranium	µg/sample	0.0016	0.0052	0.0026	0.0024	0.0019
/anadium	µg/sample	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Zinc		< 0.3	< 0.3 410	210	< 0.3	< 0.3
LINC	µg/sample	104	410	210	187	124

SUMMARY OF MEIHODS The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Miscellaneou	us filter type less than 50 mm diameter		
Test	Method Description	Default Detection Limit	Samples
Aluminium	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.2 μg/sample	10-15
Antimony	Modified aqua regia digestion of client filter, analysis by ICP-MS (see NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 µg/sample	10-15
Arsenic	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.05 μg/sample	10-15
Barium	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Beryllium	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Lab No: 1103531 v 1	Hill Laboratories	F	Dage 2 of 4

		er type less than 50 mm diameter		.
Test		Method Description	Default Detection Limit	Sample
Bismuth		Modified aqua regia digestion of client filter, analysis by ICP-MS (see NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 μg/sample	10-15
Boron		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.3 μg/sample	10-15
Bromine		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0 μg/sample	10-15
Cadmium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.0010 µg/sample	10-15
Caesium		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Calcium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	3 µg/sample	10-15
Chromium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.05 μg/sample	1-15
Cobalt		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 µg/sample	10-15
Copper		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.03 μg/sample	10-15
Iron		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	1.0 μg/sample	1-15
Lanthanum		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Lead		Modified aqua regia digestion of client filter, analysis by ICP-MS (see NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	1-15
Lithium		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 µg/sample	10-15
Magnesium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	1.0 μg/sample	10-15
Manganese		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 μg/sample	10-15
Mercury		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Molybdenum		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 μg/sample	10-15
Nickel		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.05 μg/sample	10-15
Phosphorus		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	1.0 μg/sample	10-15
Potassium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	3 µg/sample	10-15
Rubidium		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Selenium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.010 µg/sample	10-15
Silver		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.005 µg/sample	10-15
Sodium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	1.0 μg/sample	10-15
Strontium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.03 μg/sample	10-15
Sulphur		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0 μg/sample	10-15
Thallium		Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.003 μg/sample	10-15
in		Modified aqua regia digestion of client filter, analysis by ICP-MS (see NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.03 μg/sample	10-15
Uranium		Modified aqua regia digestion of client filter, analysis by ICP-MS (not listed by NIOSH 7303). In-house based on NIOSH Method 7303, issue 1 (modified).	0.0010 µg/sample	10-15

Sample Type: Miscellaneous filter type less than 50 mm diameter											
Test	Method Description	Default Detection Limit	Samples								
Vanadium	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.3 µg/sample	10-15								
Zinc	Modified aqua regia digestion of client filter, analysis by ICP-MS. In-house based on NIOSH Method 7303, issue 1 (modified).	0.05 μg/sample	1-15								

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental Division

Hill Laboratories

SPECIATED VOC

CHEMICAL ANALYSIS BRANCH

25/02/13

Robert Murray Air Matters Ltd PO Box 96-256 BALMORAL AUCKLAND 1342 Lab. Reference: 2013-0356

DATE RECEIVED:

SAMPLE ORIGIN: Air Matters Ltd

DATE OF INVESTIGATION: 10/01/2013

ANALYSIS REQUIRED: Volatile Organic Compounds

REPORT OF ANALYSIS

See attached sheet(s) for sample description and test results.

The results of this report have been approved by the NATA signatory whose signature appears below.

For all administrative or account details please contact Sue Northover or Jeanine Wells.

ahereeuo Martin Mazereeuw

Manager

Date: 14/03/13

TestSafe Australia – Chemical Analysis Branch ABN 77 682 742 966 5A Pioneer Avenue Thornleigh NSW 2120 AUSTRALIA Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: <u>lab@work.cover.nsw.gov.au</u> WorkCover Assistance Service **13 10 50** Website: <u>www.work.cover.nsw.gov.au</u>

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025

air matters

81

Client : Robert Murray Sample ID : 13001 CA1

Date Sampled : 10-Jan-2013 Reference Number : 2013-0356-1F

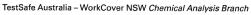
No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASING	μg/s	ection		Compounds	CASINO	µg/section	
	Aliphatic hydrocarbon	S (LOD = 5μg/çe	mpound/sect	ion)		Aromatic hydrocarbon	S (LOD = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND.	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo	und/section)		
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND.	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
. 1	Chlorinated hydrocarb	005 (LOD = 5µ	g/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo	und/section)		
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound	/section)		
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	'ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compour	d/section)		
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	. ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOD #37= 5µg & #38=25µg/compound/section)					PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
	Total VOCs (LOD =50µg/compo	und/section)	ND	ND		Worksheet check		YES	YES

Page 1 of 12

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 WC03147 0412

Accreditation No. 3726


Client : Robert Murray Sample ID : 13001 CA2

Date Sampled : 10-Jan-2013 Reference Number : 2013-0356-2F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back		
	Compounds	CASIN	μg/s	ection		Compounds	CASINO	µg/section			
	Aliphatic hydrocarboi	18 (LOD = 5µg/c	ompound/sec	tion)		Aromatic hydrocarbons (LOD = 1µg/compound/section)					
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND		
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND		
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND		
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND		
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND		
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND		
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND		
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND		
9	3-Methylhexane	589-34-4	ND	ND [.]	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND		
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND		
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55		i1, #52 & #53	=25µg/c/s)		
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND		
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND		
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND		
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND		
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND		
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND		
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK		ND	ND		
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo					
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND		
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND		
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND		
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND		
-	Chlorinated hydrocarb				60	2-Ethyl hexanol	104-76-7	ND	ND		
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND		
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo		, ND	ND		
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate		ND	ND		
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	141-78-6	ND	ND		
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	109-60-4 123-86-4	ND	ND		
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	123-80-4	ND	ND		
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound					
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND		
12	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND .		
3	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	1034-04-4	ND	ND		
4	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compour					
5	1,2-Dichlorobenzene	95-50-1	ND	ND .	69	PGME	107-98-2	ND	ND		
6	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND		
-	Miscellaneous (LOD #37=				71	PGMEA	029-14-1 108-65-6	ND	ND		
7	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate		ND	ND		
	n-Vinyl-2-pyrrolidinone	75-05-8 88-12-0	ND	ND	73	DGMEA	111-15-9 112-15-2	ND	ND		
-	Total VOCs (LOD =50µg/compo	und/section)	ND	ND		Worksheet check		YES	YES		

2013-0356

Page 2 of 12

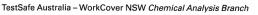
WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 Wc03147 0412

Accredited for compliance with ISO/IEC 17025

"Infahahah

ac-MRA NATA

Accreditation No. 3726



Client : Robert Murray Sample ID : 13001 CA3

Date Sampled : 10-Jan-2013 Reference Number : 2013-0356-3F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASINO	μg/s	ection		Compounds	CASINO	μg/section	
	Aliphatic hydrocarbor	18 (LOD = 5µg/co	ompound/sect	ion)		Aromatic hydrocarbon	IS (LOD = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	, ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo	und/section)		
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND.
	Chlorinated hydrocarb		g/compound/	ection)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound		· · · · · · · · · · · · · · · · · · ·	
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND .	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compoun			
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOD #37=		ompound/sec	ion)	71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND .	ND	72	Cellosolve acetate	111-15-9	ND	ND
88	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
T	Total VOCs (LOD =50µg/compe	ound/section)	ND	ND		Worksheet check	· · ·	YES	YES

Page 3 of 12

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: Iab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 WC03147 0412

Client : Robert Murray Sample ID : 13001 CA4

WorkCover

Date Sampled : 10-Jan-2013 Reference Number : 2013-0356-4F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASINO	μg/s	ection	NU	Compounds	CASINO	µg/section	
	Aliphatic hydrocarbor	18 (LOD = 5µg/c	ompound/sect	tion)		Aromatic hydrocarbon	S (LOD = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	. ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55		1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo		112	
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
+	Chlorinated hydrocarb				60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol		ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo	108-93-0	110	110
6	1.2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	I	ND	ND
27	Chloroform		ND	ND	63	n-Propyl acetate	141-78-6	ND	ND
8	1,1,1-Trichloroethane	67-66-3 71-55-6	ND	ND	64	n-Butyl acetate	109-60-4	ND	ND
9	1,1,2-Trichloroethane		, ND	ND	65	Isobutyl acetate	123-86-4	ND	ND
0	Trichloroethylene	79-00-5 .79-01-6	ND	ND	0.5		110-19-0	ND	ND
1	Carbon tetrachloride		ND	ND	66	Ethers (LOD = 25µg/compound Ethyl ether	1	ND	ND
2	Perchloroethylene	56-23-5	ND	ND	67	tert -Butyl methyl ether (MTBE)	60-29-7	ND	ND
3	1,1,2,2-Tetrachloroethane	127-18-4	ND	ND	68	Tetrahydrofuran (THF)	1634-04-4	ND	ND
4	Chlorobenzene	79-34-5 108-90-7	ND	ND '			109-99-9	ND	IND
5	1,2-Dichlorobenzene		ND	ND	69	Glycols (LOD = 25µg/compoun PGME	1	ND	ND
6	1,4-Dichlorobenzene	95-50-1	ND	ND	70	Ethylene glycol diethyl ether	107-98-2	ND	ND
		106-46-7	· · · ·		70	PGMEA	629-14-1	ND	
7	Miscellaneous (LOD #37= 5	Т	ompound/sec ND	tion) ND	72		108-65-6		ND
8	n-Vinyl-2-pyrrolidinone	75-05-8	ND	ND	72	Cellosolve acetate DGMEA	111-15-9	ND ND	ND
-	n- • my-z-pyrronamone	88-12-0	שא	IND	/5	DOMEA	112-15-2	ND	ND
	Total VOCs (LOD =50µg/compo	und/section)	ND	ND		Worksheet check		YES	YES

2013-0356

Page 4 of 12

TestSafe Australia – WorkCover NSW Chemical Analysis Branch WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: Iab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 Wc03147 0412

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025

85

Client : Robert Murray Sample ID : 13001 CB1

WorkCover

Date Sampled : 11-Feb-2013 Reference Number : 2013-0356-5F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	compounds	CASIN	µg/section			Compounds	CASINO	μg/section	
	Aliphatic hydrocarbon	IS (LOD = 5µg/co	ompound/sect	ion)		Aromatic hydrocarbon	S (LOD = 1µg/co	mpound/secti	on)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND ·
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	ND	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55		1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)		ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo	100 10 1		
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarb				60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	104-70-7	ND	ND
25	1.1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compos		· .	
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate		ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	141-78-6	ND	ND
28	1,1,1-Trichloroethane		ND	ND	64	n-Butyl acetate	109-60-4	ND	ND
29	1,1,2-Trichloroethane	71-55-6	ND	ND	65	Isobutyl acetate	123-86-4	ND	ND
30	Trichloroethylene	79-00-5 79-01-6	ND	ND	05	Ethers (LOD = 25µg/compound	110-19-0	ND	ND
31	Carbon tetrachloride		ND	ND	66	Ethyl ether	, in the second s	ND	ND
32	Perchloroethylene	56-23-5	ND	ND	67		60-29-7	ND	ND
33	1,1,2,2-Tetrachloroethane	127-18-4	ND	ND	68	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND
34	Chlorobenzene	79-34-5	ND	ND	08	Tetrahydrofuran (THF)	109-99-9	ND	IND
35	1,2-Dichlorobenzene	108-90-7	ND	ND	69	Glycols (LOD = 25µg/compoun		ND	NID
36	1,2-Dichlorobenzene	95-50-1			70	PGME	107-98-2	ND	ND
.0		106-46-7	ND	ND		Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOD #37= 5	T			71	PGMEA	108-65-6	ND	ND
37	Acetonitrile n-Vinyl-2-pyrrolidinone	75-05-8	ND ND	ND ND	72 73	Cellosolve acetate	111-15-9	ND	ND
		88-12-0			13	DGMEA	112-15-2	ND	ND
	Total VOCs (LOD =50µg/compo	und/section)	ND	ND		Worksheet check		YES	YES

2013-0356

Page 5 of 12

TestSafe Australia – WorkCover NSW Chemical Analysis Branch WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 WC03147 0412

Accredited for compliance with ISO/IEC 17025

86

Client : Robert Murray Sample ID : 13001 CB2

Date Sampled : 11-Feb-2013 Reference Number : 2013-0356-6F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASINO	μg/s	ection		Compounds	CASNO	µg/section	
	Aliphatic hydrocarbor	IS (LOD = $5\mu g/c$	ompound/sect	ion)		Aromatic hydrocarbon	S (LOD = 1μg/co	mpound/secti	on)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	ND	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	ND	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3-	ND	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	ND	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND.	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND .	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo			
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	-57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarb		g/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND	ŇD
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound		,	
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND
33	1.1,2,2-Tetrachloroethane	79-34-5	ND .	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compoun			
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1.4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
-	Miscellaneous (LOD #37=				71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
+	Total VOCs (LOD =50µg/comp		ND	ND		Worksheet check		YES	YES

2013-0356

Page 6 of 12

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: Ib@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 WC03147 0412

5

Client : Robert Murray Sample ID : 13001 CC1

WorkCover

Date Sampled : 18-Feb-2013 Reference Number : 2013-0356-7F

No	Compounds	CAS No	Front	Back	No	Compounds	CAS No	Front	Back
	Compounds	CASINO	μg/s	ection		Compounds	CASINO	µg/section	
	Aliphatic hydrocarbon	S (LOD = $5\mu g/c$	ompound/sect	ion)		Aromatic hydrocarbon	S (LOD = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	216	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	8	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	18	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	114	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	31	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	11	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	897	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	335	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)		159	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compo	100 10 1		
20	n-Tetradecane	629-59-4	ND	ND .	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
+	Chlorinated hydrocarb				60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1.1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	123-80-4	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound		110	TLD .
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	00-29-7 1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	1034-04-4	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compour			L
35	1.2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
36	1,4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
+	Miscellaneous (LOD #37= 5		1		71	PGMEA	108-65-6	ND	ND
37	Acetonitrile	T	ND	ND	72	Cellosolve acetate		ND	ND
8	n-Vinyl-2-pyrrolidinone	75-05-8 88-12-0	ND	ND	73	DGMEA	111-15-9 112-15-2	ND	ND
1	Total VOCs (LOD =50µg/compo	und/section)	3293	ND		Worksheet check		YES	YES

