# Supporting Waipapa Growth: Addendum to Detailed Business Case

Sebastian Reed

October 2017

**VERSION - FINAL** 

Additional Option Assessment: Alternative Roundabout





#### Copyright information

This publication is copyright © NZ Transport Agency. Material in it may be reproduced for personal or in-house use without formal permission or charge, provided suitable acknowledgement is made to this publication and the NZ Transport Agency as the source. Requests and enquiries about the reproduction of material in this publication for any other purpose should be made to:

Manager, Information NZ Transport Agency Private Bag 6995 Wellington 6141

The permission to reproduce material in this publication does not extend to any material for which the copyright is identified as being held by a third party. Authorisation to reproduce material belonging to a third party must be obtained from the copyright holder(s) concerned.

#### Disclaimer

The NZ Transport Agency has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. However, the document does not override governing legislation. The NZ Transport Agency does not accept liability for any consequences arising from the use of this document. If the user of this document is unsure whether the material is correct, they should refer directly to the relevant legislation and contact the NZ Transport Agency.

More information

NZ Transport Agency Published [October 2017]

ISBN [number]

If you have further queries, call our contact centre on 0800 699 000 or write to us:

NZ Transport Agency Private Bag 6995 Wellington 6141

This document is available from the NZ Transport Agency on request.

#### **CONTENTS**

| Addition | nal Opti | ion Assessment: Alternative Roundabout | 3  |
|----------|----------|----------------------------------------|----|
| 1.       | Intro    | oduction                               | 4  |
|          | 1.1      | Background Information                 | 4  |
|          | 1.2      | Problems and Benefits                  | 4  |
|          | 1.3      | Short-Listed Options                   | 5  |
|          | 1.4      | Option Assessment and Preferred Option | 6  |
| 2.       | Econ     | nomic Analysis                         | 13 |
|          | 2.1      | Methodology                            | 13 |
|          | 2.2      | Economic Summary: Assessed Options     | 13 |
|          | 2.3      | Comparison with Earlier Stages         | 15 |
|          | 2.4      | Sensitivity Analysis                   | 15 |
|          | 2.5      | Incremental Analysis                   | 15 |
|          | 2.6      | Assessment Profile                     | 16 |
|          | 2.7      | Recommended Option - Conclusions       | 16 |
| 3        | Refe     | prences                                | 18 |

iii

#### **FIGURES**

| Figure 1: Option development process diagram                                                | 4  |
|---------------------------------------------------------------------------------------------|----|
| Figure 2: Incremental analysis                                                              | 15 |
|                                                                                             |    |
| TABLES                                                                                      |    |
| Table 1: Refined Problem Statements                                                         | 5  |
| Table 2: Waipapa DBC short-list options' MCA findings                                       | 6  |
| Table 3: Multi-criteria analysis results for each option                                    | 12 |
| Table 4: NPV net cost and benefits for short-listed options including the additional option | 13 |
| Table 5: Assessment comparison - Roundabout versus Alternative Roundabout                   | 16 |

#### **APPENDICES**

Appendix A - Option Drawing

Appendix B - Environmental Social Responsibility Screen (ESR)

Appendix C - Multi Criteria Analysis

Appendix D - Traffic Modelling

Appendix E - Economics

Appendix F - Cost Estimates

Appendix G - Land Requirement Plan

## Additional Option Assessment: Alternative Roundabout

NZ TRANSPORT AGENCY October 2017

3

#### 1. INTRODUCTION

This document is an addendum to the Supporting Waipapa Growth: Detailed Business Case, October 2017<sup>1</sup> (DBC), which set out the Single Stage Business Case for the State Highway 10 (SH10) / Waipapa Road intersection.

This addendum assesses the additional option put forward by a local Waipapa resident Mr. Peter Williams and outlines the assessment results for the various criteria used to evaluate the short-listed options considered in the DBC<sup>1</sup>.

#### 1.1 Background Information

The DBC set out the strategic case that identified the problems and benefits, the context of the case, the refinement of the problems, and the subsequent option development and evaluation framework. The option identification and evaluation process was undertaken as follows:

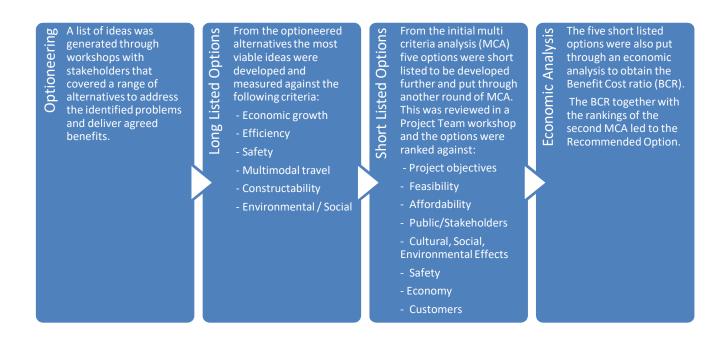



Figure 1: Option development process diagram

#### 1.2 Problems and Benefits

The problem statements that were refined through the Strategic Case<sup>2</sup> capture the situation at Waipapa and are detailed in Table 1.

Table 1: Refined Problem Statements

| STRATEGIC BUSINESS CASE                                                                                                                                                              | DETAILED BUSINESS CASE                                                                                                                                                                                                                                                                 | COMMENT/JUSTIFICATION                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Lack of long term integrated planning and robust zoning controls has resulted in suboptimal land use patterns and a deficient transport system (20%)                                 | Lack of long term integrated planning and robust zoning controls has resulted in suboptimal land use patterns and a deficient transport system (20%)                                                                                                                                   | No change in wording. Weighting amended for relevance to the SH10 corridor |
| Disjointed and outdated Waipapa<br>corridor transport infrastructure is<br>a major barrier to safe and<br>efficient multi-modal passage and<br>realising community outcomes<br>(45%) | Disjointed and insufficient<br>transport infrastructure is a major<br>barrier to safe, efficient and<br>reliable multi-modal passage,<br>including visitor journeys, and<br>realising community outcomes in<br>Waipapa (45%)                                                           | Minor changes to capture tourist trips                                     |
| Landuse and network changes have significantly altered vehicle mix, journey patterns and crash profile on the State Highway and adjoining intersections (35%)                        | Land use development pressure<br>and network changes have<br>significantly altered vehicle mix<br>and journey patterns on the State<br>Highway and adjoining local roads.<br>This has led to increased pressure<br>at key points on the network and<br>changes to crash patterns (35%) | Recognising recent growth within Waipapa                                   |

The Strategic Business Case process also finalised the benefits as follows:

• Benefit One: Improved Economic Growth for Waipapa and Kerikeri (10%)

• **Benefit Two:** Improved Network Efficiency (45%)

• **Benefit Three**: Increased Safety (15%)

• Benefit Four: Increased multi-modal travel (30%)

#### 1.3 Short-Listed Options

From the eleven long-list of options that were identified in a workshop on 17 November 2016, five options were shortlisted as meriting closer examination after the initial Multi Criteria Analysis (MCA). The short-listed options included:

- Right Turn Bay (RTB)
- Roundabout
- Traffic Signals
- Head to Head RTBs
- Close Waipapa Loop Road South

In addition to the short-listed option, the **Do Minimum Option: Klinac Lane Extension** was also considered in the MCA.

#### 1.4 Option Assessment and Preferred Option

#### 1.4.1 Methodology

The project team carried out a more detailed analysis of the short-listed options in a final MCA to determine the Preferred Option.

The following criteria were considered and ranked against, in the MCA:

- 1. Project specific objectives
- 2. **Feasibility / constructability** Property risks, consenting risks, implementability, significant hazards' risk, Whole of Life operation / maintenance costs
- 3. Affordability Funding risks, operating cost risks
- 4. Public / Stakeholders public expectations
- 5. Cultural, Social, Environmental Effects Community cohesion, connectivity
- 6. **Economy** based on traffic modelling outputs
- 7. Customers local users, freight users visiting users.

The five short-listed options were compared to the Do-Minimum option of Klinac Lane Extension. The team composed of a good range of skills, with both local and regional knowledge. They readily arrived at agreement on some scores, and for others reached consensus after a healthy debate.

The team was comfortable that the final ranking of options was arrived at through fair consideration, with the outcome of the process detailed in the DBC¹ for the Do-Minimum option of upgrading Klinac Lane and the five short-listed options. The additional option of Alternative Roundabout has been considered since and the outcome is presented below.

#### 1.4.2 Key Findings: Previously Short-Listed Options

Table 2 presents the key findings from the short-listed options MCA.

Table 2: Waipapa DBC short-list options' MCA findings

| SHORT LISTED OPTION      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COST   | BCR | FUNDING<br>PROFILE |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--------------------|
| Right Turn Bays<br>(RTB) | Minor intersection improvements with the implementation of a right turn bay for vehicles turning from SH10 into Waipapa Road. Option also includes a splitter island on Waipapa Loop Road that restrict movements from this approach to a left out only. The northern access to Waipapa Road remains open and option design encourages vehicles to use this intersection for the right turn from SH10 to Waipapa Loop Road, right turn from Waipapa Loop Road to SH10 and movements from Waipapa Loop Road to Waipapa Road. Access between Skippers Lane and Waipapa Loop Road remains unchanged. | \$5.7M | 2.9 | LLM                |
| Roundabout               | This option includes the conversion of the existing crossroads to a single lane roundabout. This option also includes intersection rationalisation with both the northern Waipapa Loop Road access to SH10 and Skipper Lane access onto Waipapa Loop Road being closed.                                                                                                                                                                                                                                                                                                                           | \$7.1M | 3.1 | МНМ                |

| SHORT LISTED OPTION              | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                         | COST   | BCR | FUNDING<br>PROFILE |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--------------------|
| Traffic Signals                  | SH 10, Waipapa Road and Waipapa Loop Road are all signalised with two lane approaches on each leg. This option also includes intersection rationalisation with both the northern Waipapa Loop Road access to SH10 and Skipper Lane access onto Waipapa Loop Road being closed. Pedestrian crossing facilities are incorporated into each leg.                                                                                                       | \$6.6M | N/A | LLL                |
| Head to Head RTBs                | This option involves shifting the Waipapa Road approach further south creating a staggered T-intersection arrangement with Waipapa Loop Road, with right turn bays into both. This option also includes intersection rationalisation with both the northern Waipapa Loop Road access to SH10 and Skipper Lane access onto Waipapa Loop Road being closed. Pedestrian links, including central refuges on the State Highway, would also be provided. | \$6.2M | 2.7 | Ш                  |
| Close Waipapa<br>Loop Road South | This option would completely close the intersection at the south intersection of Waipapa Loop Road, diverting all traffic through the north intersection and Skippers Lane. Access to Skippers Lane from the State Highway would only be from the south end. Pedestrian links, including central refuges on the State Highway, would also be provided.                                                                                              | \$5.7M | 2.8 | LLL                |

#### 1.4.3 Key Findings: Alternative Roundabout

#### **OPTION 6: ALTERNATIVE ROUNDABOUT**

#### **Description:**

This option includes the construction of a roundabout east of the existing intersection, such that the SH would be constructed offline to the existing carriageway. This option, unlike the other Roundabout option, does not include intersection rationalisation with both the northern Waipapa Loop Road access to SH10 and Skipper Lane access onto Waipapa Loop Road being closed.