2013-0356

Page 7 of 12

TestSafe Australia – WorkCover NSW Chemical Analysis Branch WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 wcc3147 0412

Client : Robert Murray Sample ID : 13001 CC2

Date Sampled : 18-Feb-2013 Reference Number : 2013-0356-8F

No	Compounds	CAS No	Front	Front Back		Compounds	CAS No	Front	Back
	Compounds	CASING	µg/section		No	Compounds	CASINO	µg/section	
	Aliphatic hydrocarbor	DDS (LOD = 5µg/compound/section)				Aromatic hydrocarbon	ONS (LOD = 1µg/compound/section)		
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	3	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND
5	Cyclopentane	287-92-3	ND	ND	43 ^c	1,2,4-Trimethylbenzene	95-63-6	1	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	16	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	6	ŇD
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	7	ND
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compound/section)			
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND
	Chlorinated hydrocarb		g/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND	ND
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound/section)			
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND
34	Chlorobenzene	108-90-7	ND	ND		$\frac{1}{100} \frac{1}{100} \frac{1}$			
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69			ND	ND
36	1.4-Dichlorobenzene	106-46-7	ND	ND	70			ND	ND
	Miscellaneous (LOD #37=				71	PGMEA	02/11/1		ND
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
	Total VOCs (LOD =50µg/compound/section) 1			ND		Worksheet check		YES	YES

2013-0356

Page 8 of 12

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 Wc03147 0412

Client : Robert Murray Sample ID : 13001 CC3

Date Sampled : 18-Feb-2013 Reference Number : 2013-0356-9F

No	Compounds	mpounds CAS No		No	Compounds	CAS No	Front	Back	
			μg/s	µg/section				μg/s	ection
	Aliphatic hydrocarbor	IS (LOD = 5µg/co	mpound/sect	ion)		Aromatic hydrocarbon	\$ (LOD = 1µg/co	mpound/sect	ion)
1	2-Methylbutane	78-78-4	ND	44	39	Benzene	71-43-2	ND	ND
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	3	ND
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	. ND	ND
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	1	ND
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	16	ND
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	6	ND
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55		1, #52 & #53	=25µg/c/s
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)		ND	ND
18	n-Dodecane	1120-21-4	ND	ND	55	Methyl isobutyl ketone (MIBK)	78-93-3	ND	ND
19	n-Tridecane	629-50-5	ND	ND			108-10-1	. ND	
20	n-Tetradecane		ND	ND	56	Alcohols (LOD = 25µg/compo Ethyl alcohol		ND	33
21	α-Pinene	. 629-59-4	ND	ND	57	n-Butyl alcohol	64-17-5	ND	ND
22	β-Pinene	80-56-8	ND	ND	58	where the second s	71-36-3		
23	D-Limonene	127-91-3	ND	ND	59	Isobutyl alcohol	78-83-1	ND	ND
	the second s	138-86-3				Isopropyl alcohol	67-63-0	ND	ND
24	Chlorinated hydrocarb	1			60	2-Ethyl hexanol	104-76-7	ND	ND
25	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND
	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/comport	ind/section)		r
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND
9	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND
0	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound/section)			
1	Carbon tetrachloride	56-23-5	ND	ND			60-29-7	ND	ND
2	Perchloroethylene	127-18-4	ND	ND	67 tert -Butyl methyl ether (MTBE) 1634-		1634-04-4	ND	ND
3	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	68 Tetrahydrofuran (THF) 109-99-9		ND	ND
4	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compound/section)			
5	1,2-Dichlorobenzene	95-50-1	ND	ND	69	PGME	107-98-2	ND	ND
6	1.4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND
	Miscellaneous (LOD #37=	5µg & #38=25µg/c	ompound/sec	tion)	71	PGMEA	108-65-6	ND	ND
7	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND
8	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND
+	Total VOCs (LOD =50µg/compo		ND	111		Worksheet check		YES	YES

2013-0356

Page 9 of 12

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 wcc3147 0412

Client : Robert Murray Sample ID : 13001 CC4

Date Sampled : 18-Feb-2013 Reference Number : 2013-0356-10F

					-	1	T	т	T	
No	Compounds	CAS No	Front	t Back		Compounds	CAS No	Front	Back	
		μg/section			-		μg/s	ection		
	Aliphatic hydrocarbor	15 (LOD = 5µg/c	compound/section)			Aromatic hydrocarbons (LOD = 1µg/compound/section)				
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND	
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	2	ND	
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND	
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND	
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	1	ND	
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND	
7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND	
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND ·	
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	15	ND	
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	5	ND	
11	Methylcyclohexane	108-87-2	ND -	ND		Ketones (LOD #49, #54 & #55	=5µg/c/s; #50, #5	1, #52 & #53	=25µg/c/s)	
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND	
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND	
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND	
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND	
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND	
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND	
18	n-Dodecane	112-40-3	ND	ND	55	Methyl isobutyl ketone (MIBK)	108-10-1	ND	ND	
19	n-Tridecane	629-50-5	ND	ND		Alcohols (LOD = 25µg/compound/section)				
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND	
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol	71-36-3	ND	ND	
22	β-Pinene	127-91-3	ND	ND	58	Isobutyl alcohol	78-83-1	ND	ND	
23	D-Limonene	138-86-3	ND	ND	59	Isopropyl alcohol	67-63-0	ND	ND	
	Chlorinated hydrocarb	ONS (LOD = 5μ	g/compound/	section)	60	2-Ethyl hexanol	104-76-7	ND .	ND	
24	Dichloromethane	75-09-2	ND	ND	61	Cyclohexanol	108-93-0	ND	ND	
25	1,1-Dichloroethane	75-34-3	ND	ND		Acetates (LOD = 25µg/compo	und/section)			
26	1,2-Dichloroethane	107-06-2	ND	ND	62	Ethyl acetate	141-78-6	ND	ND	
27	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND	
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND	
29	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate 110-19-0 N		ND	ND	
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound	l/section)			
31	Carbon tetrachloride	56-23-5	ND	ND	66	Ethyl ether	60-29-7	ND	ND	
32	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND	
33	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	Tetrahydrofuran (THF)	109-99-9	ND	ND	
34	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compound/section)				
35	1,2-Dichlorobenzene	95-50-1	ND	ND	69	69 PGME 107-98-2		ND	ND	
36	1.4-Dichlorobenzene	106-46-7	ND	ND	70	Ethylene glycol diethyl ether	629-14-1	ND	ND	
	Miscellaneous (LOD #37= 5	5µg & #38=25µg/c	ompound/sec	tion)	71	PGMEA	108-65-6	ND	ND	
37	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND	
38	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND	
	Total VOCs (LOD =50µg/compound/sec		107	ND ·		Worksheet check		YES	YES	

2013-0356

Page 10 of 12

 TestSafe Australia – WorkCover NSW Chemical Analysis Branch

 WorkCover NSW
 ABN 77 682 742 966
 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia

 Telephone:
 61 2 9473 4000
 Facsimile:
 61 2 9980 6849
 Email:

 Website:
 testsafe.com.au/chemical.asp
 WorkCover Assistance Service:
 13 10 50

 WC03147 0412
 V412

Accreditation No. 3726

Client : Robert Murray Sample ID : 13001 CC5

Date Sampled : 18-Feb-2013 Reference Number : 2013-0356-11F

No	Compounds	Compounds CAS No		Back	No	Compounds	CAS No	Front	Back		
	-		μg/s	ection		•	-	μg/s	ection		
	Aliphatic hydrocarbon	S (LOD = 5µg/c	ompound/sec	tion)	T	Aromatic hydrocarbons (LOD = 1µg/compound/section)					
1	2-Methylbutane	78-78-4	ND	ND	39	Benzene	71-43-2	ND	ND		
2	n-Pentane	109-66-0	ND	ND	40	Ethylbenzene	100-41-4	2	. ND		
3	2-Methylpentane	107-83-5	ND	ND	41	Isopropylbenzene	98-82-8	ND	ND		
4	3-Methylpentane	96-14-0	ND	ND	42	1,2,3-Trimethylbenzene	526-73-8	ND	ND		
5	Cyclopentane	287-92-3	ND	ND	43	1,2,4-Trimethylbenzene	95-63-6	1	ND		
6	Methylcyclopentane	96-37-7	ND	ND	44	1,3,5-Trimethylbenzene	108-67-8	ND	ND		
-7	2,3-Dimethylpentane	565-59-3	ND	ND	45	Styrene	100-42-5	ND	ND		
8	n-Hexane	110-54-3	ND	ND	46	Toluene	108-88-3	ND	ND		
9	3-Methylhexane	589-34-4	ND	ND	47	p-Xylene &/or m-Xylene	106-42-3 & 108-38-3	15	ND		
10	Cyclohexane	110-8-27	ND	ND	48	o-Xylene	95-47-6	5	ND		
11	Methylcyclohexane	108-87-2	ND	ND		Ketones (LOD #49, #54 & #55		1, #52 & #53	=25µg/c/s)		
12	2,2,4-Trimethylpentane	540-84-1	ND	ND	49	Acetone	67-64-1	ND	ND		
13	n-Heptane	142-82-5	ND	ND	50	Acetoin	513-86-0	ND	ND		
14	n-Octane	111-65-9	ND	ND	51	Diacetone alcohol	123-42-2	ND	ND		
15	n-Nonane	111-84-2	ND	ND	52	Cyclohexanone	108-94-1	ND	ND		
16	n-Decane	124-18-5	ND	ND	53	Isophorone	78-59-1	ND	ND		
17	n-Undecane	1120-21-4	ND	ND	54	Methyl ethyl ketone (MEK)	78-93-3	ND	ND		
18	n-Dodecane	1120-21-4	ND	ND	55	Methyl isobutyl ketone (MIBK)		ND	ND		
19	n-Tridecane	629-50-5	· ND	ND		5 Methyl isobutyl ketone (MIBK) 108-10-1 Alcohols (LOD = 25µg/compound/section)					
20	n-Tetradecane	629-59-4	ND	ND	56	Ethyl alcohol	64-17-5	ND	ND		
21	α-Pinene	80-56-8	ND	ND	57	n-Butyl alcohol		ND	ND		
22	B-Pinene		ND	ND	58	Isobutyl alcohol	71-36-3	ND	ND		
23	D-Limonene	127-91-3	ND	ND	59	Isopropyl alcohol	78-83-1	ND	ND		
	Chlorinated hydrocarb	138-86-3		l	60	2-Ethyl hexanol	67-63-0	ND	ND		
24	Dichloromethane		g/compound/ ND	ND	61	Cyclohexanol	104-76-7	ND	ND		
25	1,1-Dichloroethane	75-09-2	ND	ND	01		108-93-0	ND	ND		
26	1,2-Dichloroethane	75-34-3	ND	ND	62	Acetates (LOD = 25µg/compo		NID	ND		
27		107-06-2				Ethyl acetate	141-78-6	ND	ND		
28	Chloroform	67-66-3	ND	ND	63	n-Propyl acetate	109-60-4	ND	ND		
28	1,1,1-Trichloroethane	71-55-6	ND	ND	64	n-Butyl acetate	123-86-4	ND	ND		
	1,1,2-Trichloroethane	79-00-5	ND	ND	65	Isobutyl acetate	110-19-0	ND	ND		
30	Trichloroethylene	79-01-6	ND	ND		Ethers (LOD = 25µg/compound					
1	Carbon tetrachloride	56-23-5	ND	ND	66 Ethyl ether		60-29-7	ND	ND		
2	Perchloroethylene	127-18-4	ND	ND	67	tert -Butyl methyl ether (MTBE)	1634-04-4	ND	ND		
3	1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	68	8 Tetrahydrofuran (THF) 109-99-9 ND		ND	ND		
4	Chlorobenzene	108-90-7	ND	ND		Glycols (LOD = 25µg/compound/section)					
5	1,2-Dichlorobenzene	95-50-1	ND	ND			107-98-2	ND	ND		
6	1,4-Dichlorobenzene	106-46-7	ND	ND			629-14-1	ND	ND		
+	Miscellaneous (LOD #37= 5	6μg & #38=25μg/c			71	PGMEA	108-65-6	ND	ND		
7	Acetonitrile	75-05-8	ND	ND	72	Cellosolve acetate	111-15-9	ND	ND		
8	n-Vinyl-2-pyrrolidinone	88-12-0	ND	ND	73	DGMEA	112-15-2	ND	ND		
	Total VOCs (LOD =50µg/compo	und/section)	107	ND		Worksheet check		YES	YES		

2013-0356

Page 11 of 12

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50 WC03147 0412

Air Matters

ND = Not Detected

ND = Not Detected VOCs = Volatile Organic Compounds Method : Analysis of Volatile Organic Compounds in Workplace Air by Gas Chromatography/Mass Spectrometry Method Number : WCA.207 Detection Limit : 5µg/section; 25µg/section for oxygenated hydrocarbons except acetone, MEK and MIBK at 5µg/section and

Detection Limit : Sug/section; 20 µg/section for oxygenated hydrocarbons except accore, high and high section. aromatic hydrocarbon at µg/section. Brief Description : Volatile organic compounds are trapped from the workplace air onto charcoal tubes by the use of a personal air monitoring pump. The volatile organic compounds are then desorbed from the charcoal in the laboratory with CS₂. An aliquot of the desorbant is analysed by capillary gas chromatography with mass spectrometry detection.

Total Volatile Organic Compounds (TVOC) test result in µg/section is calculated by comparison to the average mass detector Therefore, the TVOC test result in upsection is calculated by comparison to the average mass detector response of the 73 quantified compounds. The response of a mass detector is dependent on the fragmentation of the molecule. Therefore, the TVOC test result should be interpreted as a semi-quantitative guide to the amount of VOCs present. If the TVOC test result is less than the addition of the total amount of the 73 quantified compounds then the TVOC result is of little value other than for comparative purposes. If the TVOC test result is greater than the addition of all the compounds quantified then this can indicate that there are additional compounds present other than the 73 quantified compounds reported.

PGME : Propylene Glycol Monomethyl Ether

PGMEA : Propylene Glycol Monomethyl Ether Acetate DGMEA : Diethylene Glycol Monoethyl Ether Acetate

Measurement Uncertainty

The measurement uncertainty is an estimate that characterises the range of values within which the true value is asserted to lie. The uncertainty estimate is an expanded uncertainty using a coverage factor of 2, which gives a level of confidence of approximately 95%. The estimate is compliant with the "ISO Guide to the Expression of Uncertainty in Measurement" and is a full estimate based on in based on the uncertainty and the uncertainty day. full estimate based on in-house method validation and quality control data.

Quality Assurance In order to ensure the highest degree of accuracy and precision in our analytical results, we undertake extensive intra- and interlaboratory quality assurance (QA) activities. Within our own laboratory, we analyse laboratory and field blanks and perform duplicate and repeat analysis of samples. Spiked QA samples are also included routinely in each run to ensure the accuracy of the analyses. WorkCover Laboratory Services has participated for many years in several national and international inter-laboratory compension meanweighted durks. comparison programs listed below:

Workplace Analysis Scheme for Proficiency (WASP) conducted by the Health & Safety Executive UK;
 Quality Management in Occupational and Environmental Medicine QA Program, conducted by the Institute for Occupational,
 Social and Environmental Medicine, University of Erlangen – Nuremberg, Germany;
 Quality Control Technologie QA Program, Autorelia, Social and Environmental Medicine)

Quality Control Technologies QA Program, Australia: Royal College of Pathologists QA Program, Australia.

2013-0356

WC03147 0412

Page 12 of 12

Accreditation No. 3726

Accredited for compliance with ISO/IEC 17025

TestSafe Australia - WorkCover NSW Chemical Analysis Branch

WorkCover NSW ABN 77 682 742 966 5A Pioneer Avenue, Thornleigh, NSW 2120, Australia

Telephone: 61 2 9473 4000 Facsimile: 61 2 9980 6849 Email: lab@workcover.nsw.gov.au Website: testsafe.com.au/chemical.asp WorkCover Assistance Service: 13 10 50

ISOCYANATES

R J Hill Laboratories Limited | Tel 1 Clyde Street | Fax Fax Private Bag 3205 Hamilton 3240, New Zealand Web www.hill-labs.co.nz

+64 7 858 2000 +64 7 858 2001 Email mail@hill-labs.co.nz

Page 1 of 1

		<u> </u>		<u> </u>			
Client: Contact:	Air Matters Limite Robert Murray C/- Air Matters Lin PO Box 96 256 Balmoral AUCKLAND 1342	mited		Dat Dat Qu Orc Clio	o No: te Registered: te Reported: ote No: der No: ent Reference:	1103546 SP 23-Feb-2013 08-Mar-2013 Robert Murray	
Sample T	/pe: 1-(2-Pyridyl)pi	nerazine (1	-2PP) coated d		<50mm	Robert Murray	
oumpic 13		· `	13001 BB1	13001 BB2	13001 BC1	13001 BC2	13001 BC3
	Sam	ole Name:	13001 661	13001 662	13001 BC1	13001 BC2	13001 BC3
	Lab	Number:	1103546.1	1103546.2	1103546.3	1103546.4	1103546.5
HDI (1,6-hex diisocyanate		µg/sample	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
24 TDL (24	Toluono diicoovanato)	ug/comple	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

2,4-1 DI (2,4-1 oluene diisocyanate)	µg/sample	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
2,6-TDI (2,6-Toluene diisocyanate)	µg/sample	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
MDI (Methylene bisphenyl isocyanate)	µg/sample	< 0.02	< 0.02	1.74	< 0.02	0.02
Sam	ole Name:	13001 BC4				
Lab	Number:	1103546.6				
HDI (1,6-hexamethylene diisocyanate)	µg/sample	< 0.02	-	-	-	-
2,4-TDI (2,4-Toluene diisocyanate)	µg/sample	< 0.02	-	-	-	-
2,6-TDI (2,6-Toluene diisocyanate)	µg/sample	< 0.02	-	-	-	-
MDI (Methylene bisphenyl isocyanate)	µg/sample	0.02	-	-	-	-

Μ Μ Α R OF ME Н 0 DS Т

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: 1-(2-Pyridyl)piperazine (1-2PP) coated glass fiber filters <50mm						
Test	Method Description	Default Detection Limit	Samples			
	1-2PP coated filters extracted with ACN/DMSO 90/10, LC-MS analysis based on OSHA methods 42/47.	-	1-6			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Graham Corban MSc Tech (Hons) Client Services Manager - Environmental Division


Lab No: 1103546 v 1

Hill Laboratories

APPENDIX 3: BUFFER ZONES

SOUTHERN END METALS

NORTHERN END METALS

SOUTHERN END XYLENE



NORTHERN END XYLENE

NORTHERN AND SOUTHERN BUFFER ZONES

8. APPENDIX 3: BUFFER ZONES

Monitoring of particulate and various metals was carried out at source (or as close as practicable to source) and then at stepped locations as close as possible to being down wind (e.g. 5m, 10m, 15m, 20m, 30m, 150m etc.). Sampling for each contaminant was carried out over a few days with varying environmental conditions. A value for the decrease in concentration per meter was then calculated by using measured concentrations at various locations downwind. The potential spread of contamination was then calculated by using the maximum at source concentration and the most conservative concentration decrease per meter. From this buffer zones were created which indicate the location on the AHB where maintenance activities can be undertaken without any specific controls required. These buffer zones are considered conservative.

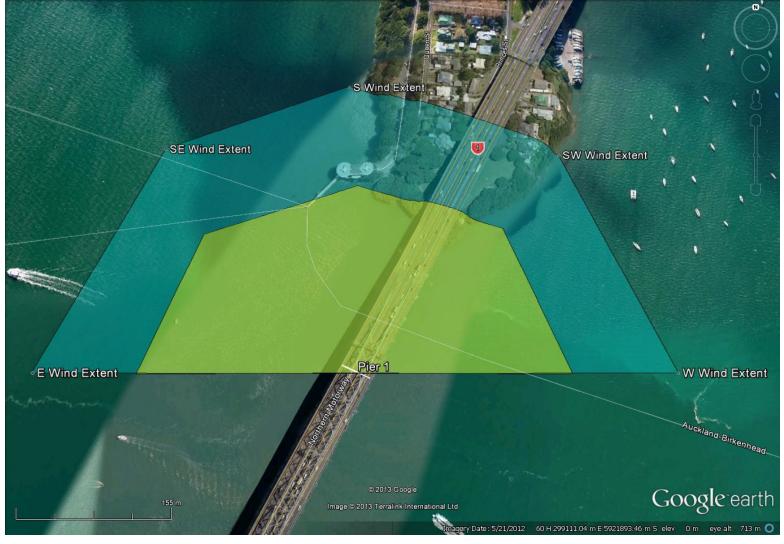

	Chromium	Iron	Lead	Zinc	Xylene (conversion from TVOC ppm data)
Maximum Concentration Measured at Source (µg/m ³)	40.2	1035.9	104.4	646.1	198
Worst Case Decrease per meter (µg/m³)	0.2	20	0.3	2.9	1.3
Environmental Standard (µg/m ³)	3.6	50	1.5	20	0.35
Projected distance as buffer zone (m)	183	49	343	216	152

The concentrations can be viewed below.

From this data the potential contaminant spread has been calculated and illustrated. This information is detailed below. The colour coding is labelled in Picture 1 and is the same for pictures 2, and 3.

air matters

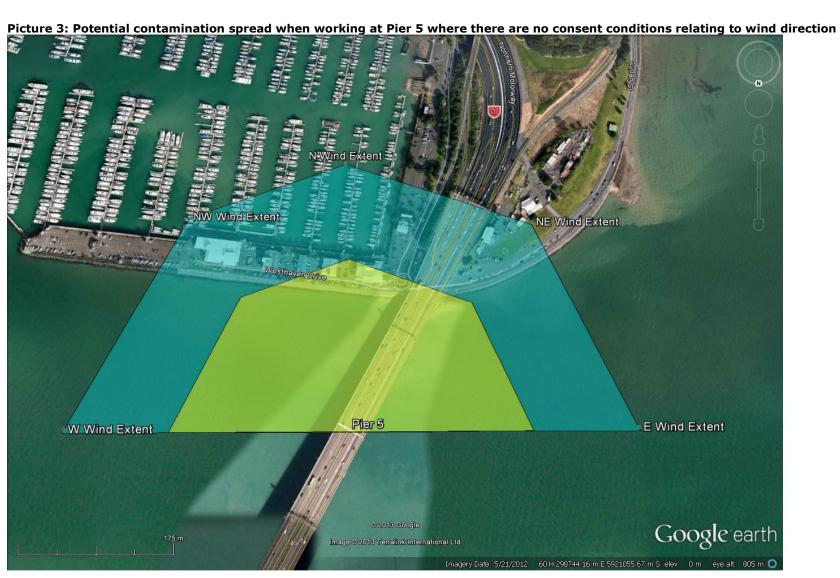
Picture 1: Potential contamination spread when working at the southern end of the AHB (Span 7 Panel Point 0)


Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

Picture 1 visually displays the potential spread of various contaminants when working at the most landward point of the AHB (Span 7 Panel Point 0). At this point (and any point south of Pier 5) there are specific resource consent conditions around wind direction (i.e. no work to be undertaken when the wind is from the NW quarter).

The picture shows that the consent condition is adequately protecting the area to the SE of the AHB (Westhaven Marina); however there are areas (used by people for work or recreation) that are affected by concentrations above environmental guidelines from the S round to the SW of the AHB. Potential ways to mitigate this include containment, exclusion zones, working when people are not present in the affected areas. *Note: Xylene is an odour based standard.*

Picture 2: Potential contamination spread when working at Pier 1 where there are no consent conditions relating to wind direction


Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

Picture 2 is based on work being undertaken on Pier 1. At this point there are no consent conditions restricting work under certain wind directions. The picture indicates that lead and zinc concentrations may be above environmental guidelines on land when the wind is from the S round to the SW. Lead is the main issue and is determined by the concentration of lead in the surface coating being removed. Potential ways to mitigate this include containment and wind direction restrictions i.e. blasting in this area may occur when wind is not from the S-SW. A better understanding of the lead content in the surface coating prior to removal may also be used to estimate potential buffer zones (i.e. if no or very low levels are lead found restrictions may not apply). Based on current data when blasting work is located more than 340m away from land there are no restrictions required, this would be approximately Span 2 Panel Point 3.

44

Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

Picture 3 is based on work being undertaken on Pier 5. At this point there are no consent conditions restricting work under certain wind directions. The picture indicates that lead and zinc concentrations may be above environmental guidelines on land when the wind is from the NW round to the NE. Lead is the main issue and is determined by the concentration of lead in the surface coating being removed. Potential ways to mitigate this include containment and wind direction restrictions i.e. blasting in this area may occur when wind is not from the NW-NE. A better understanding of the lead content in the surface coating prior to removal may also be used to estimate potential buffer zones (i.e. if no or very low levels are lead found restrictions may not apply). Based on current data when blasting work is located more than 340m away from land there are no restrictions required, this would be approximately Span 4 Panel Point 2.

Buffer Zones were then calculated which indicate areas of the AHB where dry abrasive blasting work and spray painting using the current product can be used without the requirement of mitigation measures (e.g. containment, wind direction controls). Note: the 7m/s wind speed control still applies at all locations on the bridge when dry abrasive blasting.

Buffer Zones for the north and south ends of the AHB are displayed below.

Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

Picture 5: Buffer Zones for Applicable to Spray Painting (Currently Consented Products)

Auckland Harbour Bridge Date: 18/09/2014 Project: 14502

9. APPENDIX 4: AMF APPLICATION - TERMARUST

49

TOTAL BRIDGE SERVICES AUCKLAND HARBOUR BRIDGE

Assessment of a new coating product, Termarust, using the Adaptive Management Framework process

AIR MATTERS REPORT 14051

Test Date: 15/4/2014 Report Date: 10/07/2014 Report prepared for Total Bridge Services by Air Matters Limited

Report written by:

READER

Air Matters Report:14051Date:10/07/2014Status:FINAL

Carol McSweeney Director

Report peer reviewed by:

Robert Murray Environmental Scientist

This report must not be reproduced, except in full, without the written consent of the signatory.

Table of Contents

1.		OE	BJECT	TVES 4
2.		IN	TROD	DUCTION
3.		ME	THO	DOLOGY FOR ADAPTIVE MANAGEMENT FRAMEWORK ASSESSMENT5
4.		RE	VIEW	/ OF TERMARUST BASED ON THE METHODOLOGY OF THE AMF
	4.1		Requ	uest for information
	4.2		Iden	tify the components in the safety data sheet
	4.3		Dete	ermine threshold values for the key contaminants of Termarust6
	4.4		The	proposed usage of Termarust and review against the current consent requirements 7
	4.5		Mitig	gation for trial
	4.6		Metł	nodology for air testing for Termarust7
	4.	6.1	L	Total Suspended Particulate and PM ₁₀ 7
	4.	6.2	2	Volatile Organic Compounds (VOC) 8
	4.	6.3	3	Odour
	4.7		Resu	ults of air testing during Termarust trial 8
	4.	7.1	L	Total Suspended Particulate and PM ₁₀ 8
	4.	7.2	2	Volatile Organic Compounds
	4.	7.3	3	Odour
	4.8		Disc	ussion of results for update of Environmental Management Plan (EMP)12
	4.	8.1	L	Total Suspended Particulate and PM ₁₀ 12
	4.	8.2	2	Volatile Organic Compounds12
	4.	8.3	3	Odour
	4.9		Asse	essment summary for introduction of product to maintenance
5.		RE	FERE	NCES
AP	PEND	NIX	1A: [DATA SHEETS - TSP AS INHALABLE PARTICULATE15
AP	PEND	NIX	1B D	ATA SHEETS – HYDROCARBONS
AP	PEND	NIX	2: W	ATERCARE REPORT FOR ODOUR SCOUT
AP	PEND	NIX	3: M	SD SHEETS FOR TERMARUST

1. OBJECTIVES

- 1. To carry out sampling for overspray, volatile organic compounds and odour during the trial of a new coating product (Termarust).
- 2. To assess results in terms of the Adaptive Management Framework which has been developed as part of the new maintenance consent applications to manage discharges from the Auckland Harbour Bridge maintenance process throughout the term of the consent.