#### **KEY POINTS OF DIFFERENCE:**

#### Alignment to investment objectives:

This option has the 2<sup>nd</sup> highest alignment to investment objectives of all considered options.

#### Risks:

The option is considered to pose significant risk for a number of reasons, namely, the largest footprint (both temporary and permanent), and safety concerns with the access to Skippers Lane (discussed in further detailed in Section 1.4.4 of this report). This layout would also increase traffic on Skippers Lane and therefore conflict between through-traffic and parked vehicles. It is important to note that the roundabout as drawn by the suggesting party would not be feasible and as such would have to be designed according to design standards.

#### **Effects:**

The overall effect of this option will be higher than the other options considered in terms of land take (including permanently taking rural land from the community), however the construction phase will have a lesser impact on the existing intersection and businesses as the roundabout would be able to be built offline. This option would significantly alter the general characteristic of the township, and as the roundabout will not provide a direct link to the industrial/commercial area west of SH10, it may lead to the businesses being bypassed more often. Also, the increase in impervious surfaces resulting from this option will necessitate increased drainage through a flood prone area.

#### Outcome:

Even though the Alternative Roundabout option has overall alignment to the investment objectives, it has a number of negative affects both in terms of safety and the environment. It is also the most expensive of all the other options considered. It meets the objectives but does produce conflict in traffic coming off/ going

on to the roundabout and the traffic from leaving the Waipapa Loop Road. As such it will not address the current issue of intersection delays for side road traffic at the same time as providing opportunity for more development within the Waipapa area.

Cost: \$9.4M

**BCR:** 2.6

**Funding Profile: MML** 

NZ TRANSPORT AGENCY October 2017

9

#### 1.4.4 Safety

There are a few significant safety concerns related to this option. These are:

- Access to Skippers Lane, especially for larger vehicles, for example the frequent freight for the industrial / commercial properties on Skippers Lane and to the northwest of SH10.
- Lack of adequate stacking space for vehicles coming off the roundabout (SH10) queuing to turn right into Skippers Lane this could be mitigated by changing the priority on Skippers Lane (as shown), but the separation between intersections is sub-standard.
- Lack of adequate stacking space for queuing vehicles to enter the roundabout.
- Increase in the traffic on Skippers Lane.
- Conflict between through traffic and parked vehicle/pedestrians on Skippers Lane.
- Inadequate intersection separation distances between proposed roundabout and local roads including Waipapa Loop Road and, to a lesser extent, Mawson Avenue. This leads to conflicts between people departing the roundabout and vehicles turning to and from these two local roads.

#### Assessment of Effects

Of the short-listed options assessed in the DBC, the Right Turn Bays option was deemed the most favourable, the Roundabout option being the second most favourable, and the remaining options being relatively equal in terms of avoiding environmental, health, heritage and social impact. As for the Alternative Roundabout, it scores as the worst option in comparison to all the other options considered, including the Do Minimum.

**Appendix F** presents the Environmental and Social Responsibility Screen (ESR) completed for this option.

#### 1.4.5 Natural Environment

All short-listed options considered in the DBC1 were relatively equal in this regard.

For this option, even though the road reserve will need to be extended, and would require a Notice of Requirement (NoR), the rural zoned land to be acquired for this option is previously disturbed land and not considered ecologically sensitive. As such, implementation of this option is not likely to have any significant adverse effects on any significant ecological, flora/fauna values.

This option requires, as with all the other short-listed options, an alteration of the SH10 and Maritime Road crossings over Whiriwhiritoa Stream. Details of these crossings are yet to be developed however, the design must ensure that alterations do not worsen the 100 year ARI upstream flood level, and do not worsen fish passage during high flow events (at least up to the 1 year ARI event). Due to a significant increase in impervious surfacing, this option has the greatest potential to increase stormwater runoff therefore compromising existing drainage infrastructure and susceptibility of surrounding land to flooding.

The change from the implementation of this option will translate to a significant change in the general characteristic of the township, especially as the through-traffic traverses on this section of SH10.

The vertical alignment correction due to the grade difference between SH10 and Skippers Lane will result in greater earthworks as compared to the other options, producing significantly more cut-to-waste.

Another important aspect resulting from the new pavement that will be produced from the implementation of this option will be the significant increase in the impervious surfaces of the area. This has the potential to reduce recharge quantities to the underlying aquifer which is used for potable drinking water for humans and stock drinking water.

#### 1.4.6 Heritage/Archaeology

All short-listed options considered in the DBC were relatively equal in this regard. Desktop assessments confirm that the existing road reserve and the additional land in-take do not contain any significant Heritage / Archaeology values. However, as with all short-listed options, a Cultural Impact Assessment designed by the local hapû would be sought during the pre-implementation phase.

#### 1.4.7 Land Acquisition

The Alternative Roundabout option will require the largest area of land acquisition to implement as currently suggested, with even more land requirements if it were designed to be feasible so as to meet the necessities of the intersection (safety and traffic constraints). This will translate into both the cost implication of land acquisition but additionally the increased time in consenting processes due to the additional land being zoned rural.

#### 1.4.8 Contaminated Land

The additional land requirement for this option is largely the rural land to the east of the existing SH10. This land includes land used for orchard / agricultural purposes which are activities listed as hazardous and likely to cause land contamination under the Hazardous Activities and Industries List (HAIL). As a result, the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES Contam)<sup>3</sup> must be considered. This essentially means that the presence of potentially contaminated land needs to be investigated and managed accordingly.

#### 1.4.9 Social Impact

This option would have a low impact on the local business, both during physical works and from permanent works. However, there is a possibility that the roundabout may take the drivers away from the industrial/commercial area west of SH10, due to its indirect link to this area. This will have an adverse effect to the businesses that is desired and will actually mean that one of the project objectives, *economic growth through integrated land-use*, is not met.

#### Impacts on Businesses from Permanent Works

The Alternative Roundabout option could improve the current patterns of movement for the community within the western extent of the town as it makes Skippers Lane more accessible. However, this option anticipates that Skippers Lane would become a connector road as opposed to a service lane with the removal of access to Waipapa Loop Road South off of SH10. This has the potential to deter customers from accessing the local businesses on this lane as traffic movements would increase as a result of the change in function and the lack of an alternative route.

There is also no information available to demonstrate how the eastern extent of the town will be connected to create a whole-of-community townscape and the businesses to the east could be adversely impacted as a result.

Furthermore, the layout of this option would be initially complex to understand how to manoeuvre, but could become more familiar in a faster timeframe than the right turn bay, head to head and closing of Waipapa Loop Road South. Improvements to traffic flow would be similar to the roundabout option therefore overall supporting of safer journeys (lesser head-to-head collisions).

This option would require moderate maintenance due to the changes in ground levels and installation of new drainage, however the risk of infrastructure failure is low so the community will receive a secure and functioning transportation route.

#### Impacts on Businesses During Works

The Alternative Roundabout option requires a substantial amount of new ground work to install infrastructure, resulting in extensive alteration to the existing environment with the most impact on amenity of the town and rural areas.

This option does provide businesses and the community with greater security of accessibility during works. Although traffic flow can be managed by utilisation of the existing intersection during physical work, the duration that this must occur is much longer than any of the other options due to the scale of the physical work involved.

Property rights are also impinged to a greater extent under this option with larger land acquisition required.

#### **MCA Summary**

A summary of the MCA analysis is presented below. Refer to **Appendix G** for the detailed analysis of the Alternative Roundabout option.

Table 3: Multi-criteria analysis results for each option

| SUMMARY                                                           | DO MINIMUM -<br>KLINAC LANE | RIGHT TURN<br>BAY | ROUNDABOUT | TRAFFIC<br>SIGNALS | HEAD TO<br>HEAD RIGHT<br>TURN BAYS | CLOSE<br>WAIPAPA LOOP<br>ROAD SOUTH | ALTERNATIVE<br>ROUNDABOUT |
|-------------------------------------------------------------------|-----------------------------|-------------------|------------|--------------------|------------------------------------|-------------------------------------|---------------------------|
| Objective 1 - Economic growth through integrated land-use         | 0                           | +                 | +++        | +++                | +                                  | -                                   | ++                        |
| Objective 2 - Improve network efficiency                          |                             | 0                 | ++         |                    | +                                  | -                                   | +                         |
| Objective 3 - Improve safety by reducing crossing/turning crashes |                             |                   | ++         |                    |                                    |                                     | +                         |
| Objective 4 - Facilitate growth of multi-modal travel             | 0                           | ++                | +          | ++                 | +                                  | +                                   | +                         |
| Feasibility                                                       | 0                           | -                 |            |                    | -                                  | -                                   |                           |
| Affordability                                                     | 0                           | 0                 | 0          | 0                  | 0                                  | 0                                   | 0                         |
| Public / Stakeholders                                             |                             |                   | ++         |                    |                                    |                                     | +                         |
| Cultural, Social and Environmental Effects                        | 0                           | ++                | +          | +                  | +                                  | +                                   |                           |
| Safety                                                            |                             |                   | ++         |                    |                                    |                                     | +                         |
| Economy                                                           | 0                           | +                 | ++         | +                  | +                                  | -                                   | +                         |
| Customers                                                         | -                           | +                 | ++         | 0                  | +                                  | 0                                   | +                         |
| Ranking                                                           | 7                           | 3                 | 1          | 5                  | 4                                  | 6                                   | 2                         |

Planning issues were considered neutral to all of the short-listed options, however this option will potentially require longer consenting statutory processing times due to the NoR approach for extending the road reserve into rural zoned land.

This option ranks 2nd when compared with all the other short-listed options, with the Roundabout option still ranking the highest.

#### 2. ECONOMIC ANALYSIS

#### 2.1 Methodology

#### 2.1.1 Outline Economic Approach

A Benefit Cost Ratio (BCR) calculation was undertaken for the five shortlisted options, using the NZTA January 2016 Economic Evaluation Manual (EEM)<sup>4</sup> process. The travel time, vehicle operation cost and CO<sub>2</sub> were all based on SIDRA traffic modelling (**Appendix I**) outputs.

The existing crash cost was derived from weighted crash procedures, based on crash prediction models and the past five full calendar year (1st January 2011 – 31st December 2015) crash history from NZ Transport Agency Crash Analysis System (CAS). Future accident cost has been estimated according to the EEM and the Crash Estimation Compendium effective from 1 January 2016.

#### 2.1.2 Assumptions

The general assumptions made for this Single Stage Business Case economic analysis are presented in the DBC<sup>1</sup>.

#### 2.1.3 Reference Case

The 'Do Minimum' option has been assumed to retain the existing intersection configuration. However, the economic evaluation assumes that the Klinac Lane link has been built as part of the Do Minimum network. Accordingly, the Do Minimum network has some change in trip distribution in the network, with more traffic using Waipapa Loop Road.

A sensitivity test has been carried out that excludes the Klinac Lane link in the Do Minimum network.

For all options (including the Do Minimum) and sensitivity tests only the benefits from the SH10/Waipapa Road intersection have been considered. Hence, any cost and benefits from the Klinac Lane extension has been ignored. The reason for this is to simplify the economic evaluation and capture the main benefits which are associated with the SH10/Waipapa Road intersection.