2. INTRODUCTION

The Termarust system is based on a proprietary formulation of high-ratio calcium sulfonate alkyd (HRCSA) that consists of a penetrating sealer (TR2200LV) for use on crevices and a high-build coating product (TR2100) that is used as caulking or stripe coat on crevices or fasteners, and as a self-priming topcoat.

The Termarust can be applied over various levels of surface preparation ranging from a hot water wash at 6,000 psi to remove loosely adherent material and salt contamination when used as an encapsulation coating, through to abrasive blast cleaning to a SSPC SP7 (Brush off) or SP14 (Industrial) finish. It has a "volume solids" of 63% and is thinned or cleaned with mineral spirits. It is usually applied as two "wet on wet" coats (i.e. caulk and stripe coat immediately followed by a full coat)

Termarust is particularly suitable for use on riveted steel work with crevices and has been used to successfully treat many bridges where de-icing salt has been used and the bridge structure has developed pack rust. It has also been used as an encapsulating coating to avoid the costs associated with the removal of lead-based paint.

Its principal disadvantage is that it may take several days to harden enough to walk on and even when fully cured has low abrasion resistance, so is not recommended on surfaces subject to impact or that are accessible to the public.

It is envisaged that Termarust could be a useful option to coat the inside of lattice posts and diagonals of the original bridge, and similar elements where it is difficult to access for abrasive blasting or painting, and to treat any joints with rust bleed. It could also be used in enclosed spaces where the elimination of odour and hazards from conventional solvents may be desirable. Its main benefit could be from extending the life of the existing coating system without the use dry abrasive blasting and negative pressure containment of chromate dust.

3. METHODOLOGY FOR ADAPTIVE MANAGEMENT FRAMEWORK ASSESSMENT

Termarust will be assessed based on the protocol developed as part of the Adaptive Management Framework (AMF) for new products and methods utilised for bridge maintenance. The procedure methodology is:

- 1. Request and review Material Safety Data Sheet for the product;
- 2. Identify components of the product;
- Research air quality guidelines associated with components and create a list of thresholds (if not already covered);
- 4. Check usage and product against the Auckland Council Regional Plan: Air Land and Water Plan (ALWP) or the Proposed Unitary Plan rules or the statutory requirements of the consent;
- 5. Define mitigation measures to be used with new products e.g. preparation method, application method, wind restrictions, screens, buffer zones, containment;
- Carry out trial of product which may require ambient air quality monitoring and/or ambient air quality modelling;
- Compare results with the thresholds presented in the consent application and against the environmental guidelines and or standards as appropriate. Assess effectiveness of mitigation measures. Implement more mitigation where required to meet thresholds, guideline concentrations or environmental standards;
- 8. If product meets thresholds (ambient air quality guidelines) update EMP to include new product and associated mitigations; and
- 9. Introduce product to maintenance.

4. REVIEW OF TERMARUST BASED ON THE METHODOLOGY OF THE AMF

4.1 REQUEST FOR INFORMATION

The Termarust Series Organic Coating 2100/2200 and Termarust thinner (TRT01) safety data sheets have been provided. (See Appendix 3).

4.2 IDENTIFY THE COMPONENTS IN THE SAFETY DATA SHEET.

The Material Safety Datasheet for Termarust Series Organic Coating 2100/2200 and Termarust thinner (TRT01) identifies mineral spirits (CAS# 64742-88-7) at 10-30% in the coating and 60-100% in the thinner. Mineral spirits is also known as solvent naptha and is identified as a general petroleum solvent with a boiling range of 130°C to 220°C. The mineral spirits used in Termarust has a boiling point of 150°C.

Mineral spirits is a complex mixture of saturated aliphatic and aromatic C_7 to C_{13} hydrocarbons. The literature defines mineral spirits as having 80-86% aliphatic (straight chain) hydrocarbons and 14-20% aromatic hydrocarbons which includes such things as xylene and ethylbenzene. However, it will contain only very low levels of the more toxic aromatics such as benzene and naphthalene.

Mineral spirits is known to have a solvent odour which will need to be assessed for the use of this product.

The above assessment indicates that Termarust should be assessed under the AMF for odour from both the aliphatic and aromatic hydrocarbons and health effects from aromatic hydrocarbons.

The product can be applied in various ways; strip coated by hand or sprayed coated. From assessments of other coating products used on the bridge, spray painting is the only application method that contributes significant solvents and particulate to the air. Total suspended particulate (TSP) in the form of overspray is identified as a contaminant of concern where spray painting is carried out. Spray painting also produces a certain amount of fine particulate PM₁₀ (up to 50% depending on nozzle size etc).

4.3 DETERMINE THRESHOLD VALUES FOR THE KEY CONTAMINANTS OF TERMARUST

Key contaminants discharged from the maintenance of the Auckland Harbour Bridge (AHB) have been assessed as recommended by the Good Practice Guide for Assessing Discharges to Air from Industry. TP152 also provides guidance on air quality criteria, but as a national and more recent document, the Good Practice Guide for Assessing Discharges to Air from Industry takes precedent.

According to this document, assessments are to be compared to air quality criteria in the following order of priority depending on what is provided in the various documents:

- a. National Environmental Standards for Air Quality (NESAQ)
- b. National Ambient Air Quality Guidelines (AAQG)
- c. Regional objectives (unless more stringent than above criteria). The Auckland Regional Air Quality Targets are the same as the AAQG
- d. World Health Organisation Air Quality Guidelines (WHO)
- e. California Office of Environmental Health Hazard Assessment Reference Exposure Levels (OEHHA acute, 8 hr and chronic) and unit risk factors
- f. US EPA inhalation reference concentrations (USEPA RfC) and unit risk factors
- g. Other standards and guidelines. The Texas Commission on Environmental Quality (TCEQ) Effects Screening Levels (ESL) have been used as these are recommended in TP152.

Each standard/guideline was referred to for each contaminant in turn and based on the above order of priority. However, as the processes involved in the maintenance of the AHB are short term, appropriate short term guidelines have generally been used.

Key contaminants identified in Termarust and their associated thresholds are outlined below.

	Short ter	m acute odour	values	Short term acute toxicity values					
Contaminant	Concentration µg.m ⁻³	Averaging period	Authority	Concentration µg.m ⁻³	Averaging period	Authority			
Naphtha	3500	1 hour	TCEQ ESL	18,000	30 min	Ontario			
Xylene	350	1 hour	TCEQ ESL	22000	1 hour	OEHHA			
Trimethylbenzene	No data*	No data	No data	1250	1 hour	TCEQ ESL			
Ethylbenzene	740	1 hour	TCEQ ESL	1100	1 hour	ATSDR			
Methyl Isobutyl ketone (MIBK)	820	1 hour	TCEQ ESL	No data**	No data	No data			

Table 1: Threshold values for the key environmental contaminants of the product

* See reference 14 (odour threshold 1700µg/m³) ** See reference 13 (No peer reviewed dose response data)

Contaminant	Concentration µg.m ⁻³	Averaging period	Authority
Total Suspended Particulate (Nuisance)	80	24 hour	MfE Recommended Trigger
PM_{10} (Health) Applies to outdoor location where the public might be exposed.	50	24 hour	MfE NES

Table 2: Threshold values for particulate overspray from spray painting of the product

4.4 THE PROPOSED USAGE OF TERMARUST AND REVIEW AGAINST THE CURRENT CONSENT REQUIREMENTS

The use of Termarust does not trigger any new rule in the Auckland Council Regional Plan, Air Land and Water. Solvent use is provided for by the consent and there are no new contaminants, therefore no new effects. The discharges from the proposed Termarust usage must therefore meet the threshold values identified in Table 1 above in order to ensure that there are no effects from this product.

4.5 MITIGATION FOR TRIAL

For the purpose of the Temarust trial, partial containment was used in the form of polythene sheeting set up on either side of the panel point to be sprayed. The area painted by the trial was $25m^2$. 2 litres of Termarust was used for spotting (hand application) and 16 litres for spray painting which consisted of 10% Termarust thinner.

4.6 METHODOLOGY FOR AIR TESTING FOR TERMARUST

Measurement of airborne contaminants was carried out during the trial as required by the AMF. The methodology for testing and assessing new components under the AMF will be decided based on the above assessment and may differ for various application methods or products. For the Termarust trial the method and results are reported below.

4.6.1 TOTAL SUSPENDED PARTICULATE AND PM10

Sampling for total suspended particulate (measured as inhalable dust less than 100 microns in diameter) was carried out in accordance with AS/NZS 3640-2009 for particulates. Samples were collected using an IOM inhalable dust sampler and filter. This was connected to a calibrated sampling pump running at a rate of 2L/min. Samples were set up at various locations in relation to the work, sensitive receptors and wind direction. Filters were subsequently weighed by Air Matters. The method followed was based on the Australian Standard for inhalable particulate. This method was used as opposed to Total Suspended Particulate (TSP) by high volume ambient air monitoring equipment due to the short term nature of the works and the sampling locations making ambient standard method samplers impracticable in this situation.

The literature suggests that up to 50% of overspray particles may be PM_{10} . Based on this assumption, PM_{10} concentration in the overspray could be calculated. However, this is not considered appropriate and the overspray is viewed as a nuisance deposit.

4.6.2 VOLATILE ORGANIC COMPOUNDS (VOC)

Total VOC (TVOC)

A real time datalogging photo ionisation detector (PID), MultiRae Plus PGM-50, was used to collect data on the concentration of Total Volatile Organic Compounds (TVOC). This monitor was calibrated by Air Matters on the 15/4/2014 using 10ppm of isobutylene. The instrument was set up to log 60 or 30 second averages. The unit was shifted to various locations in relation to the work, sensitive receptors and wind direction. Calculations from parts per million to milligrams per cubic meter have been made to compare values with the Threshold levels. (Based on an average molecular weight of 150.)

Speciated VOC / Solvents

Sampling was carried out according to NIOSH method 1550. Air samples were collected on charcoal sorbent tubes (SKC 226-01) with the sampling pumps calibrated at a maximum flow of 0.2L/minute. Samples were set up at various locations in relation to the work, sensitive receptors and wind direction. Analysis of the tubes was carried out by Hill Laboratories by GC FID analysis according to the NIOSH method.

4.6.3 ODOUR

As odour has been identified as an issue in the MDS for the product, an odour survey was planned as part of the Termarust trial. This took the form of an "odour scout" (a technician with a calibrated nose) and was carried out by Watercare Services Ltd. Odour was assessed every 5 metres from a starting distance of 50 meters from the spray painting. The characteristic odour was recorded along with intensity, offensiveness and frequency of the odour. A full report from Watercare is to be found in Appendix 2.

4.7 RESULTS OF AIR TESTING DURING TERMARUST TRIAL

4.7.1 TOTAL SUSPENDED PARTICULATE AND PM10

Total Suspended Particulate Concentrations from Overspray

General Wind Direction & Speed	Sampling Location	Measured Concentration of TSP over 2 hour period mg.m ⁻³	Calculated Concentration of TSP over 24 hour period mg.m ⁻³	Threshold value for sensitive areas over 24 hour period mg.m ⁻³
	1m downwind of Termarust Trial partial containment	6.13	0.5	
North East Average wind	5m downwind of Termarust Trial partial containment	0.78	0.07	0.08
speed 1.1m/s, gusting to 1.9m/s	5m upwind of Termarust Trial partial containment	0.55	0.05	0.08
	5m above Termarust Trial partial containment	2.43	0.2	

Table 3: Total Suspended Particulate Concentrations Measured During Spray Painting on 15/04/2014 (Termarust Trial)

The nature of paint overspray means that the nuisance effect on property (cars and buildings) is different from a dry dust particle.

TSP measured one metre from the works and above the works exceeded the threshold value for a 24

hour period. However, by 5 meters downwind, the concentration was below the threshold value.

PM₁₀ Concentration Calculation from Overspray

At 5 meters downwind from the works, the calculated PM_{10} concentration across a 24 hour period would be $32.5\mu g/m^3$ based on 50% of the overspray being PM_{10} . This is considered a conservative calculation as the particles will still likely have some acceleration from the spray nozzle resulting in increased dispersion.

4.7.2 VOLATILE ORGANIC COMPOUNDS

Total Volatile Organic Compounds (TVOC)

Background concentrations were measured when no Termarust spray painting was taking place on the bridge. Sampling was then undertaken at various stages and locations during the trial. All measurements have been converted to mg.m⁻³ based on an average molecular weight for mineral spirits. This allows a comparison against the threshold value for odour and toxicity. Overall measurements for the process are shown in Chart 1.

Time	Activity	Sampling Location	Measured Concentration mg.m ⁻³
13:52	Preworks	Downwind of contained area	0
13:58	Penetrant applied	Downwind 1m from containment	7
14:10	Strip coating with Termarust	Downwind edge of containment	68
15:05	Spray coating starts	Downwind edge of containment	264
15:30	Spray coating continues	Gate entrance to compound	509
15:50-15:40	Spray coating continues	Centre of the yard	98
15:45	Spray coating finishes	Spray finishes - sample at gate entrance to compound	86
15:45 - 6:17	Clean-up	Sample still at compound gate	3-32

Table 4: TVOC Concentrations Measured During Sampling on 15/04/2014

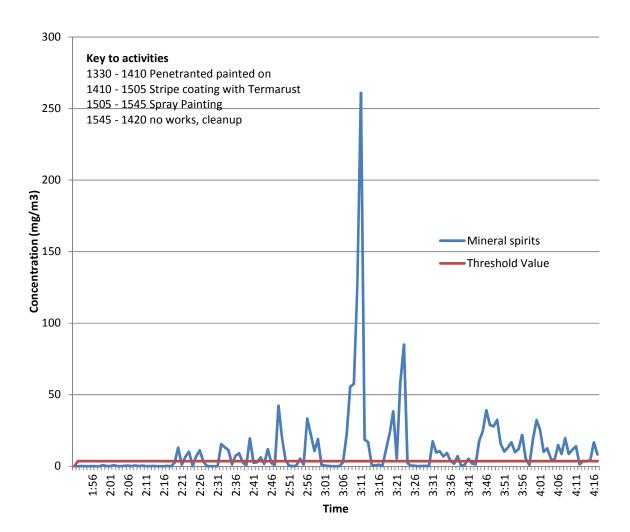


Chart 1: Average 1 minute concentration of mineral spirits throughout the spray painting

Note: the above measurements were taken 1 metre downwind from the containment area.

10

Speciated Volatile Organic Compounds (VOC)

Analysis was carried out for a wide range of VOCs as a time weighted average over the trial period. Only the compounds reported below were identified above the detection limit.

Tri-Aliphatic Propyl Location Ethylbenzene Xylene MIBK benzene methylbenzene hydrocarbon 1 metre downwind from 2.6 1.9 0.03 0.02 < 0.02 5.6 containment 5 metre downwind from < 0.02 0.03 0.6 0.5 0.01 1.5 containment 5 metre upwind from 0.2 0.2 < 0.02 < 0.02 0.03 0.8 containment 1 metre above the spray 2 0.04 0.02 0.04 0.8 6.9 painting (on bridge) Threshold value for 0.74 0.35 0.23 No data 0.7 3.5 odour Threshold value for toxicity/ human 1.1 22 No data 1.25 No data 18

Table 5: Speciated VOC Concentrations Measured During Spray Painting (mg.m⁻³)

4.7.3 ODOUR

health

The full odour results and report from the Watercare Odour Scout are presented in Appendix 2.

Table 1 from that report is included here for reference.

Table 6: Results from Watercare Odour Monitoring Report, April 2014

Distance from source of spray-painting (m)	Time	Wind Speed (m/s)	Wind Direction	Character	Intensity	Frequency	Offensiveness	
5	15:56	0.9	NE	Paint	5	3	4	
10	15:55	0.9	NE	Paint	5	3	4	
15	15:48	1.2	NE	Paint	3	3	3	
20	15:47	1.6	NE	Paint	2	3	3	
25	15:39	1.8	NE	Paint	2	1	2	
30	15:36	1.9	NE	NDO	0	0	0	
35	15:29	1.9	NE	Paint	1	1	1	
40	15:26	1.7	NE	NDO	0	0	0	
45	15:21	2.9	NE	NDO	0	0	0	
50	15:20	3.1	NE	NDO	0	0	0	
55	15:12	2.4	NE	NDO	0	0	0	
		Od	our Scoring G	lide				
Intensity scor	e /6	Frequenc	y score /3		Offen	siveness /4		
0 / blank	NDO	0 / blank	NDO	0		NDO		
1	Very Slight	1	Once-off	1		Not offensiv	'e	
2	Slight	2	Intermittent	2		Slightly offens	sive	
3	Distinct	3	Constant	3	Moderately offensive			
4	Strong			4	Highly offensive			
5	Very Strong							
6	Extremely Strong							
2 3 4 5	Slight Distinct Strong Very Strong	_	Intermittent	2		Slightly offens Moderately offe	sive nsive	

NDO = No detectable odour

The above table shows intensity, frequency and offensiveness of odour from 5 to 55 metres downwind of the Termarust trial. (Full report in Appendix 2)

4.8 DISCUSSION OF RESULTS FOR UPDATE OF ENVIRONMENTAL MANAGEMENT PLAN (EMP)

4.8.1 TOTAL SUSPENDED PARTICULATE AND PM10

PM₁₀ emissions were low and will not contribute significantly to the airshed. The effects are considered over a 24 hour period where the public may be exposed. The effect of PM10 from the use of the new product does not require any change in the EMP.

TSP is considered a nuisance particulate and paint overspray would be thus considered. It is important that spray paint particulate does not settle on property in the area.

Particulate in the form of overspray was high at 1 metre downwind of the partial containment. However, by 5 metres downwind the level had dropped considerably and was just below the 0.08mg/m³ value used as a guideline value for TSP in a sensitive area (MfE) over a 24 hour period.

The nature of the containment for this trial (only the sides of the area protected with polythene) meant that the level of TSP was elevated on the bridge above the work site as well.

The sample set up 5 metres upwind of the works showed the presence of overspray, although it was below 0.08mg/m³. Once again the partial containment (side screens only) may have led to the overspray and the solvents swirling above the plastic and moving upwind.

In summary, the overspray has an effect close to the works. It will be essential that overspray does not impact on property if this is close to the spray area. The effect from overspray will need to be considered when working close to land or close to traffic on the roadway. Overspray can be controlled by various methods:

- 1. Use of a buffer zone of 30m downwind from the works
- 2. Wind direction controls to prevent overspray being carried onto sensitive areas.
- 3. Screening /containment of the works to prevent upwind movement of the particulate.

The EMP will need to reflect the appropriate controls to achieve threshold values and ensure no nuisance effect.

4.8.2 VOLATILE ORGANIC COMPOUNDS

Total Volatile Organic Compounds (TVOC)

Total volatile organic compounds in the form of mineral spirits were identified in concentrations above the odour threshold close to the works. The concentrations spiked during the spray painting activity but remained elevated after the spray painting was completed. The full trial was approximately 2 hours long.

Odour will need to be managed to maintain odour below the threshold values in sensitive receiving environments, over houses at the north end and over cafes and restaurants at the south end. Spray painting in areas of sensitive receptors will have to be controlled and these controls will be identified in the EMP. Controls may include:

- 1. A buffer zone of 30m from sensitive receptors to the works.
- 2. Wind direction controls to prevent odour being carried onto sensitive areas.
- 3. Hand painting to prevent the release of VOCs in overspray.

Speciated Volatile Organic Compounds

The samples collected over the full time of the trial gave a time weighted average result and identified the volatile components of the product. The health related thresholds for the speciated hydrocarbons were not exceeded at any location.

4.8.3 ODOUR

The odour threshold value was exceeded close to the works for ethylbenzene, xylene and aliphatic hydrocarbons (see above details for TVOC). By 5 metres downwind of the works, the individual odour threshold values for individual contaminants were not exceeded. However, the odour survey using the odour scout defined the odour as distinct and moderately offensive out to 20 metres and slightly offensive out to 25 metres. It is likely that the combined effect of the odorous chemicals may have had a synergistic effect on the human detection of odour. Termarust has therefore been identified has having an odour effect close to the works and extending downwind of the works. There will be an effect on sensitive receptors which will need to be managed. Odour controls will be required when working in sensitive areas. As for particulate overspray, controls may include;

- 1. A buffer zone of 30m from the works
- 2. Wind direction controls to prevent overspray being carried onto sensitive areas.
- 3. Hand painting when close to sensitive receptors.

4.9 ASSESSMENT SUMMARY FOR INTRODUCTION OF PRODUCT TO MAINTENANCE

In summary, Termarust is considered a low effect product in terms of air discharges. When used on most areas of the Auckland Harbour Bridge it will not be necessary to make any changes to the EMP to meet the threshold levels for the contaminants of concern.

Odour and paint overspray from spray painting will have effects when used close to properties and other sensitive receptors overland. The odour scout sampling suggested a buffer zone of 20-30 meters downwind be required of any works in sensitive areas to reduce the odour to less than "distinct" and "moderatley offensive". Other controls relating to wind direction and/or hand painting will need to be used in conjunction with buffer controls to manage odour effects.

Overspray particulate will have a nuisance effect in sensitive areas. Overspray can be controlled effectively in sensitive areas with screens or containment and wind direction limitations. If this method of control is not achievable, hand painting will eliminate the effect from overspray. The EMP will be updated to reflect these controls.

The chemical testing indicated the concentrations of individual species were below the health effect level at 5 metres downwind of the works (as measured on the day of testing). Consideration will have to be given to the amount of product used and the duration of the works. The controls put in place for managing odour and overspray will be effective in maintaining levels below the hydrocarbon health threshold values.

Once the EMP is updated to reflect the above controls for Termarust, assessment suggests that this product can be used for bridge maintenance in accordance with the AMF.

5. REFERENCES

- 1. National Institute for Occupational Safety and Health (NIOSH), Manual of Analytical Methods (NMAM), Fourth Edition, August 1994.
- 2. Methods for the Determination of Hazardous Substances (MDHS) Health and Safety Executive. Third Edition 1999.
- 3. Air Sampling Guide SKC Publication.
- 4. American Conference of Governmental Industrial Hygienists, http://www.acgih.org/home.htm
- 5. Ministry for the Environment, Good Practice Guide for Assessing Discharges to Air from Industry, June 2008.
- 6. Ministry for the Environment, Good Practice Guide for Assessing and Managing Environmental Effects of Dust Emissions, September 2001.
- Ministry for the Environment, National Environmental Standards, http://www.mfe.govt.nz/laws/standards/air-quality/index.html
- 8. Auckland Regional Council, April 2002. Technical Publication 152. Assessing Discharges of Contaminants into Air.
- 9. World Health Organisation, 2000. Air Quality Guidelines for Europe, Second Edition, Part Two, WHO Regional Publications, European Series, No. 91.
- Texas Commission on Environmental Quality, Effects Screening Levels, http://www.tceq.texas.gov/assets/public/implementation/tox/esl/list/jul2011.pdf
- Ontario Ministry of the Environment, Summary of Standards and Guidelines to support Ontario Regulation 419/05 – Air Pollution – Local Air Quality, 2012.
- 12. SIDS Initial Assessment Profile, Hydrocarbon Solvent category, CoCAM 2, 17-19 April 2012.
- Toxicological Review of Methyl Isobutyl Ketone (CAS No. 108-10-1) In Support of Summary Information on the Integrated Risk Information System (IRIS) March 2003 U.S. Environmental Protection Agency Washington DC.
- 14. Chemical Summary for 1,2,4-Trimethylbenzene prepared by Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency. August 1994.
- 15. Auckland Regional Council, Assessing Discharges of Contaminants into Air Draft, 2002

APPENDIX 1A: DATA SHEETS - TSP AS INHALABLE PARTICULATE

Industry: Auckland Harbour Bridge

Project Number: 14051

Contaminant: Overspray particulate from Termarust Trial

			Tir	me		Sampling Detail	S			Carlandard	
Date	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Sample mass (mg)	Blank corrected (mg)	Contaminant Concentration (mg/m ³)	
14051B B		Above spray paint, attached to fence on walkway	13:42	16:00	138	2.03	0.280	0.65	0.68	2.43	
	14051B C	5m upwind of painting, above mixing area	13:34	16:03	149	2.061	0.307	0.14	0.17	0.55	
15/04/2014	14051B D	5m downwind of painting, on Stokes Pt yard fence	14:05	15:55	110	1.989	0.219	0.14	0.17	0.78	
	14051B E	1m downwind of painting, on fence	14:02	15:55	113	2.037	0.230	1.38	1.41	6.13	
	14051B F	Lab blank	-	-	-	-	-	-0.03	-	-	

APPENDIX 1B DATA SHEETS – HYDROCARBONS

Industry: Project Num	ber:	Auckland Harbou 14051	ır Bridge	Termarust	Trial					Date:	15/04/2014			
Location:		One metre down	wind on f	fence										
Contaminant	t:	VOCs	•									a	•	
						Sampling Details				Blank/Spike	Contaminant	Acute		
Location	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (ug)	corrected mass (ug)	Concentration (mg/m ³)	guideline value mg/m3	Avg time	Jurisdiction
		Ethylbenzene	14:05	15:55	110	0.217	0.024	291	62	62	2.6	11	1 hour	ATSDR
		Xylene	14:05	15:55	110	0.217	0.024	291	47.3	47.3	1.9	22	1hour	OEHHA
1 m		Propylbenzene	14:05	15:55	110	0.217	0.024	291	0.84	0.84	0.03			
downwind from works	14051 AA	Trimethylbenzene	14:05	15:55	110	0.217	0.024	291	0.39	0.39	0.02	0.5	30 minute	Ontario
		МІВК	14:05	15:55	110	0.217	0.024	292	0	0	0.00	0.86	30 minute	
		Naptha/other hydrocarbons	14:05	15:55	110	0.217	0.024	293	134.5	134.5	5.6	3.5		
		Decane										180	30 minute	Ontario
		Octane	Dctane									454	30 minute	Ontario
All results co 25°C a	and 1	15/0	04/2014		1006 755	HPa mmHg								

atmosphere pressure

Effect

Toxicity

Toxicity

Odour

Odour

Health

Odour

Industry:Auckland Harbour Bridge. Termarust TrialProject Number:14051

Location Five metres downwind

Contaminant: VOCs

Contaminan	it. VO	65										1			1
			Т	ime		Samplin	g Details					Acute			
Location	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (ug)	Blank/Spike corrected mass (ug)	Contaminant Concentration (mg/m ³)	guideline value mg/m3	Avg time	Jurisdiction	Effect
		Ethylbenzene	14:05	15:53	108	0.366	0.040	291	24	24	0.6	11	1 hour	ATSDR	Toxicity
		Xylene	14:05	15:53	108	0.366	0.040	291	18.2	18.2	0.5	22	1hour	OEHHA	Toxicity
5m downwind	14051 AB	Propylbenzene	14:05	15:53	108	0.366	0.040	291	0.35	0.35	0.01				
from works		Trimethylbenzene	14:05	15:53	108	0.366	0.040	291	0.1	0.1	0.002	0.5	30 minute	Ontario	Odour
		МІВК	14:05	15:53	108	0.366	0.040	291	1.3	1.3	0.03	0.86	30 minute		Odour
		Other hydrocarbons	14:05	15:53	108	0.366	0.040	291	60.6	60.6	1.5				
Decane											180	30 minute	Ontario	Health	