#### 2.2 Economic Summary: Assessed Options

Table 4 provides a summary of the assessed options for the SH10 / Waipapa Intersection. The values in the table all reflect the net cost or benefit for the short-listed options in comparison with the Do minimum option. All values are the net present values over the 40-year analysis period using a discount factor of 6%.

Table 4: NPV net cost and benefits for short-listed options including the additional option

| SHORTLISTED<br>SCHEME<br>OPTIONS | OPTION 1<br>RIGHT<br>TURN BAY | OPTION 2<br>ROUND-<br>ABOUT | OPTION 3<br>TRAFFIC<br>SIGNALS | OPTION 4<br>HEAD TO<br>HEAD<br>RIGHT TURN<br>BAY | OPTION 5<br>CLOSE<br>WAIPAPA<br>LOOP ROAD | OPTION 6<br>ALTERNATIVE<br>ROUNDABOUT |
|----------------------------------|-------------------------------|-----------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------|
| COSTS                            |                               |                             |                                |                                                  |                                           | ·                                     |
| NPV Option Cost (k)              | \$5,061                       | \$6,260                     | \$5,837                        | \$5,434                                          | \$4,998                                   | \$8,294                               |

| SHORTLISTED<br>SCHEME<br>OPTIONS      | OPTION 1<br>RIGHT<br>TURN BAY | OPTION 2<br>ROUND-<br>ABOUT | OPTION 3<br>TRAFFIC<br>SIGNALS | OPTION 4<br>HEAD TO<br>HEAD<br>RIGHT TURN<br>BAY | OPTION 5<br>CLOSE<br>WAIPAPA<br>LOOP ROAD | OPTION 6<br>ALTERNATIVE<br>ROUNDABOUT |
|---------------------------------------|-------------------------------|-----------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------|
| BENEFITS                              |                               |                             |                                |                                                  |                                           |                                       |
| NPV Travel Time<br>Savings (k)        | \$11,199                      | \$14,572                    | -\$8,840                       | \$11,200                                         | \$10,834                                  | \$16,555                              |
| NPV Vehicle<br>Operating Costs<br>(k) | \$3,180                       | \$4,086                     | \$2,826                        | \$3,181                                          | \$2,897                                   | \$4,399                               |
| NPV CO2<br>Emissions (k)              | \$195                         | \$273                       | \$180                          | \$195                                            | \$181                                     | \$293                                 |
| NPV Accidents (k)                     | \$320                         | \$452                       | \$23                           | \$320                                            | \$320                                     | \$132                                 |
| NPV Total (k)                         | \$14,895                      | \$19,384                    | -\$5,810                       | \$14,896                                         | \$14,232                                  | \$21,379                              |
| BCR                                   | 2.9                           | 3.1                         | N/A                            | 2.7                                              | 2.8                                       | 2.6                                   |

As the table above illustrates, all assessed options have a BCR between 2.5 and 3.1, with the exception of the signalised option that has negative benefits and hence a BCR on this option was not considered further. The Roundabout option has the highest benefits in comparison with the Do Minimum option but also has slightly higher costs. The Alternative Roundabout has the highest costs for implementation.

The economics assessment worksheets are presented in **Appendix J**.

The Original Roundabout is still the Preferred Option in this analysis because of the following reasons:

- The two roundabout options are the only options that increase the capacity in the intersection, which means that the initial investment for a roundabout will:
  - provide benefits for a longer period of time;
  - will best manage high traffic growth; and
  - will not be as sensitive to change in traffic turning patterns.
- A roundabout caters well for all traffic movements in the intersection, whilst most other options, except traffic signal, prioritise SH10 movements at the expense of a still quite poor level of service for side traffic.
- The original Roundabout option is preferred over the Alternative Roundabout as it is considered to be a safer option and it also provides a more efficient route for local traffic accessing the Waipapa commercial zone.
- From a safety perspective, the original Roundabout option provides intersection rationalisation with Waipapa Loop Road north being closed as part of the design. The original Roundabout concept is also positioned further away from Mawson Avenue, therefore reducing the risk of crashes at the Waipapa Road / Mawson Avenue intersection.
- From an efficiency point of view, the Alternative Roundabout makes it harder for traffic to access
  Waipapa Commercial area as they will have to drive via Skippers Lane, which will take longer
  and also impose a conflict with other traffic, parked vehicles, and pedestrians using this road.
  The original Roundabout option is a more cost effective option with the construction estimate
  being approximately \$2M lower in cost.

• One of the only benefits offered by the Alternative Roundabout is that it has less impact on the local businesses and it can be constructed 'offline' to the existing SH and therefore with less disruption during the construction period.

#### 2.3 Comparison with Earlier Stages

This project is a Single Stage Business Case and no previous economics were undertaken for this project.

#### 2.4 Sensitivity Analysis

A sensitivity test has not been undertaken for the Alternative Roundabout option. This is due to the fact that the BCR for this option will always be lower than the original Roundabout option as the cost for this option is higher and the benefits are similar.

#### 2.5 Incremental Analysis

An incremental benefit analysis has been undertaken to illustrate the economic return for the additional investment between each of the options. However, it should be noted that the variation in construction cost estimates between the different options is relatively small, and there is little scope to implement this project in stages. As Figure 2 illustrates the construction cost for all options range from approximately \$5M to \$8.4M.

Key points from incremental Analyses are:

- The two roundabout options provide the most benefits.
- The incremental BCR for the original Roundabout option is 3.2 in comparison with Option 1.
- The incremental BCR for the Alternative Roundabout option is below 1.0 in comparison with the original Roundabout option.

From an incremental; perspective the original Roundabout provides the best option. The incremental analysis shows that the additional \$1.6M invested in the original roundabout will give an economic return of around \$5M.

The alternative roundabout construction cost is approximate \$2M more than the original roundabout but is generate similar benefits. Hence, the incremental BCR is lower than 1.0 and is considered a poor investment.

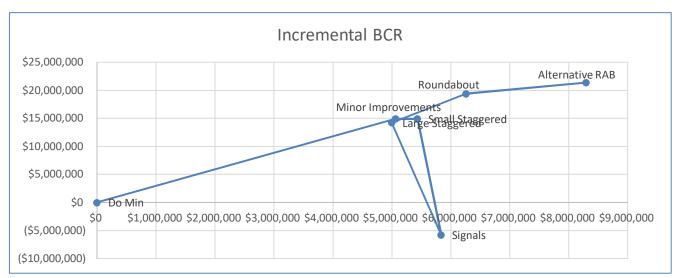



Figure 2: Incremental analysis

#### 2.6 Assessment Profile

An assessment profile of <u>MHM</u> has been determined for the Preferred Option of the Roundabout and Corridor Treatment. The derivation of the assessment profile is discussed in detail in the DBC<sup>1</sup>.

The assessment profile for the Alternative Roundabout option is MML<sup>2</sup>.

#### 2.7 Recommended Option - Conclusions

The Roundabout option remains the Recommended Option, which scored well to very well on almost all the main criteria.

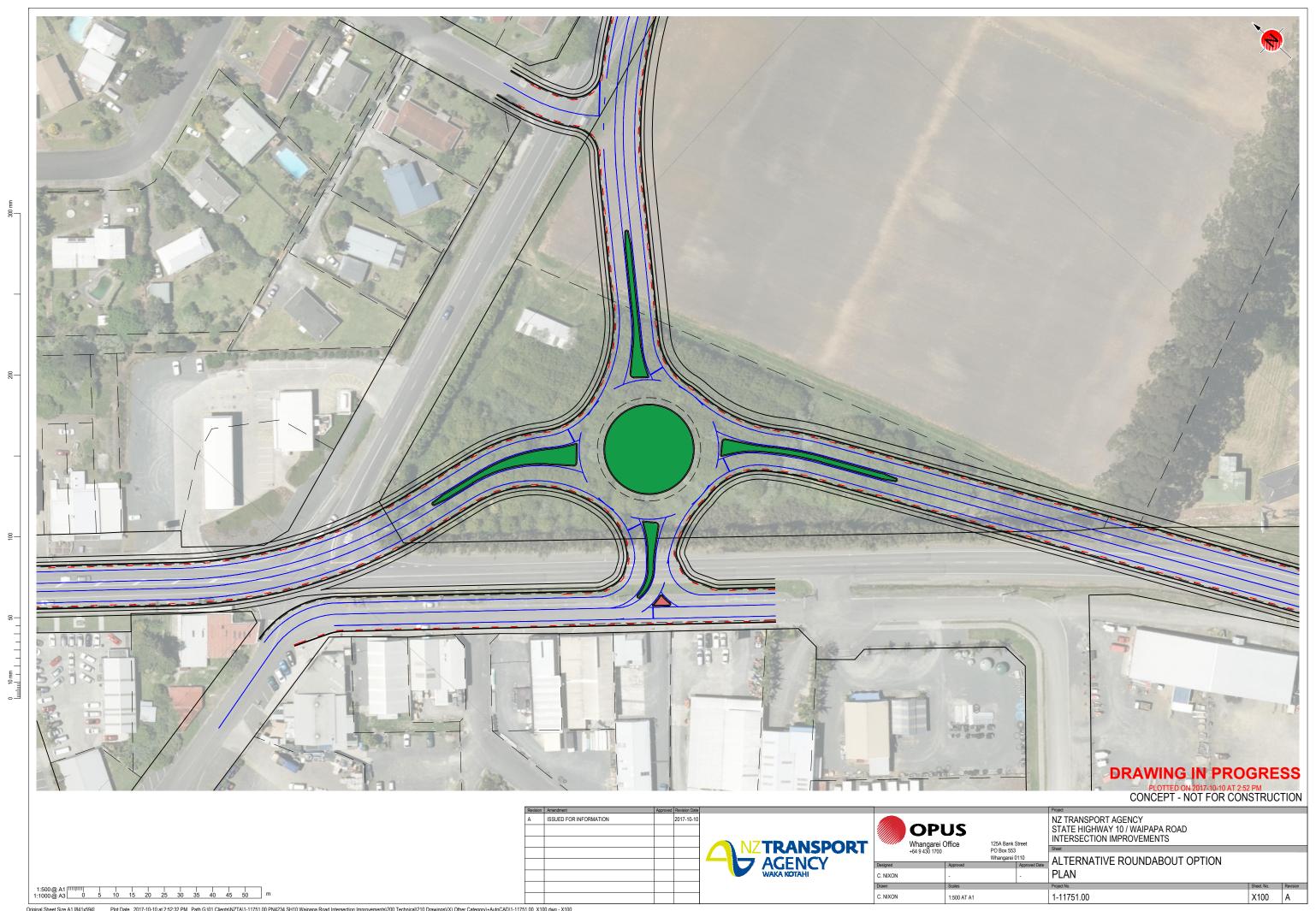
The DBC¹ concluded that the Roundabout option scored low on just one criteria, 'feasibility / constructability', but this is only relative to the other options, and it remains perfectly feasible. The score simply recognises that this option has the largest physical 'footprint' and is likely to have higher ongoing maintenance costs than other options due to factors like seal stress and landscaping upkeep.

Importantly, the Roundabout is clearly the stand-out option in terms of meeting the four main project Objectives.

On comparison of the Roundabout and the Alternative Roundabout options, the following salient points are noted in Table 5.