Octane

All results corrected to 25°C and 1 atmosphere pressure

1006 HPa 755 mmHg

Ontario

Odour

30

minute

454

Date: 15/04/2014

18

15/04/2014

Date:

Industry: Auckland Harbour Bridge Termarust Trial

14051

Project Number:

Location: Five metres upwind above mixing area

Contaminant: VOCs

			Ti	me		Samplir	g Details					Acute			
Location	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (ug)	Blank/Spike corrected mass (ug)	Contaminant Concentration (mg/m ³)	guideline value mg/m3	Avg time	Jurisdiction	Effect
		Ethylbenzene	13:34	16:05	151	0.28	0.042	291	10	10	0.2	11	1 hour	ATSDR	Toxicity
5m from spray		Xylene	13:34	16:05	151	0.28	0.042	291	8.3	8.3	0.2	22	1hour	OEHHA	Toxicity
painting upwind above	14051 AD	Propylbenzene	13:34	16:05	151	0.28	0.042	291	0	0	0.00				
mixing area		Trimethylbenzene	13:34	16:05	151	0.28	0.042	291	0.12	0.12	0.00	0.5	30 minute	Ontario	Odour
		MIBK	13:34	16:05	151	0.28	0.042	291	1.1	1.1	0.03	0.86	30 minute		Odour
		Other hydrocarbons	13:34	16:05	151	0.28	0.042	291	34.5	34.5	0.8				
	Decane											180	30 minute	Ontario	Health
											454	30 minute	Ontario	Odour	

All results corrected to 25°C and 1 atmosphere pressure 1006 HPa 755 mmHg

Industry: Auckland Harbour Bridge. Termarust Trial Project Number: 14051

15/04/2014 Date:

On bridge above spray painting Location:

Contamina	int:	VOCs													
			Т	ime		Samplin	g Details	1							
Location	Sample number	Location of test point	On	Off	Minutes on	Flow rate (L/min)	Volume (m³)	Ambient temp (°K)	Sample mass (ug)	Blank /Spike corrected mass (ug)	Contaminant Concentration (mg/m ³)	Acute guideline value mg/m3	Avg time	Jurisdiction	Effect
		Ethylbenzene	13:43	16:00	137	0.26	0.036	291	29	29	0.8	11	1 hour	ATSDR	Toxicity
		Xylene	13:43	16:00	137	0.26	0.036	291	73	73	2.0	22	1hour	OEHHA	Toxicity
On bridge		Propylbenzene	13:43	16:00	137	0.26	0.036	291	1.37	1.37	0.04	ND			
above spray painting	14051 AC	Trimethylbenzene	13:43	16:00	137	0.26	0.036	291	0.79	0.79	0.02	0.5	30 minute	Ontario	Odour
		мівк	13:43	16:00	137	0.26	0.036	291	1.5	1.5	0.04	0.86	30 minute	Ontario	Odour
		Other hydrocarbons	13:43	16:00	137	0.26	0.036	291	251	251	6.9				
	Decane											180	30 minute	Ontario	Health
		Octane										454	30 minute	Ontario	Odour

All results corrected to 25°C and 1 atmosphere pressure 15/04/2014

1006 HPa 755 mmHg

APPENDIX 2: WATERCARE REPORT FOR ODOUR SCOUT

20

Air Matters Auckland Harbour Bridge Odour Monitoring Report April 2014

Prepared for

Air Matters

By

Watercare Laboratory Services - Air Quality Group

O-2022733

Auckland Harbour Bridge Odour Monitoring Report April 2014

A report for:

Air Matters

Prepared by

Watercare Laboratory Services 52 Aintree Avenue PO Box 107-031, Airport Oaks

> Ph: (09) 539 7600 Fax: (09) 539 7601

> > 28 April 2014

Nina Gasson Author

Jarlal

Jonathan Harland Peer Review

DISCLAIMER

This report or document ("the report") is given by Watercare Services Ltd solely for the benefit of Air Matters as defined in the Contract or Terms and Conditions between Watercare Services Ltd and Air Matters and is strictly subject to the conditions laid out in that Contract or Terms and Conditions. This report may not be reproduced, except in full.

Neither Watercare Services Ltd nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for use of the report or its contents by any other person or organisation.

TABLE OF CONTENTS

Page

1	INTRO	DUCTION	.4
	1.1	Purpose	.4
	1.2	Methodology	.4
2	SUMM	ARY OF MONITORING RESULTS	.5
	2.1	15 April 2014	.5

TABLES, FIGURES AND APPENDICES

Table 1: Harbour Bridge Odour Scout Monitoring Results	6
Figure 1: Harbour Bridge Termarust Coating Odour Levels	7

I INTRODUCTION

1.1 Purpose

Air Matters asked Watercare Laboratory Services to carry out odour monitoring at Auckland's Harbour Bridge. Odour monitoring was undertaken at the northern end of the Harbour Bridge on 15 April 2014. A Termarust coating was being spray-painted onto the underside of the bridge during monitoring.

In this report we will:

- Outline the methodology used
- Present a summary of results from the odour scout undertaken on 15 April 2014.

1.2 Methodology

On the 15 April 2014 odour monitoring was undertaken at the northern end of the Auckland Harbour Bridge. Spray-painting of a Termarust coating was being applied to the underside of the bridge during odour monitoring. An odour scout was undertaken with odour measurements recorded from a distance of approximately 55m away from the spray-painting source, and taken at increasing 5m intervals back towards the source. The characteristic odour was recorded, with the intensity, frequency and offensiveness of the odour observed.

2 Summary of monitoring results

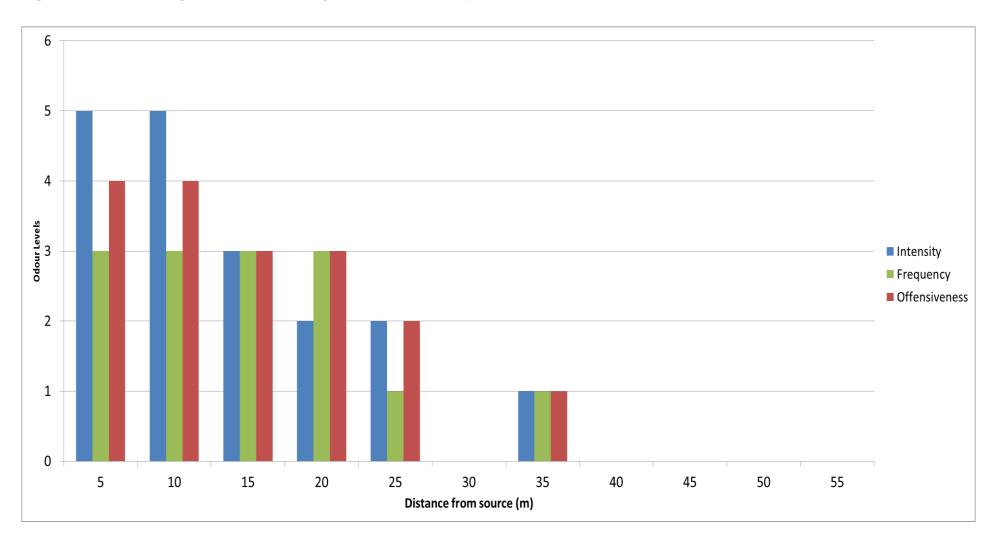
The results of odour scout monitoring undertaken on 15 April 2014 are summarised below.

2.1 15 April 2014

Monitoring was undertaken between 15:12hrs and 15:56hrs.

Weather conditions were as follows:

- Temperature was 20.5°C
- Wind speed ranged from 0.9 to 2.9 m/s
- Wind direction was from the North East
- Relative humidity was 72.5%
- Overcast skies throughout the day. No precipitation.


Results of the odour scout monitoring during spray-painting of Termarust on 15 April 2014 are presented in Table 1, and Figure 1.

As measurements were taken closer to the spray-painting source, the odour detected from the Termarust coating increased in intensity, frequency and offensiveness. Within 10 metres of the source the characteristic paint odour was very strong in intensity, and a continuous frequency. Offensiveness within 10 metres of the source was considered highly offensive. There were no odours detected from 40 metres away from the source.

Distance from source of spray-painting (m)	Time	Wind Speed (m/s)	Wind Direction	Character	Intensity	Frequency	Offensiveness
5	15:56	0.9	NE	Paint	5	3	4
10	15:55	0.9	NE	Paint	5	3	4
15	15:48	1.2	NE	Paint	3	3	3
20	15:47	1.6	NE	Paint	2	3	3
25	15:39	1.8	NE	Paint	2	1	2
30	15:36	1.9	NE	NDO	0	0	0
35	15:29	1.9	NE	Paint	1	1	1
40	15:26	1.7	NE	NDO	0	0	0
45	15:21	2.9	NE	NDO	0	0	0
50	15:20	3.1	NE	NDO	0	0	0
55	15:12	2.4	NE	NDO	0	0	0
		Ode	our Scoring G	uide			
Intensity scor	e /6	Frequenc	y score /3	Offensiveness /4			
0 / blank	NDO	0 / blank	NDO	0		NDO	
1	Very Slight	1	Once-off	1		Not offensiv	'e
2	Slight	2	Intermittent	2		Slightly offens	sive
3	Distinct	3	Constant	3	Moderately offensive		nsive
4	Strong			4		Highly offens	ive
5	Very Strong						
6	Extremely Strong						

Table 1: Harbour Bridge Odour Scout Monitoring Results, 15 April 2014.

NDO = No detectable odour

Figure 1: Harbour Bridge Termarust Coating Odour Levels, 15 April 2014.

APPENDIX 3: MSD SHEETS FOR TERMARUST

TERMARUST SERIES 2100

Please note that there are three options: [Stealth Grey] [Grey] [Green]

MATERIAL SAFETY DATA SHEET

Section I - Material identification and use

Product code :	032TR2100	Health :	Moderate	Whmis Class :	B3 D2B
Product name :	Termarust Stealth Grey	Fire :	Moderate	TDG Class :	3
Chemical	Organic coating	Reactivity :	Minimal	TDG UN :	1263
family :		-			
Product use :	Protective coating				

Section II - Hazardous ingredients of material

Hazardous	Concentration	<u>C.A.S.</u>	LD50 Oral rat &	LC50 Inhalation rate
ingredients	<u>%</u>	Num.	dermal rabbit	<u>PPM/H</u>
Mineral spirits	10.0 - 30.0	64742-88-	5600 mg/kg 3160	51000/4
		7	mg/kg	

Section III - Physical data for material

Physical	Liquid	Specific gravity :	1.118-	Vapor	7.00 Boiling point
state :			1.168	pressure (mm):	(°C) : 150.00
Odor :	Hydrocarbon	Solubility in	0.09/20℃	Vapor density :	4.80 Freezing point
	-	water :			(℃) : N/A
		%	30.0 - 60.0	Heavier than	PH : N/A
		Volatile/Volume		air :	

Coefficient of water/oil distribution : N/A Evaporation rate (nBu Ac=1) : 0.10

Section IV - Fire and explosion hazard of material

Flammability : Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition. *Note* : Vapor may travel some distance to a source of ignition and flash back along the vapor trail. *Means of extinction :* Dry chemical, carbon dioxide, foam, water fog.

Special procedures : Do not enter confined fire space without adequate protective clothing and an approved positive self contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers.

Explosion : Vapor forms explosive mixture with air between upper and lower flammable limits.Flash point : (c) and method : 42.00Upper explosion limit (% by volume) : 5.00Auto-ignition (c) : N/ALower explosion limit (% by volume) : 0.80Sensitivity to mechanical impact : NoneSensitivity to static discharge : Yes

Section V - Toxicological properties of material

Exposure limits (TVL ppm): 100.00

Irritancy of material: Slight to moderate

skin irritant

CARINOGENICITY, REPRODUCTIE EFFECTS, TERATOGENICITY and MULTAGENICITY No adverse affects are anticipated.

Emergency telephone number: Canutec (613) 996-6666, Termarust technical department (514) 351-7600

Section VI - Toxicological properties of material (cont'd)

Route of entry : Skin contact, skin absorption, inhalation acute, ingestion

Effects of acute exposure to material : Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material : Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII - Reactivity data

Chemical stability : Yes

Incompatibility with other substances : Yes, with strong Oxidizing agents, mineral acids **Reactivity and under what conditions :** Avoid excessive heat, open flame, spark and all ignition sources

Hazardous decomposition products : Carbon monoxide and Carbon dioxide when heated

Section VIII - Preventive measures, Personal protective equipment

Gloves : Impervious (Nitrile, PVC) **Eyes :** Chemical safety goggles of full face shield **Respiratory :** Wear a CSA approved respirator

Other : Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls : Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure : Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by dyking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills : Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal : Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment : Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement : Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources.

Special shipping information : Handle as flammable liquid.

Section IX - First aid measures

Inhaled : Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact : Flush affected areas with mild soap and water. Remove contaminated clothing

Eye contact : Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately.

Ingestion : Do not induce vomiting. Obtain medical attention immediately.

Additional information : If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X - Preparation of M.S.D.S.

Additional notes or references :

N/A = not or none available OSHA = Occupational Safety and Health Administration IARC = International Agency for Research on Cancer ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

MATERIAL SAFETY DATA SHEET

Section I – Material identification and use

Product code :	200TR2100	Health :	Moderate	Whmis Class :	B3 D2B
Product name :	Termarust 501-212 Grey	Fire :	Moderate	TDG Class :	3
Chemical family :	Organic coating	Reactivity :	Minimal	TDG UN :	1263
Product use :	Protective coating				

Section II – Hazardous ingredients of material

Hazardous	Concentration	<u>C.A.S.</u>	LD50 Oral rat &	LC50 Inhalation rate
ingredients	<u>%</u>	Num.	dermal rabbit	<u>PPM/H</u>
Mineral spirits	10.0 - 30.0	64742-88-	5600 mg/kg 3160	51000/4
		7	mg/kg	

Section III – Physical data for material

Physical	Liquid	Specific gravity :	1.114-	Vapor	7.00 Boiling point
state :			1.164	pressure (mm):	(°C) : 150.00
Odor :	Hydrocarbon	Solubility in	0.05/20°C	Vapor density :	4.80 Freezing point
		water :			(℃) : N/A
		%	30.0 - 60.0	Heavier than	PH : N/A
		Volatile/Volume		air :	

Coefficient of water/oil distribution : N/A Evaporation rate (nBu Ac=1) : 0.10

Section IV – Fire and explosion hazard of material

Flammability : Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition. *Note* : Vapor may travel some distance to a source of ignition and flash back along the vapor trail. *Means of extinction :* Dry chemical, carbon dioxide, foam, water fog.

Special procedures : Do not enter confined fire space without adequate protective clothing and an approved positive self contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers.

Explosion : Vapor forms explosive mixture with air between upper and lower flammable limits.Flash point : ($^{\circ}$) and method : 42.00Upper explosion limit (% by volume) : 5.00Auto-ignition ($^{\circ}$) : N/ALower explosion limit (% by volume) : 0.80Sensitivity to mechanical impact : NoneSensitivity to static discharge : Yes

Exposure limits (TVL ppm): 100.00

Irritancy of material: Slight to moderate

skin irritant CARINOGENICITY, REPRODUCTIE EFFECTS, TERATOGENICITY and MULTAGENICITY No adverse affects are anticipated.

Emergency telephone number: Canutec (613) 996-6666, Termarust technical department (514) 351-7600

Section VI – Toxicological properties of material (cont'd)

Route of entry : Skin contact, skin absorption, inhalation acute, ingestion

Effects of acute exposure to material : Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material : Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII – Reactivity data

Chemical stability : Yes

Incompatibility with other substances : Yes, with strong Oxidizing agents, mineral acids **Reactivity and under what conditions :** Avoid excessive heat, open flame, spark and all ignition sources

Hazardous decomposition products : Carbon monoxide and Carbon dioxide when heated

Section VIII – Preventive measures, Personal protective equipment

Gloves : Impervious (Nitrile, PVC) **Eyes :** Chemical safety goggles of full face shield **Respiratory :** Wear a CSA approved respirator

Other : Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls : Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure : Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by dyking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills : Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal : Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment : Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement : Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources.

Special shipping information : Handle as flammable liquid.

Section IX – First aid measures

Inhaled : Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact : Flush affected areas with mild soap and water. Remove contaminated clothing **Eye contact :** Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately.

Ingestion : Do not induce vomiting. Obtain medical attention immediately.

Additional information : If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X – Preparation of M.S.D.S.

Additional notes or references :

N/A = not or none available OSHA = Occupational Safety and Health Administration IARC = International Agency for Research on Cancer ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

MATERIAL SAFETY DATA SHEET

Section I – Material identification and use

Product code :	003TR2100	Health :	Moderate	Whmis Class :	B3 D2B
Product name :	TR100-NS. DOT Green	Fire :	Moderate	TDG Class :	3
Chemical family :	Organic coating	Reactivity :	Minimal	TDG UN :	1263
Product use :	Protective coating				

Section II – Hazardous ingredients of material

Hazardous	Concentration	<u>C.A.S.</u>	LD50 Oral rat &	LC50 Inhalation rate
ingredients	<u>%</u>	<u>Num.</u>	dermal rabbit	PPM/H
Mineral spirits	10.0 - 30.0	64742-88-	5600 mg/kg 3160	51000/4
		7	mg/kg	

Section III – Physical data for material

Physical	Liquid	Specific gravity :	1.090-	Vapor pressure	7.00 Boiling point
state :			1.140	(mm):	(℃) : 150.00
Odor :	Hydrocarbon	Solubility in	0.05/20c	Vapor density :	4.80 Freezing point
		water :			(℃) : N/A
		%	30.0 - 60.0	Heavier than	PH : N/A
		Volatile/Volume		air :	

Coefficient of water/oil distribution : N/A

Evaporation rate (nBu Ac=1) : 0.10

Section IV – Fire and explosion hazard of material

Flammability : Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition. *Note* : Vapor may travel some distance to a source of ignition and flash back along the vapor trail. *Means of extinction :* Dry chemical, carbon dioxide, foam, water fog.

Special procedures : Do not enter confined fire space without adequate protective clothing and an approved positive self contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers.

Explosion: Vapor forms explosive mixture with air between upper and lower flammable limits. Flash point : (°C) and method : 42.00 Upper explosion limit (% by volume) : 5.00 Auto-ignition (°C) : N/A Lower explosion limit (% by volume): 0.80 Sensitivity to mechanical impact : None Sensitivity to static discharge : Yes

Section V – Toxicological properties of material

Exposure limits (TVL ppm): 100.00 skin irritant

Irritancy of material: Slight to moderate

** CARINOGENICITY, REPRODUCTIE EFFECTS, TERATOGENICITY and MULTAGENICITY ** No adverse affects are anticipated.

Emergency telephone number: Canutec (613) 996-6666, Termarust technical department (514) 351-7600

Section VI – Toxicological properties of material (cont'd)

Route of entry : Skin contact, skin absorption, inhalation acute, ingestion

Effects of acute exposure to material: Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material : Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII – Reactivity data

Chemical stability : Yes

Incompatibility with other substances : Yes, with strong Oxidizing agents, mineral acids Reactivity and under what conditions : Avoid excessive heat, open flame, spark and all ignition sources

Hazardous decomposition products : Carbon monoxide and Carbon dioxide when heated

Section VIII – Preventive measures, Personal protective equipment

Gloves : Impervious (Nitrile, PVC) Eyes : Chemical safety goggles of full face shield **Respiratory :** Wear a CSA approved respirator

Other : Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls : Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure : Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by dyking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills : Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal: Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment : Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement : Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources.

Special shipping information : Handle as flammable liquid.

Section IX – First aid measures

Inhaled : Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact : Flush affected areas with mild soap and water. Remove contaminated clothing **Eye contact :** Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately.

Ingestion : Do not induce vomiting. Obtain medical attention immediately.

Additional information : If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X – Preparation of M.S.D.S.

Additional notes or references : N/A = not or none available OSHA = Occupational Safety and Health Administration IARC = International Agency for Research on Cancer ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

MATERIAL SAFETY DATA SHEET

Section I – Material identification and use

Product code:	1TR2200HS HRCSA	Health:	Moderate	Whims' Class:	Non regulated
Product name:	Termarust (100% Solids)	Fire:	Minimal	TDG Class:	Non regulated
	0 VOC Penetrant/Sealer				
Chemical family:	Organic coating	Reactivity:	Minimal	TDG UN:	Non regulated
Product use:	Protective coating			Revision Date	04/01/2013

Section II – Hazardous ingredients of material

Hazardous	Concentration %	<u>C.A.S.</u>	LD50 Oral rat &	LC50 Inhalation rate
ingredients		<u>Num.</u>	dermal rabbit	PPM/H
none				

Section III – Physical data for material

Physical state:	Liquid	Specific gravity:	N/A	Vapor pressure (mm):	N/A
Odor: Light	Odor	Solubility in water:	no	Vapor density: 20° C	environ
PH: N/A		% Volatile/Volume	none	Heavier than air	
Coefficient of water/oil distribution: N/A				Boiling point (°C): > 300° C	
Evaporation rate (nBu Ac=1): N/A				Freezing point (°C): N/A	

Section IV – Fire and explosion hazard of material

Flammability: Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition.

Means of extinction: Dry chemical, carbon dioxide, foam, water fog.

Special procedures: Do not enter confined fire space without adequate protective clothing and an approved positive

self-contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers.

Explosion: N/A

Flash point: (°C) and method: > 120 $^{\circ}$ C

Spontaneous Combustion (°C): N/A

Sensitivity to mechanical impact: None

Upper explosion limit (% by volume): N/A Lower explosion limit (% by volume): N/A Sensitivity to static discharge: Yes

Section V – Toxicological properties of material

Exposure limits (TVL ppm): 100.00 irritant

Irritancy of material: Slight to moderate skin

CARCINOGENIC, POSSIBLE FOETUS MALFORMATION AND MUTATION

No adverse affects are anticipated.

Emergency telephone number: Canutec (613) 996-6666, Termarust Technical Department (514) 351-7600

Section VI – Toxicological properties of material

Route of entry: Skin contact, skin absorption, inhalation acute, ingestion

Section VI – Toxicological properties of material (cont'd)

Effects of acute exposure to material: Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material: Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII – Reactivity data

Chemical stability: Yes

Incompatibility with other substances: Yes, with strong Oxidizing agents, mineral acids

Reactivity and under what conditions: Avoid excessive heat, open flame, spark and all ignition sources

Hazardous decomposition products: Carbon monoxide and Carbon dioxide when heated

Section VIII – Preventive measures, Personal protective equipment

Gloves: Impervious (Nitrile, PVC) Eyes: Chemical safety goggles of full face shield

Respiratory: Wear a CSA approved respirator

Other: Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls: Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure: Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by diking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills: Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal: Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment: Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement: Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources.

Special shipping information: Handle as flammable liquid.

Section IX – First aid measures

Inhaled: Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact: Flush affected areas with mild soap and water. Remove contaminated clothing

Eye contact: Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately.

Ingestion: Do not induce vomiting. Obtain medical attention immediately.

Additional information: If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X – Preparation of M.S.D.S.

Additional notes or references:

N/A = not or none available

- **OSHA =** Occupational Safety and Health Administration
- IARC = International Agency for Research on Cancer

ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

THE BEST CORROSION CONTROL PERFORMANCE, GUARANTEED!

MATERIAL SAFETY DATA SHEET

Section I – Material identification and use

Product code: Product name: Chemical family: Product use:	Orga	01 harust Thinner nic solvent ner and cleaning solvent	Health: Fire: Reactivity:	Moderate Moderate Minimal	Whmis Class: TDG Class: TDG UN: Revision Date	B3 D2B 3 1263 07/01/2007		
Section II – Haza	Section II – Hazardous ingredients of material							
Hazardous ingredients Concentration % C.A.S. Num. LD50 Oral rat & dermal rabbit LC50 Inhalation rate PPM/H Mineral spirits 60.0 -100% 64742-88-7 5600 mg/kg 3160 mg/kg 51000/4 Section III – Physical data for material Example of the section and the section of the section and the section of the section and the section and the section and the section of the section and the s								
Physical state:LiquidSpecific gravity:Odor:lightRelative Density.763813PH:0% Volatile/Volume60.0 - 100%Coefficient of water/oil distribution:N/AEvaporation rate (nBu Ac=1):0.10		• •	4.80					

Section IV – Fire and explosion hazard of material

Flammability: Yes, by open flame, sparks, excessive heat, smoking and other sources of ignition. *Note*: Vapor may travel some distance to a source of ignition and flash back along the vapor trail. *Means of extinction:* Dry chemical, carbon dioxide, foam, water fog.

Special procedures: Do not enter confined fire space without adequate protective clothing and an approved positive

self-contained breathing apparatus. Exclude air. Do not use water except as a fog. Use water to cool fire exposed containers. *Explosion:* Vapor forms explosive mixture with air between upper and lower flammable limits.

Flash point: (°C) and method: 42.00	Upper explosion limit (% by volume): 5.00
Spontaneous Combustion(°C): N/A	Lower explosion limit (% by volume): 0.80
Sensitivity to mechanical impact: None	Sensitivity to static discharge: Yes

Section V – Toxicological properties of material

Exposure limits (TVL ppm) : 100.00Irritancy of material : Slight to moderate skin irritantCARCINOGENIC, POSSIBLE FOETUS MALFORMATION AND MUTATIONNo adverse affects are anticipated.Emergency telephone number: Canutec (613) 996-6666, Termarust Technical Department (514) 351-7600

Section VI – Toxicological properties of material

Route of entry : Skin contact, skin absorption, inhalation acute, ingestion

Section VI – Toxicological properties of material (cont'd)

Effects of acute exposure to material : Direct contact with skin may cause drying and cracking. Contact with eyes may cause conjunctivitis, irritation, and inflammation of mucous membranes. Inhaled, may cause irritation of eyes, nose, throat, and respiratory tract. Ingestion may cause irritation of mucous membranes of mouth and throat.

Effects of chronic exposure to material : Prolonged or repeated skin contact may cause drying resulting in irritation and possible dermatitis. Prolonged exposure to high vapor concentration can cause headache, dizziness, nausea, depression and narcosis. Ingestion may cause nausea, vomiting and/or diarrhea.

Section VII – Reactivity data

Chemical stability : Yes

Incompatibility with other substances : Yes, with strong Oxidizing agents, mineral acids **Reactivity and under what conditions :** Avoid excessive heat, open flame, spark and all ignition sources **Hazardous decomposition products :** Carbon monoxide and Carbon dioxide when heated

Section VIII – Preventive measures, Personal protective equipment

Gloves : Impervious (Nitrile, PVC) **Eyes :** Chemical safety goggles of full face shield

Respiratory : Wear a CSA approved respirator

Other : Where the risk of skin exposure is higher, impervious clothing should be worn. A positive demand, self-contained or airline breathing apparatus for extremely high concentrations.

Engineering controls : Local and mechanical ventilation to maintain below LEL and TLV values

Leak and spill procedure : Eliminate all sources of ignition. Prevent from entering water sources or sewers. Ventilate enclosed spaces. Large spills: Warn public of potential down wind explosion hazard due to flash back of flammable vapors. Contain by dyking. Recover product and collect contaminated soil or water for treatment and/or disposal. Small spills : Contain by applying absorbent. Collect waste absorbent and contaminated soil for disposal. Notify appropriate environmental agency.

Waste disposal : Reclaim or dispose of waste material in an approved incinerator or waste treatment disposal facility in accordance with applicable regulations by the environmental authority.

Handling procedures and equipment : Flammable. Avoid breathing vapors and prolonged or repeated contact with skin. Launder contaminated clothing. Use good personal hygiene. Ground equipment. Use sparks resistant tools. Avoid splash filling.

Storage requirement : Keep container closed. Store in a cool, dry, well-ventilated area, from heat and ignition sources. **Special shipping information :** Handle as flammable liquid.

Section IX – First aid measures

Inhaled : Remove to fresh air. If not breathing give artificial respiration. Obtain medical attention immediately

Skin contact : Flush affected areas with mild soap and water. Remove contaminated clothing

Eye contact : Flush eyes with water for at least 15 minutes holding eyelids open. Obtain medical attention immediately. **Ingestion :** Do not induce vomiting. Obtain medical attention immediately.