Table 5: Assessment comparison - Roundabout versus Alternative Roundabout

| CRITERIA                                                  | ROUNDABOUT OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALTERNATIVE ROUNDABOUT OPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective 1 - Economic growth through integrated land-use | <ul> <li>This option provides a significantly better situation than the Do Minimum in terms of ease of movement in all directions.</li> <li>This option provides a gateway treatment to the Waipapa area. For tourism, this option is considered optimum, especially for Twin Coast Discovery Highway movements.</li> <li>This option will allow a more integrated intersection in terms of connections to the commercial areas to the west of SH10.</li> </ul> | <ul> <li>This option also provides a significantly better situation than the Do Minimum in terms of ease of movement in all directions.</li> <li>This option also provides a gateway treatment to the Waipapa area. For tourism, this option is considered optimum, especially for Twin Coast Discovery Highway movements.</li> <li>This option will allow for a less integrated intersection in terms of connections to the commercial areas to the west of SH10. Due to the circuitous nature of the route from the roundabout to the commercial area, motorists are more likely to continue to use Kahikatearoa Road to access the commercial area.</li> </ul> |
| Objective 2 - Improve network efficiency                  | This option provides the best overall efficiency benefits. The roundabout would be constructed                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>This option would be constructed<br/>offline to the east of the existing<br/>SH10. While this will furnish<br/>benefits during the construction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |


<sup>&</sup>lt;sup>2</sup> Also refer to the detailed MCA sheet in Appendix C.

| CRITERIA                                                            | ROUNDABOUT OPTION                                                                                                                                                                                                                                                                                                                                                                                                                   | ALTERNATIVE ROUNDABOUT OPTION                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective 2 - Improve network efficiency (continued)                | on the existing alignment, making use of the existing infrastructure.  Pedestrian crossing points are necessarily some distance from the desire lines for crossing, but careful design can still accommodate suitable facility.                                                                                                                                                                                                     | phase, minimising disruption to traffic and businesses, in terms of permanent affects it will only provide an indirect link to the commercial area.  Pedestrian crossing points may be even further than the desire lines for the 'Roundabout' option.  Inefficiencies around the Skippers Lane intersection due to the proximity to the roundabout.                                  |
| Objective 3 - Improve safety by reducing crossing / turning crashes | <ul> <li>Roundabouts significantly reduce the number of conflict points and, for most users, will represent a safe and easy option. Even though they can have a higher number of crashes compared to some other intersection treatments, incidents tend to be of a lesser severity due to lower speeds.</li> <li>It is reasonably assumed that safe cycling provision can be addressed satisfactorily by careful design.</li> </ul> | <ul> <li>Similar to the other roundabout option, it will reduce the volume of head-to-head collisions and therefore reduce the severity of crashes.</li> <li>Due to nature of this option, it will generate additional hazards that are not present for the other roundabout option. These are related to the proximity of the Skippers Lane and Mawson Ave intersections.</li> </ul> |
| Objective 4 - Facilitate<br>growth of multi-modal<br>travel         | <ul> <li>Pedestrian movements can be well provided-for with uncontrolled crossing points, but some of the designed walking routes across the intersection will unavoidably be at some distance from the 'desire lines' due to practical constraints.</li> <li>Cycling provision can be carefully designed for but less confident cyclists may find roundabouts less desirable.</li> </ul>                                           | <ul> <li>Pedestrian movements can be well-provided for but the desire-lines may be unavoidably even further away from the businesses, etc. as compared to the other roundabout option due to practical constraints.</li> <li>Cycling provision can be carefully designed for but less confident cyclists may find roundabouts less desirable.</li> </ul>                              |

#### 3. REFERENCES

- 1. Supporting Waipapa Growth: Detailed Business Case, NZTA, October 2017
- 2. Supporting Waipapa Growth Strategic Business Case, NZTA, February 2016
- 3. Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health), Regulations 2011
- 4. Economic Evaluation Manual, NZTA, January 2016

# APPENDIX A<br/>Option Drawing



# APPENDIX B Environmental Social Responsibility Screen (ESR)

#### **ENVIRONMENTAL AND SOCIAL RESPONSIBILITY SCREEN V2.FEBRUARY 2016**

Use to assess options in the <u>Indicative Business Case</u>

Use this screen to identify opportunities and risks and assess options for state highway projects. Complete the screen for each option to distinguish them from one another or bundle options where appropriate. Screen results will signal where technical assessments are required and provide a written record to support the alternatives assessment required for statutory applications. For further assistance contact the EUD Team.

Additional instructions and content, including information sources, to help complete the screen can be found on the Highways Information Portal Screen pages here

Decide how many times screen should be filled out (Group Options)

Answer screen questions using project information and suggested information sources

Refer to screen questions explanation, particularly if you answered yes to any of the questions

Complete page 2 of screen

Incorporate page 2 text in IBC assessment of options table (Background and MCA)

PROJECT PURPOSE: PROJECT LOCATION: DATE: **OPTION DESCRIPTION:** 

| CATEGORY                         |            | OUESTION                                                                                                                                                                 | ANSWER                                 |                                       | USEFUL INFORMATION SOURCES                                                               |
|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|
|                                  |            | What is the zoning of adjacent land?                                                                                                                                     | Rural                                  | Commercial                            | District/Unitary Plan Zoning Maps                                                        |
|                                  | G1         | Are there any encumbrances on the land? e.g. Maori Reserve or other reserve/covenants                                                                                    | Industrial                             | Residential                           |                                                                                          |
| GENERAL                          | 3.         |                                                                                                                                                                          | High density<br>residential            | Parks/open space                      |                                                                                          |
|                                  | G2         | Does the option disturb previously undisturbed land?                                                                                                                     | Υ                                      | N                                     |                                                                                          |
|                                  | <b>G</b> 3 | What is the construction timeframe?                                                                                                                                      | >18 months                             | <18 months                            |                                                                                          |
|                                  | NE1        | Are there any outstanding/significant natural features (e.g. geological or geothermal)/landscapes?                                                                       | Υ                                      | N                                     | NZTA MapHub Environmental and Social<br>Risk Map- Natural Environment                    |
|                                  | NE2        | Will the option affect the coastal marine area, wetlands, lakes, rivers, streams or their margins?                                                                       | Υ                                      | N                                     | Regional Plan Maps and Schedules                                                         |
| NATURAL<br>ENVIRONMENT           | NE3        | Will the option affect areas of the conservation estate, or areas of known significance for biodiversity or known habitats of uncommon or threatened species?            | Υ                                      | N                                     | District Plan Maps and Schedules                                                         |
|                                  | NE4        | Is the option in an area of potential hazard risk e.g. fault lines, significant erosion, flooding, sea level rise etc?                                                   | Υ                                      | N                                     | Department of Conservation                                                               |
|                                  |            | Will more than 0.5 hectares of vegetation be removed?                                                                                                                    | Υ                                      | N                                     |                                                                                          |
|                                  | NE5        | What type?                                                                                                                                                               |                                        |                                       |                                                                                          |
|                                  | CH1        | Are there sites/areas of significance to Maori within 200m of the area of interest?                                                                                      | Υ                                      | N                                     | lwi NZTA MapHub Environmental and Social                                                 |
|                                  | CH2        | Are any recorded, scheduled or listed archaeological sites within 200m of the area of interest?                                                                          | Υ                                      | N                                     | Risk Map- Culture and Heritage<br>Heritage New Zealand List                              |
| CULTURAL<br>AND HISTORIC         | СНЗ        | Are any scheduled, listed or other important heritage buildings/<br>structures within 200m of the area of interest?                                                      | Υ                                      | N                                     | NZ Archaeological Association District Plan Maps and Schedules                           |
| HERITAGE                         | CH4        | Will the option affect the setting of any historic building/structure or archaeological site?                                                                            | Υ                                      | N                                     | Regional Plan Maps and Schedules IPENZ Heritage List                                     |
|                                  | CH5        | Is a group of archaeological sites or an area of historic built environment (even partially) within 200m of the area of interest?                                        | Υ                                      | N                                     | NZTA GIS predictive models                                                               |
|                                  |            |                                                                                                                                                                          | National                               | Regional                              | NZTA MapHub Environmental and Social                                                     |
|                                  | HH1        | What is the One Network Road Classification?                                                                                                                             | Arterial                               |                                       | Risk Maps- Human Health and Community which includes:                                    |
|                                  | HH2        | Is the area of interest designated as a non-compliant airshed?                                                                                                           | Υ                                      |                                       | <ul> <li>Designated airsheds (including one network classification)</li> </ul>           |
|                                  | ННЗ        | Are there medical sites, rest homes, schools, child care sites, residential properties, maraes or other sensitive receivers located within 200m of the area of interest? |                                        |                                       | - Highly sensitive receivers  Regional Council Contaminated sites                        |
| HUMAN<br>HEALTH                  |            | Does land use within 200m of the area of interest include industrial sites, chemical manufacturing or storage, petrol stations, vehicle                                  | Υ                                      |                                       | _ Team                                                                                   |
|                                  |            | maintenance, timber processing/treatment, substations, rail yards, landfills or involve other activities that may result in ground                                       |                                        |                                       |                                                                                          |
|                                  | HH4        | OR Are there HAIL or SLUR (contaminated) sites within 200m of the                                                                                                        |                                        |                                       |                                                                                          |
|                                  |            | area of interest?                                                                                                                                                        | V                                      | N                                     |                                                                                          |
|                                  | <b>S</b> 1 | Does the option affect access to community facilities i.e. libraries,                                                                                                    | Y Which?                               | N                                     | NZTA MapHub Project Team                                                                 |
| SOCIAL                           |            | open space etc (either temporarily or permanently)?                                                                                                                      |                                        |                                       | District Plan Maps                                                                       |
|                                  | S2         | Does the option affect community cohesion and accessibility including vehicular connectivity on the local road network?                                                  | Υ                                      | N                                     | Council and Community Strategy<br>Documents                                              |
|                                  | ULD 1      | Are there opportunities to enhance infrastructure for, and/or improve access to, public transport and/or active modes of travel such as as walking and cycling?          | Υ                                      | N                                     | NZTA MapHub Environmental and Social<br>Risk Map- Natural Environment (Scenic<br>Routes) |
| URBAN AND<br>LANDSCAPE<br>DESIGN | ULD2       | Does the option enhance the development potential of adjacent land where appropriate?                                                                                    | Υ                                      | N                                     | Regional Land Transport Plan Project Team                                                |
|                                  | ULD3       | Is the option located on a themed highway? Is the option part of or near a national cycle or walking route?                                                              | Υ                                      | N                                     | Strategies and District Plan                                                             |
|                                  | ULD4       | Are there opportunities to enhance the urban character, landscape character and visual amenity?                                                                          | Υ                                      | N                                     |                                                                                          |
|                                  |            | ·                                                                                                                                                                        | · ———————————————————————————————————— | · · · · · · · · · · · · · · · · · · · | 15-156 <b>  PAGE 1</b>                                                                   |



| Answers and Comments                                               | Refer to screen questions explanation to help complete this part.                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summarize the potential of Consider short and long to              | environmental and social risks/impacts associated with this option.<br>erm risks and impacts.                                                                                                                                                                                                          |
| NATURAL ENVIRONMENT:                                               |                                                                                                                                                                                                                                                                                                        |
| CULTURAL AND HISTORIC<br>HERITAGE:                                 |                                                                                                                                                                                                                                                                                                        |
|                                                                    |                                                                                                                                                                                                                                                                                                        |
| SOCIAL:                                                            |                                                                                                                                                                                                                                                                                                        |
|                                                                    | in the IBC assessment of options summary table: MCA of the Option.                                                                                                                                                                                                                                     |
| URBAN AND<br>LANDSCAPE DESIGN:                                     |                                                                                                                                                                                                                                                                                                        |
| 2. What are the environment                                        | ts from above into the economy, social and geography sections of the IBC assessment of options summary table. tal, social integration, landscape design or urban design benefits or opportunities presented by this option? cunities that could be lost if not considered early in the design process. |
| 3. Are there any impacts, ris<br>Is further information req        | ks or opportunities which require preliminary technical assessments to help understand risks or opportunities?<br>uired to support the development of the detailed business case or can it be left until the detailed business case/pre-implementation?                                                |
| Completed by                                                       |                                                                                                                                                                                                                                                                                                        |
| Reviewed by NZTA<br>Project Manager                                |                                                                                                                                                                                                                                                                                                        |
| Incorporated results into IBC assessment of options summary table? | Yes No                                                                                                                                                                                                                                                                                                 |