Additional information : If accidentally ingested or inhaled, liquid can produce chemical pneumonia. Cardiac arrhythmia has been reported with solvent exposure.

Section X – Preparation of M.S.D.S.

Additional notes or references :

N/A = not or none available

OSHA = Occupational Safety and Health Administration

IARC = International Agency for Research on Cancer

ACGIH = American Conference of Governmental Industrial Hygienists

We believe that the information contained herein is current as of the date of this Material Safety Data Sheet. Since the use of this information and the conditions of the use of the product are beyond the control of the company, it is the user's responsibility to establish conditions for safe use of the product.

Appendix E

Washwater Sampling Report (Opus, September 2014)

11.7

1. Introduction

Waterblasting is carried out on the Auckland Harbour Bridge (AHB) to remove salt deposits and prepare the surface prior to abrasive blasting and painting. Contaminants in the waterblasting washwater are predominantly derived from weathering of surface coatings and traffic residues deposited on the bridge, and include metals, hydrocarbons and particulate.

The current AHB maintenance consent (Permit 38836, granted in 2011) required the containment of all washwater to prevent any discharge to the coast. However, since the consent was granted it has been determined that such containment is not practicable, because of the difficulties and high cost of implementing the system over the coastal area (for example strengthening of the bridge structure would be required to hold the weight of the washwater in a containment system). Consequently, a new consent is now being sought that allows a more flexible approach to the management of contaminants from maintenance discharges to achieve the same or better environmental outcomes as under the current consent.

To determine the best practicable option for disposal of washwater, Total Bridge Services (TBS) undertook washwater sampling in May 2013 to investigate the level of contaminants generated through waterblasting the bridge. The results of the investigation are summarised in this memo, with a discussion of these in the wider context of the proposed new AHB maintenance discharge consent.

1.1 Washwater Sampling

The washwater sampling was designed to capture a 'worst case' scenario in terms of level of contaminants in the washwater, through sampling from structures where contaminants have built up over time because of the presence of multiple joints, rivets and semi-enclosed structures. Washwater was sampled during the waterblasting carried out on three separate structures (two diagonals and one post) on the lower truss bridge. Two composite samples were collected from each structure, one at the start of the waterblasting and one towards the end (six samples in total).

The samples were analysed for total and dissolved metals (arsenic, cadmium, chromium, copper, lead, nickel and zinc), hexavalent chromium (chromium VI), total petroleum hydrocarbons (TPH) and total suspended solids (TSS).

2. Discussion of Washwater Sampling Results

The concentrations of contaminants in the waterblasting washwater varied considerably between structures and between the initial and end samples. In order to account for this variation, assessment has been undertaken on the average value (arithmetic mean) to represent the average concentration in the water discharged to the harbour.

Results for dissolved metals have been assessed in relation to the ANZECC (2000) guidelines for 95% protection of marine ecosystems. Total metals and TSS have been assessed with respect to the mass load of contaminants that would be discharged into the harbour from waterblasting. These are discussed in the sections below.

All results for chromium VI and TPH were below the laboratory detection limit, so these are not discussed further in this memo.

2.1 Washwater Characteristics

The characteristics of the washwater samples observed during the sampling are summarised in Table 1.

Sample	Description		
East diagonal – initial sample	Very dirty, dark brown, organic matter evident (twigs, leaves, silt), no odour. pH 7.4		
East diagonal – end sample	Clean, no colour, clear, no odour. pH 7.6		
West diagonal – initial sample	Light brown, not cloudy, no odour, some particulate. pH 7.1		
West diagonal – end sample	Slight brown colour, cloudy, no odour, slight particulate. pH 7.2		
West post – initial sample	Very slight cloudy colour, quite clear, no odour, very little particulate. pH 7.3		
West post – end sample	Clear, no colour, no odour. pH 7.7		

Table 1: Characteristics of waterblasting washwater

Most of the samples were clear or only slightly cloudy or discoloured. However, the initial discharge from the East diagonal appeared very dirty. This appearance would be due to the presence of particulates in the water. Particulates in the washwater were measured at the laboratory as TSS, and results of this sampling are discussed below in Section2.3.

No films, scums or foams were observed on the surface of the washwater. None of the samples exhibited any odour.

The temperature of the washwater was not recorded. However, washwater is not heated or chilled prior to use, therefore it is unlikely to be significantly different in temperature to seawater at the time of discharge, and would not cause a 3°C rise in water temperature in the harbour. In the future it is proposed that hot water (~75°C) may be used for waterblasting (due to its ability to remove salt residues more easily), however trials indicate that the temperature of such water decreases very rapidly after discharge and would be expected to have reached (or be close to) ambient temperature by the time it reaches the harbour.

The pH of the washwater was between 7.1 and 7.7. It is considered unlikely that discharge of water with pH 7.1-7.7 to the harbour would have an effect on the pH of the ambient seawater. This is primarily because of the small volume of washwater relative to the much larger volume of the harbour, but also because the pH of the

washwater is similar to that of natural seawater¹ and because of the natural capacity of seawater to buffer pH.

2.2 Comparison of Dissolved Metals with ANZECC Guidelines

Where washwater is discharged directly to the CMA it is necessary to consider the effects of dissolved contaminants on marine ecological values. A summary of the dissolved metals results from the washwater sampling is given in Table 2, along with the ANZECC trigger levels for 95% protection of marine ecosystems. It should be noted, however, that the ANZECC guidelines apply after reasonable mixing, while these samples were taken 'at source'. Consequently, where the average concentration of a contaminant in the washwater exceeds the ANZECC 95% trigger level, the level of dilution that is required to meet the trigger level has been calculated. These values are also included in Table 2.

¹ Seawater typically has a pH of around 8

Table 2: Summary of dissolved metals results and comparison to ANZECC marine trigger levels

	Sampling results summary				95% ANZECC marine ecosystem	Dilution factors to meet 95 %
Dissolved metal	Maximum value (mg/L)	Minimum value (mg/L)	Average (mean) value' (mg/L)	Standard Error (mg/L)	protection trigger levels ² (mg/L)	ANZECC marine trigger levels ³
Arsenic	0.0021	<0.001	0.0019	0.00077	ID	n/a
Cadmium	0.0010	0.00035	0.00054	0.00010	0.0055	n/a
Chromium (total)	0.096	0.0014	0.025	0.0143	0.0274	n/a
Copper	0.079	0.0029	0.021	0.0118	0.0013	19
Lead	0.28	0.0022	0.053	0.0454	0.0044	12
Nickel	0.011	0.0005	0.0028	0.00158	0.07	n/a
Zinc	5.6	0.54	3.48	0.84	0.015	242

Notes:

1. Where a result was below the laboratory detection limit a value of half the detection limit has been used in the calculation of the mean.

2. Australian and New Zealand Environment and Conservation Council (ANZECC), 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality guidelines.

3. Dilution based on background concentrations in the Manukau Harbour in the absence of data for the Waitemata Harbour: Purakau Channel: Cu: <0.0005 mg/L, Pb: <0.0001 mg/L, Zn: 0.00064 mg/L, and Mangere Inlet: Cr: 0.000035 mg/L(midrange) (Auckland Council, 2008)

4. **Bold** indicates exceedance of marine trigger level.

Auckland Harbour Bridge

The average concentrations of copper, lead and zinc in undiluted washwater exceeded the ANZECC 95% marine and trigger levels. The dilution required for the (average) dissolved metals in the washwater to meet the ANZECC 95% marine trigger levels has been calculated as being 242 times the discharged volume (based on the dilution required to achieve the zinc trigger level).

The typical volume of washwater that would be discharged on a daily basis is approximately 850L, with a daily maximum of 4230L. Given a neap tidal prism of 108,000,000m³ in the Central Waitemata Harbour, which is 1.08×10^{13} L. The tidal prism provides a dilution of 25,531,915 times for the maximum daily discharge. If a smaller area of harbour water is considered (e.g. 10,000m³ of seawater around the bridge) the dilution factor provided for the maximum daily washwater discharge is approximately 4230. Therefore ample dilution is provided by the receiving environment, which ensures that ecotoxicological effects are highly unlikely to occur due to contaminants contained in washwater discharges.

Where maintenance works occurs over land washwater discharges are primarily to the stormwater network. Stormwater is discharged directly into the CMA on the eastern and western side of the northern abutments, and directly underneath the bridge at the southern end. The dissolved metals in washwater are unlikely to remain in dilution after discharge to coastal waters because they sorb to fine organic particles and settle out into sediment. Consequently, the washwater was also sampled for total metals, the results of which are discussed below.

2.3 Total Metals and TSS

A summary of the sampling results for total metals and TSS is provided in Table 3. Based on the laboratory results for total metals, the average (mean) annual mass loads of these contaminants have been calculated (assuming that 10% of the bridge is waterblasted annually), these are also presented in Table 3.

		Mean annual			
Contaminant	Maximum value (mg/L)	Minimum value (mg/L)	Mean value (mg/L)	Standard Error (mg/L)	mass load' (kg/annum)
Total Metals					
Arsenic	0.039	0.0016	0.012	0.0057	0.0019
Cadmium	0.0041	0.00047	0.0012	0.00058	0.00021
Chromium (total)	0.49	0.011	0.20	0.070	0.033
Copper	0.37	0.0077	0.091	0.056	0.014
Lead	0.92	0.047	0.26	0.14	0.041
Nickel	0.047	0.0024	0.013	0.0070	0.0020
Zinc	26	1.7	13	3.6	2.4
Particulate					
TSS	2600	18	498	421	77

Table 3: Summary of results for total metals and TSS, and estimated annual mass loads

Notes:

1. Annual load based on maintenance of 10% of the bridge per annum

Stormwater contaminant source modelling work carried out by Dr Malcolm Green for Auckland Council (unpublished²) estimates the total zinc and total copper inputs to the Central Waitemata Harbour from a variety of land use activities (including runoff from roads, roofs, paved areas, erodible stream channels, grasslands and bare earth) to be 18,623 kg/annum and 1,111.47 kg/annum respectively. Based on the mean

AGENCY

to be 18,623 kg/annum and 1,111.47 kg/annum respectively. Based on the mean annual mass loads above, the percentage of contaminants from washwater compared to the loads from other sources is 0.013% and 0.0013% respectively. On that basis, it can be concluded that the load of contaminants from washwater is negligible in the context of the load discharged from other sources in the Central Waitemata Harbour (CWH). It is expected that contaminants other than zinc and copper in washwater form a similarly small percentage of the total catchment discharges. However these contaminants are not priority contaminants of concern for Auckland Council and therefore have not been modelled in the same way as copper and zinc.

It is estimated that of the 2.4 kg/annum of zinc discharged, 0.58 kg/annum may be discharged (via existing stormwater system) to the CMA from washwater from the areas of AHB over land. This additional load, whilst a point source discharge, is negligible in terms of the load discharged to the CMA directly from maintenance works (0.26%) and from other sources within the CWH (0.003%). For example comparing the maximum washwater contaminant load that may be discharged to stormwater at the northern end of the bridge, if we assume 50% is discharged to western side³ and 50% to the eastern side⁴ of the peninsula, the load forms 0.4% and 0.6% of the annual zinc load discharged from the sub catchments as modelled by Green (2008).

Under the current maintenance consent, the discharge of zinc and particulate (garnet) from other maintenance activities on the bridge such as abrasive blasting and spray painting is managed through consent conditions that require a proportion of the discharges to be contained. The annual mass loads of these discharges that can be discharged under the current consent have been calculated according to the current consent conditions, and represent permitted 'thresholds' of up to 223 kg/annum of zinc and 14679 kg/annum of particulate (garnet). The estimated annual mass loads of zinc and particulate from washwater represent approximately 1% and 0.005% of these thresholds respectively.

Consequently, even though the effects of the discharges of zinc and particulate from washwater are expected to have a negligible environmental effect on the Waitemata Harbour, it is considered appropriate to include this discharge in the accounting for total zinc and total particulate discharged from all consented maintenance activities to ensure that the total discharge of these contaminants remains equal to or less than that allowed under the current consent.

3. Conclusions

The concentrations of dissolved metals are able to comply with the ANZECC 95% trigger levels for protection of marine ecosystems after reasonable mixing. The environmental effects of disposal of the waterblasting washwater is considered unlikely to have more than a negligible environmental effect on the Waitemata Harbour.

Given high cost to implement the previously proposed containment system for washwater and the low environmental effect relative to other consented maintenance

² Approved for use for this assessment provided by Judy Anson at Auckland Council.

³ Auckland Council Stormwater Management Unit 29.

⁴ Auckland Council Stormwater Management Unit 39.

activities, it is considered that the best practicable option to manage the washwater generated through waterblasting on the AHB is direct discharge into the coast with the extent of the discharge limited to ensure that the total discharge of contaminants remains within acceptable limits (i.e. the limits allowed by the current consent).

Part of Auckland Motorways

Auckland Harbour Bridge

Consequently it is recommended that discharges from this washwater be managed within the key contaminant thresholds to be used for the wider maintenance discharges, so that the total discharges of zinc and particulate to the coast from all consented maintenance activities do not exceed the calculated thresholds: Zinc: 223kg/annum, Particulate (garnet): 14679 kg/annum.

Other contaminants in washwater are not key contaminants of concern for Auckland Council and/or they form a small proportion of the total annual contaminant load discharged to the CWH. On that basis it is considered that the effects of the other contaminants on marine ecological values are at worst negligible and it is not considered necessary to include these as key contaminants under the AHB maintenance consent.

4. References

- Auckland Council (2008). The Impacts of Urban Stormwater in Auckland's Aquatic Receiving Environment: A Review of Information 1995 to 2005. Technical Report TR2008/029.
- Green M, 2008. Central Waitemata Harbour Contaminant Study. Predictions of Sediment, Zinc and Copper Accumulation under Future Development Scenario 1, prepared by NIWA for Auckland Regional Council, Technical Report 2008/043.

Appendix F

Records of Iwi Consultation

Withheld in full under section 9(2)(ba)(i)

11.1.1