# APPENDIX C Multi Criteria Analysis

### ASSESSMENT SUMMARY TABLE - ALTERNATIVE ROUNDABOUT

Business case name

SH10 Waipapa Road Intersection Improvements

Name of Project Manager & Region

Sebastian Reed, Auckland / Northland

Business case purpose

To upgrade the SH10 Waipapa Road Intersection to improve the economic growth, efficiency, safety, and to promote of multi-modal travel in the Northland region.

#### Option description

**Description:** This option, unlike the other Roundabout option, does not include intersection rationalisation with both the northern Waipapa Loop Road access to SH10 and Skipper Lane access onto Waipapa Loop Road being closed. It is understood that urban roundabouts typically have a 55% effectiveness in crash reduction (Austroads Road Safety Engineering Toolkit). However, facilities for pedestrians and cyclists would have to be incorporated into the design.



Dependencies: None

| Estimated    |
|--------------|
| total public |
| sector       |
| funding      |
| requirement  |

|                                       | Lower       | Upper       |
|---------------------------------------|-------------|-------------|
| Capital cost (\$m):                   | \$7,753,811 | \$9,353,609 |
| Net property cost (\$m):              | \$1,946,750 | \$2,336,100 |
| Opex (\$m/30yr):                      |             |             |
| Maintenance (\$m/30yr):               |             |             |
| Present value of cost to govt. (\$m): |             |             |
| R range                               |             |             |
| Optimal programme:                    | Likelv:     |             |

 Estimated BCR range
 Likely:

 Timing of need:
 Optimal programme:
 Likely:

 IAF profile
 Strategic fit
 M
 Effectiveness
 M
 Efficiency
 L

### ASSESSMENT SUMMARY TABLE – ALTERNATIVE ROUNDABOUT

| Criterion                                                                    | Score | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective 1:<br>Economic<br>Growth through<br>integrated land-<br>use        | ++    | Even though a roundabout option provides a significantly better situation than <i>Do Minimum</i> in terms of ease of movement; as compared to the other <i>roundabout option</i> , this option does not provide equal movement in all directions. It does provide a gateway treatment to the Waipapa area, but because of the circuitous nature of the route into the commercial area, motorists are more likely to continue to use Kahikatearoa Road. This could adversely impact the businesses as a result with the SH10 traffic and pedestrian traffic from the east of the township having a perception of disconnectivity to the commercial area to the west of SH10.                                                                                                                                                                                    |
| Objective 2:<br>Improve<br>network<br>efficiency                             | +     | This option provides some efficiency benefits in terms of SH through traffic but there will be inefficiencies introduced due to the proximity of Skippers Lane to the roundabout. The pedestrian crossing points will necessarily be some distance from the desire lines for crossing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Objective 3:<br>Improve safety<br>by reducing<br>crossing/turning<br>crashes | +     | This option will significantly reduce the number of conflict points and, for most users, will represent a safe and easy option. Even though roundabouts can have a higher number of crashes, compared to other intersection treatments, but these tend to be of a lesser severity due to lower speeds. It is assumed cycling provision can be carefully designed for. However, the alternative roundabout introduces additional risks at both Skippers Lane and Mawson Ave because of the lack of separation.                                                                                                                                                                                                                                                                                                                                                  |
| Objective 4:<br>Facilitate growth<br>of multimodal<br>travel                 | +     | This option can provide well thought out pedestrian movements, with uncontrolled crossing points. But some of the walking routes across the intersection are at some distance from the desire lines, even more so than for the other <i>roundabout option</i> . Cycling provision can be carefully designed for but less confident cyclists may find roundabouts less desirable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Feasibility                                                                  |       | This option will require the most land take, and will have the largest overall footprint of all the considered options. And as this land take will be of rural zoned land, it will lead to the consenting route to be longer due to statutory timeframes. In terms of whole of life operation/maintenance this option is similar to the other <i>roundabout option</i> , and will pose greater stress on seal requiring higher maintenance and/or earlier reseal, and requiring ongoing landscaping maintenance. This option can be constructed offline and therefore will be less inconvenient to businesses and traffic but as it will require a larger scale construction (of new pavement, drainage, etc. and additional earthworks not required by other options) any time saving in the offline construction will be consumed by these additional works. |
| Affordability                                                                | 0     | Whilst costs vary somewhat between options, the affordability of whatever becomes the preferred option will be considered to be "affordable" if economically viable overall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Public/Stake-<br>holders                                                     | +     | The community are all very much expecting the solution to be a roundabout, based on various prior forms of awareness of a potential project at this intersection. The community is also expecting this option to be selected due to the success of the nearby SH10 / Kerikeri Rd Roundabout. This option has less impact on existing businesses that than the other <i>roundabout option</i> . However, the community may have concerns around the viability of this option compared to the other <i>roundabout option</i> .                                                                                                                                                                                                                                                                                                                                   |

### ASSESSMENT SUMMARY TABLE – ALTERNATIVE ROUNDAROUT

| ROUNDAE                                                      | BOUT                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Environmental<br>and social                                  | -                                                                                                                                                                                                | This option will require the largest amount of land take, a good portion of which is currently zoned 'rural'. This would require the road reserve to be extended, and would require a Notice of Requirement (NoR), however as the rural zoned land to be acquired is previously disturbed land and not considered ecologically sensitive, it is not likely to have any significant adverse effects on any significant ecological, flora/fauna values.  The change from the implementation of this option will translate to a significant change in the general characteristic of the township.  The vertical alignment correction due to the grade difference between SH10 and Skippers Lane will result in greater earthworks as compared to the other options, producing significantly more cut-to-waste. Also, the construction of new pavement will mean significant increase in the impervious surfaces of the area.  The pedestrian and vehicular traffic connectivity to all amenities, both to the east and west of SH10 will have to be considered carefully as it will be potentially affected by the positioning of the roundabout and the free-flowing traffic. |  |  |  |  |
| Safety                                                       | +                                                                                                                                                                                                | This option will significantly reduce the number of conflict points at the intersection and, for most users, will represent a safe and easy option. Even though roundabouts can have a higher number of crashes, compared to other intersection treatments, these tend to be of a lesser severity due to lower speeds. It is assumed cycling provision can be carefully designed for. Inadequate intersection separation distances between proposed roundabout and local roads including Skippers Lane and Mawson Avenue Intersection. There will also be an increase of traffic using Skippers Lane, which is currently a service lane, which will increase potential conflicts between parked cars, deliveries and through traffic.                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Economy                                                      | +                                                                                                                                                                                                | A Traffic Modelling Study was conducted and found that that this option is the second most preferred among all the options considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Environmental opportunities                                  | There is some opportunity to clean up any potential contamination from the land in-take from the orchard and adjacent agricultural section. Also, for some landscaping on the actual roundabout. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Social opportunities                                         | There a                                                                                                                                                                                          | There are no social opportunities associated with this option.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Rationale for<br>selection or<br>rejection of<br>alternative | it being<br>physica<br>The dis<br>has son<br>the rou                                                                                                                                             | This option is rated 2 <sup>nd</sup> of the options considered as it provides some benefits related to it being a 'roundabout' and the offline construction causing less disruption during the physical works.  The disbenefits being that this option is the most expensive of the options considered, has some safety concerns due to inadequate intersection separation distances between the roundabout and the local roads, has some negative environmental impacts, and longer consenting timeframe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

# APPENDIX D Traffic Modelling

#### Waipapa Road/SH10 Intersection **Economic Analysis Inputs - using SIDRA model outputs**

Assumptions and input data Worksheets A2.1 to A2.8

Evaluation carried out in accordance with

Manual: NZTA'S EEM (volume 1)

Revision: First Edition, Amendment 0

Date: Effective from 1 July 2013

#### **Project Timing:**

Date of Evaluation: Base date is 1 July Time Zero is 1 July Discount Factor Earliest Start of Construction is Construction Period is Construction Period ends

31-Mar-17 2016 2017 6.00% months 6.0 1-Apr-19

ie at Time =

2016

2041

#### Construction Cost of Options (+MSQA)

Expected Construction Costs - 1st July Time Period 1st period Discount period midpoin 1.50

Do Min
Option 1 (Right Turn Bay))
Option 2 (4 Leg Roundabout)
Option 3 (Signals)
Option 4 (Head to Head Right turn Bays)
Option 5 (Close Waipapa Loop)
Option 6 Alternative Roundabout \$4,926,802 \$6,330,048

Total Expected Estimate

Analysis period extends to 40 years after the start of construction, to Time=

\$5,722,276 \$7,069,265 \$6,597,650 \$6,141,090 \$5,652,450 \$9.353,609

Expected Land Cost of Options Time Period 1st period Discount period Do Min \$0.0 \$329,700.0 \$1,198,500.0 Option 1 (Right Turn Bay)) Option 2 (4 Leg Roundabout) Option 3 (Signals) \$492,900.0 \$512,100.0 Option 4 (Head to Head Right turn Bays)
Option 5 (Close Waipapa Loop)
Option 6 Alternative Roundabout

| Expected Fees -<br>Time Period          | 1st period<br>I/R | 2nd period<br>Specimen Design And<br>Project Documentation |
|-----------------------------------------|-------------------|------------------------------------------------------------|
| Discount period -<br>midpoint           | 0.25              | 0.75                                                       |
| Do Min                                  |                   |                                                            |
| Option 1 (Right Turn Bay))              | \$232,887.0       | \$232,887.0                                                |
| Option 2 (4 Leg Roundabout)             | \$254,044.5       | \$254,044.5                                                |
| Option 3 (Signals)                      | \$264,397.0       | \$264,397.0                                                |
| Option 4 (Head to Head Right turn Bays) | \$243,347.5       | \$243,347.5                                                |
| Option 5 (Close Waipapa Loop)           | \$239,408.0       | \$242,156.0                                                |
| Ontion 6 Altomotivo Douglahout          | 62427205          | ¢2.42.720.5                                                |

Yes

Yes

#### Accident Savings are based on: More than 1500vpd Step 1 Crash history adequate Step 2 Step 3

Significant change in last No three years Step 4 Minimum of crashes ≥ 5 No Minimum of crashes ≥ 5 injury or ≥ 2 serious and fatal Are Crash Prediction Models or crash rates available for the do minimum and project Fundamental Change Step 5 Yes Yes

Go to step 5 Go to Step 7

Go to step 3

Go to step 4

Growth rate ajustment for use in crash cost = Accident growth rate = 0.20%

3,857 source: NZTA Count S 2.20% source: Based on 5 year

Step 7

Conclusion

Fundamental Change Do Min Method C Option 1 (Right Turn Option 2 (4 Leg Roundabout)

Method B Option 3 (Signals) Method B Option 4 (Head to Head Method B

Right turn Bays)
Option 5 (Close Waipapa Method B

Method C for do min and Method B for Project Option Method C for do minimum

Five year accident data

Accident Trend

AADT

Traffic growth rate

Table A6.1(a) 0.965

-2.00%

Loop) **Traffic Volume Inputs & Model Assumptions** 

#### **Project Operating Costs**

Operating costs are based on SIDRA outputs

Vehicle Operating costs are determined from fuel usage outputs

Travel time costs are based on average sidra delays

CO2 is calculated from Sidra CO2 outputs

Benefits begin after construction (all benefits prior to construction are assummed to be equal)

#### Annualisation Factors

| TIME PERIOD DATA |                |        |           |          |
|------------------|----------------|--------|-----------|----------|
| PERIOD           | DESCRIPTION    | hr/day | days/year | hrs/year |
| 1                | AM Peak (1hr)  | 1      | 245       | 245      |
| 2                | PM Peak (1hr)  | 2      | 245       | 490      |
| 3                | IP Peak (1hr)  | 8      | 245       | 1960     |
| 4                | Saturday (1hr) | 6      | 52        | 312      |
| 5 Sunday         | Sunday (1hr)   | 6      | 68        | 408      |
| 5 off peak       | Off peak       |        |           | 5345     |

8760.00 8760

#### TT and VOC Cost Values used in economics

| TT & CRV COST/HR | tab A4.3 | RS   |
|------------------|----------|------|
| II & CHV COSI/HH | lab A4.3 | nə   |
| Period           | TT       | CRV  |
| 1                | 15.13    | 3.88 |
| 2                | 14.96    | 3.79 |
| 3                | 17.95    | 3.60 |
| 4                | 14.09    | 4.26 |
| 5                | 14.09    | 4.26 |

VOC based on total fuel used and an equivalent resource cost other VOC components considered to be the same

| /OC costs (BASED ON \$1.49/LITRE<br>1 (factor to get total VOC)) |          |  |  |  |
|------------------------------------------------------------------|----------|--|--|--|
| Period                                                           | \$/litre |  |  |  |
| all periods                                                      | 1.49     |  |  |  |
|                                                                  |          |  |  |  |

| UPDATE FACTORS 2002 TO | 2016 |
|------------------------|------|
| OPERATING COSTS        |      |
| π                      | 1.45 |
| VOC                    | 0.98 |
| ACC                    | 1.03 |
| CONSTRUCTION COSTS     |      |
| Estimate at year       | 2017 |
| Base date =            | 2016 |
| Factor for base date = | 0.96 |
| Factor for base date = | 0.96 |

#### YEARLY OPERATING COST WORKSHEET 1 hour modelled period

|      |                |                      |                                   | Travel Time Cost    |      | Travel Time Cost VOC CO2                | 02                            |      | Yearly Cost   |            |            |           |             |          |
|------|----------------|----------------------|-----------------------------------|---------------------|------|-----------------------------------------|-------------------------------|------|---------------|------------|------------|-----------|-------------|----------|
| Year | Time Period    | Total Travel<br>Time | Number of<br>Vehicles<br>(veh/hr) | Travel Time<br>Cost | V/C  | CRV<br>Additional<br>Congestion<br>Cost | Fuel use<br>litres/perio<br>d |      | CO2<br>Tonnes | Cost/Tonne | Periods/Yr | π         | voc         | CO2      |
| 2016 | AM Peak (1hr)  | 2.95                 | 1435                              | \$45                | 0.47 | \$0                                     | 185.50                        | 1.49 | 0.44          | 40         | 245        | \$10,944  | \$67,717    | \$4,345  |
|      | PM Peak (1hr)  | 2.89                 | 1339                              | \$43                | 0.36 | \$0                                     | 173.50                        | 1.49 | 0.42          | 40         | 490        | \$21,207  | \$126,672   | \$8,136  |
|      | IP Peak (1hr)  | 2.02                 | 1055                              | \$36                | 0.24 | \$0                                     | 132.70                        | 1.49 | 0.32          | 40         | 1960       | \$71,208  | \$387,537   | \$24,853 |
|      | Saturday (1hr) | 2.02                 | 1055                              | \$29                | 0.24 | \$0                                     | 132.7                         | 1.49 | 0.317         | 40         | 312        | \$8,898   | \$61,690    | \$3,956  |
|      | Sunday         | 1.60                 | 858                               | \$23                | 0.47 | \$0                                     | 107.9                         | 1.49 | 0.2576        | 40         | 408        | \$9,188   | \$65,595    | \$4,204  |
|      | Night          |                      |                                   |                     |      |                                         |                               |      |               |            |            | \$6,223   | \$11,690    |          |
|      |                |                      |                                   |                     |      |                                         |                               |      |               |            | TOTAL      | \$127,668 | \$720,900   | \$45,494 |
| 2026 | AM Peak (1hr)  | 4.20                 | 1845                              | \$64                | 0.63 | \$0                                     | 241.5                         | 1.49 | 0.577         | 40         | 245        | \$15,568  | \$88,160    | \$5,657  |
|      | PM Peak (1hr)  | 4.29                 | 1780                              | \$64                | 0.51 | \$0                                     | 233.7                         | 1.49 | 0.559         | 40         | 490        | \$31,427  | \$170,624   | \$10,954 |
|      | IP Peak (1hr)  | 2.92                 | 1419                              | \$52                | 0.38 | \$0                                     | 180.4                         | 1.49 | 0.431         | 40         | 1960       | \$102,729 | \$526,840   | \$33,790 |
|      | Saturday (1hr) | 2.92                 | 1419                              | \$41                | 0.38 | \$0                                     | 180.4                         | 1.49 | 0.431         | 40         | 312        | \$12,836  | \$83,864    | \$5,379  |
|      | Sunday         | 2.28                 | 1157                              | \$32                | 0.27 | \$0                                     | 146.4                         | 1.49 | 0.3499        | 40         | 408        | \$13,097  | \$88,999    | \$5,710  |
|      | Night          |                      |                                   |                     |      |                                         |                               |      |               |            |            | \$7,592   | \$14,262    |          |
|      |                |                      |                                   |                     |      |                                         |                               |      |               |            | TOTAL      | \$183,249 | \$972,750   | \$61,491 |
| 2036 | AM Peak (1hr)  | 8.03                 | 2335                              | \$122               | 0.86 | \$16                                    | 316.3                         | 1.49 | 0.756         | 40         | 245        | \$33,755  | \$115,465   | \$7,411  |
|      | PM Peak (1hr)  | 7.62                 | 2289                              | \$114               | 0.75 | \$5                                     | 309.2                         | 1.49 | 0.739         | 40         | 490        | \$58,285  | \$225,747   | \$14,490 |
|      | IP Peak (1hr)  | 4.12                 | 1829                              | \$74                | 0.49 | \$0                                     | 235.4                         | 1.49 | 0.563         | 40         | 1960       | \$144,991 | \$687,462   | \$44,147 |
|      | Saturday (1hr) | 4.12                 | 1829                              | \$58                | 0.49 | \$0                                     | 235.4                         | 1.49 | 0.563         | 40         | 312        | \$18,117  | \$109,433   | \$7,027  |
|      | Sunday         | 3.14                 | 1491                              | \$44                | 0.38 | \$0                                     | 190.5                         | 1.49 | 0.4555        | 40         | 408        | \$18,080  | \$115,809   | \$7,434  |
|      | Night          |                      |                                   |                     |      |                                         |                               |      |               |            |            | \$8,961   | \$16,833    |          |
|      |                |                      |                                   |                     |      |                                         |                               |      |               |            | TOTAL      | \$282,189 | \$1,270,749 | \$80,509 |
| 2056 | AM Peak (1hr)  | 12.24                | 2517                              | \$185               | 0.94 | \$38                                    | 349.7                         | 1.49 | 0.836         | 40         | 245        | \$54,663  | \$127,658   | \$8,191  |
|      | PM Peak (1hr)  | 10.95                | 2474                              | \$164               | 0.88 | \$25                                    | 341.8                         | 1.49 | 0.817         | 40         | 490        | \$92,633  | \$249,548   | \$16,015 |
|      | IP Peak (1hr)  | 4.51                 | 2011                              | \$81                | 0.54 | \$0                                     | 260.9                         | 1.49 | 0.624         | 40         | 1960       | \$158,800 | \$761,932   | \$48,937 |
|      | Saturday (1hr) | 4.51                 | 2011                              | \$64                | 0.54 | \$0                                     | 260.9                         | 1.49 | 0.624         | 40         | 312        | \$19,842  | \$121,287   | \$7,790  |
|      | Sunday         | 3.55                 | 1640                              | \$50                |      | \$0                                     | 211                           | 1.49 | 0.5044        | 40         | 408        | \$20,393  | \$128,271   | \$8,232  |
|      | Night          |                      |                                   |                     |      |                                         |                               |      |               |            |            | \$8,961   | \$16,833    |          |
|      |                |                      |                                   |                     |      |                                         |                               | I -  |               |            | TOTAL      | \$355,293 | \$1,405,530 | \$89,165 |

| Project Name:        | Waipapa Road/SH10 Intersection | Posted Speed Limit: | 70 km/h  |
|----------------------|--------------------------------|---------------------|----------|
| Vehicle Involvement: | All                            | Mean Speed:         | 100 km/h |
|                      |                                | Road Category:      | 70       |
|                      |                                | Tueffic growth note | 2.20% %  |

| Crash Type            | Crash Cost (per Year) |
|-----------------------|-----------------------|
| Lost Control off Road | 2,303                 |
| Head On               | 5,613                 |
| Crossing, Direct      | 0                     |
| Crossing Turning      | 9,211                 |
| Rear End, Crossing    | 8,635                 |
|                       | 25,762                |

| Lost Control off Road                                        | Injury Severity |         |        |            |            |
|--------------------------------------------------------------|-----------------|---------|--------|------------|------------|
|                                                              | Fatal           | Serious | Minor  | Non-Injury | Total Cost |
| No. of Years of typical accident rate records                | 5               | 5       | 5      | 5          |            |
| 2. No. of Reported Accidents over Period                     | 0               | 0       | 0      | 1          |            |
| 3. Proportion of Fatal to Serious (Table A6.19 (a) to (c))   | 0.2             | 0.8     |        |            |            |
| 1. No. of Reported Accidents Adjusted by severity (2) x (3)  | 0               | 0       | 0      | 1          |            |
| 5.Accidents per year (4)/(1)                                 | 0               | 0       | 0      | 0.2        |            |
| 6. Adjustment Factor (table A6.1(a))                         | 1.028           | 1.028   | 1.028  | 1.028      |            |
| 7. Adjusted Accidents per Year (5) x (6)                     | 0.000           | 0.000   | 0.000  | 0.206      |            |
| 8. Under-Reporting Factors (table A6.20(a)&(b))              | 1.0             | 1.5     | 4.5    | 7          |            |
| P. Total Estimated Accidents/Year (7) x (8)                  | 0.000           | 0.000   | 0.000  | 1.439      |            |
| 10. Accident Cost, 50 km/h Speed Limit (Table A6.21(a)-(d))  | 5,000,000       | 505,000 | 27,000 | 1,800      |            |
| 11. Accident Cost, 100 km/h Speed Limit (Table A6.21(e)-(h)) | 4,600,000       | 505,000 | 28,000 | 1,600      |            |
| 12. Mean Speed Adjustment = (Do Min Mean Speed - 50) / 50    | 1               | 1       | 1      | 1          |            |
| 13. Cost per Accident = (11) + (12) x [(10) - (11)]          | 4,600,000       | 505,000 | 28,000 | 1,600      |            |
| 14. Total Accident Cost per Year (9) x (13)                  | 0               | 0       | 0      | 2,303      | 2          |

| Head On                                                      |           | Injury Severity |        |            |            |
|--------------------------------------------------------------|-----------|-----------------|--------|------------|------------|
|                                                              | Fatal     | Serious         | Minor  | Non-Injury | Total Cost |
| No. of Years of typical accident rate records                | 5         | 5               | 5      | 5          |            |
| 2. No. of Reported Accidents over Period                     | 0         | 0               | 0      | 1          |            |
| 3. Proportion of Fatal to Serious (Table A6.19 (a) to (c))   | 0.12      | 0.88            |        |            |            |
| 4. No. of Reported Accidents Adjusted by severity (2) x (3)  | 0         | 0               | 0      | 1          |            |
| 5.Accidents per year (4)/(1)                                 | 0         | 0               | 0      | 0.2        |            |
| 6. Adjustment Factor (table A6.1(a))                         | 1.028     | 1.028           | 1.028  | 1.028      |            |
| 7. Adjusted Accidents per Year (5) x (6)                     | 0.000     | 0.000           | 0.000  | 0.206      |            |
| 8. Under-Reporting Factors (table A6.20(a)&(b))              | 1.0       | 1.5             | 4.5    | 7.0        |            |
| 9. Total Estimated Accidents/Year (7) x (8)                  | 0.000     | 0.000           | 0.000  | 1.439      |            |
| 10. Accident Cost, 50 km/h Speed Limit (Table A6.21(a)-(d))  | 4,550,000 | 585,000         | 32,000 | 3,200      |            |
| 11. Accident Cost, 100 km/h Speed Limit (Table A6.21(e)-(h)) | 5,400,000 | 610,000         | 36,000 | 3,900      |            |
| 12. Mean Speed Adjustment = (Do Min Mean Speed - 50) / 50    | 1         | 1               | 1      | 1          |            |
| 13. Cost per Accident = $(11) + (12) \times [(10) - (11)]$   | 5,400,000 | 610,000         | 36,000 | 3,900      |            |
| 14. Total Accident Cost per Year (9) x (13)                  | 0         | 0               | 0      | 5,613      | 5,6        |

| Crossing, Direct                                             |           | Injury Severity |        |            |            |
|--------------------------------------------------------------|-----------|-----------------|--------|------------|------------|
|                                                              | Fatal     | Serious         | Minor  | Non-Injury | Total Cost |
| No. of Years of typical accident rate records                | 5         | 5               | 5      | 5          |            |
| 2. No. of Reported Accidents over Period                     | 0         | 0               | 0      | 0          |            |
| 3. Proportion of Fatal to Serious (Table A6.19 (a) to (c))   | 0.21      | 0.79            |        |            |            |
| 4. No. of Reported Accidents Adjusted by severity (2) x (3)  | 0         | 0               | 0      | 0          |            |
| 5.Accidents per year (4)/(1)                                 | 0         | 0               | 0      | 0          |            |
| 6. Adjustment Factor (table A6.1(a))                         | 1.028     | 1.028           | 1.028  | 1.028      |            |
| 7. Adjusted Accidents per Year (5) x (6)                     | 0.000     | 0.000           | 0.000  | 0.000      |            |
| 8. Under-Reporting Factors (table A6.20(a)&(b))              | 1.0       | 1.5             | 4.5    | 7.0        |            |
| 9. Total Estimated Accidents/Year (7) x (8)                  | 0.000     | 0.000           | 0.000  | 0.000      |            |
| 10. Accident Cost, 50 km/h Speed Limit (Table A6.21(a)-(d))  | 4,600,000 | 490,000         | 31,000 | 2,800      |            |
| 11. Accident Cost, 100 km/h Speed Limit (Table A6.21(e)-(h)) | 4,650,000 | 525,000         | 35,000 | 3,200      |            |
| 12. Mean Speed Adjustment = (Do Min Mean Speed - 50) / 50    | 1         | 1               | 1      | 1          |            |
| 13. Cost per Accident = (11) + (12) x [(10) - (11)]          | 4,650,000 | 525,000         | 35,000 | 3,200      |            |
| 14. Total Accident Cost per Year (9) x (13)                  | 0         | 0               | 0      | 0          | 0          |

| Crossing Turning                                             |           | Injury Severity |        | _          |            |
|--------------------------------------------------------------|-----------|-----------------|--------|------------|------------|
|                                                              | Fatal     | Serious         | Minor  | Non-Injury | Total Cost |
| No. of Years of typical accident rate records                | 5         | 5               | 5      | 5          |            |
| 2. No. of Reported Accidents over Period                     | 0         | 0               | 0      | 2          |            |
| 3. Proportion of Fatal to Serious (Table A6.19 (a) to (c))   | 0.09      | 0.91            |        |            |            |
| 4. No. of Reported Accidents Adjusted by severity (2) x (3)  | 0         | 0               | 0      | 2          |            |
| 5.Accidents per year (4)/(1)                                 | 0         | 0               | 0      | 0.4        |            |
| 6. Adjustment Factor (table A6.1(a))                         | 1.028     | 1.028           | 1.028  | 1.028      |            |
| 7. Adjusted Accidents per Year (5) x (6)                     | 0.000     | 0.000           | 0.000  | 0.411      |            |
| 8. Under-Reporting Factors (table A6.20(a)&(b))              | 1.0       | 1.5             | 4.5    | 7.0        |            |
| 9. Total Estimated Accidents/Year (7) x (8)                  | 0.000     | 0.000           | 0.000  | 2.878      |            |
| 10. Accident Cost, 50 km/h Speed Limit (Table A6.21(a)-(d))  | 4,500,000 | 475,000         | 31,000 | 2,900      |            |
| 11. Accident Cost, 100 km/h Speed Limit (Table A6.21(e)-(h)) | 4,650,000 | 525,000         | 35,000 | 3,200      |            |
| 12. Mean Speed Adjustment = (Do Min Mean Speed - 50) / 50    | 1         | 1               | 1      | 1          |            |
| 13. Cost per Accident = (11) + (12) x [(10) - (11)]          | 4,650,000 | 525,000         | 35,000 | 3,200      |            |
| 14. Total Accident Cost per Year (9) x (13)                  |           | 0               | 0      | 9,211      | 9,21       |

#### ACCIDENT BY ACCIDENT ANALYSIS - DO MINIMUM

#### WORKSHEET A6.2

| Project Name:        | Waipapa Road/SH10 Intersection | Posted Speed Limit: | 70 km/h  |
|----------------------|--------------------------------|---------------------|----------|
| Vehicle Involvement: | All                            | Mean Speed:         | 100 km/h |
|                      |                                | Road Category:      | 70       |
|                      |                                | Traffic growth rate | 2.20% %  |

| Rear End, Crossing                                           |           | Injury Severity |        |            |            |
|--------------------------------------------------------------|-----------|-----------------|--------|------------|------------|
|                                                              | Fatal     | Serious         | Minor  | Non-Injury | Total Cost |
| No. of Years of typical accident rate records                | 5         | 5               | 5      | 5          |            |
| 2. No. of Reported Accidents over Period                     | 0         | 0               | 0      | 2          |            |
| 3. Proportion of Fatal to Serious (Table A6.19 (a) to (c))   | 0.16      | 0.84            |        |            |            |
| 4. No. of Reported Accidents Adjusted by severity (2) x (3)  | 0         | 0               | 0      | 2          |            |
| 5.Accidents per year (4)/(1)                                 | 0         | 0               | 0      | 0.4        |            |
| 6. Adjustment Factor (table A6.1(a))                         | 1.028     | 1.028           | 1.028  | 1.028      |            |
| 7. Adjusted Accidents per Year (5) x (6)                     | 0.000     | 0.000           | 0.000  | 0.411      |            |
| 8. Under-Reporting Factors (table A6.20(a)&(b))              | 1.0       | 1.5             | 4.5    | 7.0        |            |
| 9. Total Estimated Accidents/Year (7) x (8)                  | 0.000     | 0.000           | 0.000  | 2.878      |            |
| 10. Accident Cost, 50 km/h Speed Limit (Table A6.21(a)-(d))  | 4,600,000 | 450,000         | 30,000 | 2,900      |            |
| 11. Accident Cost, 100 km/h Speed Limit (Table A6.21(e)-(h)) | 4,250,000 | 525,000         | 34,000 | 3,000      |            |
| 12. Mean Speed Adjustment = (Do Min Mean Speed - 50) / 50    | 1         | 1               | 1      | 1          |            |
| 13. Cost per Accident = $(11) + (12) \times [(10) - (11)]$   | 4,250,000 | 525,000         | 34,000 | 3,000      |            |
| 14. Total Accident Cost per Year (9) x (13)                  | 0         | 0               | 0      | 8,635      | 8,635      |

G:\01 Clients\NZTA\1-11751.00 PN4234 SH10 Waipapa Road Intersection Improvements\300 Deliverables\310 Reports\Business Case\4 10-Oct-17

16:32:23

152050

|        | ghted accident p Project option | Do minimum                          |                                                                | Worksheet A6.5 |
|--------|---------------------------------|-------------------------------------|----------------------------------------------------------------|----------------|
|        | Posted speed limit              | 70                                  | Traffic growth rate                                            | 2.20%          |
|        | Road category                   | RS                                  | Time zero                                                      | 201            |
|        | Site specific acci              | dent rate                           |                                                                |                |
| 1      | Number of years o               | f accident record                   | s                                                              | 5              |
| 2      | Number of reported              | d injury accidents                  | over period                                                    | 0              |
| 3      | Number of accider               | its per year <b>(2)</b> / <b>(1</b> | )                                                              | 0              |
| ŀ      | Trend adjustment                | actor (table A6.1                   | (a))                                                           | 1.028          |
| 5      | Site-specific accide            | ent rate (accident                  | s per year), A <sub>S</sub> (3) x (4)                          | 0              |
|        | Accident prediction             | on model                            |                                                                |                |
| 6      | Table used                      |                                     |                                                                | 6.1            |
| 7      | Parameter b <sub>0</sub>        |                                     |                                                                | 0.00108        |
| 3      | Parameter b <sub>1</sub>        |                                     |                                                                | 0.51           |
| •      | Parameter b <sub>2</sub>        | LAADT O                             |                                                                | 0.21           |
| 0      | Lowest or sideroad              |                                     |                                                                | 6050           |
| 1      | Highest or primary              |                                     | (formula forma and in AC E)                                    | 8581           |
| 2      | Typical accident ra             | ite (accidents per                  | year), A <sub>T,dm</sub> (formula from appendix A6.5)          | 0.681862355    |
|        | Exposure boods                  | acidont prodict                     | on equation                                                    | Go to step 13  |
| а      | Exposure based a Table used     | iccident predict                    | ion equation                                                   | <u> </u>       |
| a      |                                 |                                     |                                                                |                |
| a<br>a | Cross-section adju              |                                     | m table A6.13 (1.0 for no adjustment)                          |                |
| u      | Oross-section adju              | Stilletti lactor iloi               | in table A0.10 (1.0 for no adjustment)                         |                |
| а      | Adjusted coefficier             | nt (7a) x (8a)                      |                                                                |                |
| )a     | Exposure at time z              | ero (10 <sup>8</sup> veh-km         | or 10 <sup>8</sup> vehicles)                                   |                |
| 2      | Typical accident ra             | te (accidents per                   | year), A <sub>T,dm</sub> (9a) x (10a)                          | 0.681862355    |
| 3      | Accident trend fact             | or for adjusting ty                 | ypical accident rate, f <sub>t</sub> (appendix A6.4 method B). | -0.02          |
| 4      | Adjustment factor               | for accident trend                  | I (1 + <b>(8)</b> x (time zero year - 2006)                    | 0.98           |
|        | (appendix A6.4 me               | thod B).                            |                                                                |                |
| 5      | Typical accident ra             | te per year adjus                   | ted for accident trends, A <sub>T,dm</sub> (12) x (14)*        | 0.668225108    |
|        | Weighting factor                |                                     |                                                                |                |
| 6      | k value (appendix               |                                     |                                                                | 2.3            |
| 7      | Reliability of accide           | ent history, $\alpha_X$ (de         | efault is 1.0)                                                 | 1              |
| 8      | Reliability of accide           | ent prediction mo                   | del or equation, $\alpha_{M}$ (default is 1.0)                 | 1              |
| 9      | Weighting factor, v             | v, (17) <sup>2</sup> x (16) / ((    | 17) <sup>2</sup> x (16) + (18) <sup>2</sup> x (15)))           | 0.771330037    |
| 0      | Do minimum weigh                | nted accident rate                  | e, A <sub>W,dm</sub> [(19) × (15)] + [(1) – (19)] × (5)        | 0.515422097    |
| 1      | Cost per reported i             | njury accident (ta                  | able A6.22)                                                    | 295000         |
|        |                                 |                                     | •                                                              |                |

<sup>\*</sup> For all mid-block analyses, the typical accident rate (15) must be divided by the mid-block length (in km).

22 Total do minimum accident cost per year (20) x (21)

#### ACCIDENT RATE ANALYSIS - Option

WORKSHEET A6.5

| Project:                | Waipapa Ro    | papa Road/SH10 Intersection |                  |       |  |  |  |  |  |  |  |  |  |
|-------------------------|---------------|-----------------------------|------------------|-------|--|--|--|--|--|--|--|--|--|
| Project Option :        | Alternative I | ative Roundabout            |                  |       |  |  |  |  |  |  |  |  |  |
| Option Posted Speed Lim | it:           | 70                          | Traffic Growth : | 2.20% |  |  |  |  |  |  |  |  |  |
| Road Category:          |               | RS                          | Time Zero :      | 2017  |  |  |  |  |  |  |  |  |  |

| . compris | PREPARENCE AND PARENCE AND PAR |                   |              |          |                 |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------|-----------------|--|
| ACCIDENT  | PREDICTION MODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |          |                 |  |
| -         | Model used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SH10              | Waipapa Road | SH10     | To Kippers Lane |  |
| 2         | Approach from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |          |                 |  |
| 3         | Qapproach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8012              | 6050         | 6173     | 1685            |  |
| 4         | bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.56E-04          | 5.56E-04     | 5.56E-04 | 5.56E-04        |  |
| 5         | b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.58              | 0.58         | 0.58     | 0.58            |  |
| 6         | Typical Accident Rate Per Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.02E-01          | 8.68E-02     | 8.78E-02 | 4.14E-02        |  |
| 7         | Typical Accident Rate (Accidents per Year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.318             |              |          |                 |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proceed to Step 8 | 3            |          |                 |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |          |                 |  |
| EXPOSURI  | E BASED ACCIDENT PREDICTION EQUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |              |          |                 |  |
| 1a        | Method / Table Used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method B, Model 2 | 2            |          |                 |  |
| 2a        | Coefficient b0 (/10^8 veh-kms or /10^8 vehicles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |          |                 |  |
| 3a        | Cross-section adjustment factor from table A6.13 (1.0 no adjustment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |              |          |                 |  |
| 4a        | Adjusted coefficient (2a) x (3a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |          |                 |  |
| 5a        | Exposure at Time Zero (10^8 veh-kms or 10^8 vehicles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |          |                 |  |
| 7         | Typical Accident Rate (Accidents per Year), Atdm (4a) x (5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |              |          |                 |  |
| 8         | Accident trend factor for adjusting Typical Accident rate, ft (appendix A6.4 method B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.02             |              |          |                 |  |
| 9         | Adjustment factor (1 + (8) x (time zero year - 2006)) (appendix A6.4 method B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.980             |              |          |                 |  |
| 10        | Typical Accident Rate per year adjusted for accident trends At (7) x (9)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.312             |              |          |                 |  |
| ACCIDEN   | T COSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              | 70       | 100             |  |
| 11        | Cost per Reported Injury Accident (Table A6.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 340,000.00     | 9            | 340,000  | \$ 545,000      |  |
| 12        | Total Accident Cost per Year (10) x (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 105,995        |              |          |                 |  |
|           | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                 |              |          |                 |  |
|           | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2017              |              |          |                 |  |
|           | Traffic Growth at year Zero With adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20%             |              |          |                 |  |
|           | Total Accident Cost/Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 105,995        |              |          |                 |  |
|           | Growth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |              |          |                 |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |          |                 |  |

(14)\*\* For midblock analysis, the typical ax rate (15) must be divided by the length in km

Traffic Flows obatined from Tubecounts that have both directions

NZTA's EEM (volume 1)

First Edition, Amendment 0 Effective from 1 July 2013

#### ACCIDENT RATE ANALYSIS - Option

#### WORKSHEET A6.5

| Project:                | Waipapa Ro    | ipapa Road/SH10 Intersection      |                  |       |  |  |  |  |  |  |  |  |
|-------------------------|---------------|-----------------------------------|------------------|-------|--|--|--|--|--|--|--|--|
| Project Option :        | Alternative I | ative Roundabout - T Intersection |                  |       |  |  |  |  |  |  |  |  |
| Option Posted Speed Lim | it:           | 70                                | Traffic Growth : | 2.20% |  |  |  |  |  |  |  |  |
| Road Category:          |               | RS                                | Time Zero:       | 2017  |  |  |  |  |  |  |  |  |

|          | PREDICTION MODEL                                                                       |                                                                                 |
|----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1        | Model used                                                                             |                                                                                 |
| 2        | Qmajor                                                                                 | 8581                                                                            |
| 3        | Qminor                                                                                 | 2408                                                                            |
| 4        | bo                                                                                     | 5.65E-05                                                                        |
| 5        | bl                                                                                     | 0.2                                                                             |
| 6        | b2                                                                                     | 0.76                                                                            |
| 7        | Typical Accident Rate (Accidents per Year), At (formula from Section A6.5)             | 0.128                                                                           |
|          |                                                                                        | Proceed to Step 8                                                               |
|          |                                                                                        |                                                                                 |
| EXPOSURI | E BASED ACCIDENT PREDICTION EQUATION                                                   |                                                                                 |
| 1a       | Method / Table Used:                                                                   |                                                                                 |
| 2a       | Coefficient b0 (/10^8 veh-kms or /10^8 vehicles)                                       |                                                                                 |
| 3a       | Cross-section adjustment factor from table A6.13 (1.0 no adjustment)                   |                                                                                 |
| 4a       | Adjusted coefficient (2a) x (3a)                                                       |                                                                                 |
| 5a       | Exposure at Time Zero (10 <sup>8</sup> veh-kms or 10 <sup>8</sup> vehicles)            |                                                                                 |
| 7        | Typical Accident Rate (Accidents per Year), Atdm (4a) x (5a)                           |                                                                                 |
| 8        | Accident trend factor for adjusting Typical Accident rate, ft (appendix A6.4 method B) | -0.02                                                                           |
| 9        | Adjustment factor (1 + (8) x (time zero year - 2006)) (appendix A6.4 method B)         | 0.980                                                                           |
| 10       | Typical Accident Rate per year adjusted for accident trends At (7) x (9)**             | 0.126 No cost for signal in 70 and 100km area so Priority T costs has been used |
| ACCIDEN' | r costs                                                                                | 50 70 100                                                                       |
| 11       | Cost per Reported Injury Accident (Table A6.22)                                        | \$ 295,000.00 \$ 240,000 \$ 295,000 \$ 565,000                                  |
| 12       | Total Accident Cost per Year (10) x (11)                                               | \$ 37,142                                                                       |
|          | No years                                                                               | 0                                                                               |
|          | MID POINTYear                                                                          | 2017                                                                            |
|          | Traffic Growth at year Zero With adjustment                                            | 0.20%                                                                           |
|          | Total Accident Cost/Year                                                               | \$ 37,142                                                                       |
|          | Growth                                                                                 |                                                                                 |
|          |                                                                                        |                                                                                 |

(14)\*\* For midblock analysis, the typical ax rate (15) must be divided by the length in km

Traffic Flows obatined from Tubecounts that have both directions

NZTA's EEM (volume 1)

First Edition, Amendment 0 Effective from 1 July 2013

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115                 |                   |     |     |     |            |        |            |                  |              |     |     |            |            |        |      | 0.5  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-----|-----|-----|------------|--------|------------|------------------|--------------|-----|-----|------------|------------|--------|------|------|
| punc                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                 |                   |     |     |     |            |        |            |                  |              |     |     |            |            |        | 0.5  | 1.2  |
| 10 Southbo                      | 541.44<br>20<br>70<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105                 |                   |     |     |     |            |        |            |                  |              |     |     |            |            | 0.4    | 1.2  | N    |
| SH10 NorlSH10 Southbound        | κ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                 |                   |     |     |     |            |        |            |                  |              |     |     |            | 5          | t -    | 2    | 2.9  |
| 풄                               | 0700-1900<br>00000-0000<br>Difference 599.04<br>Curve Spe 20<br>Initial Spee 70<br>Additional 4.1<br>Total VOC 8841.83<br>Total VOC 16833.48                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                  |                   |     |     |     |            |        |            |                  |              |     |     | ,          | 4. +       | - 6    | 2.8  | 3.7  |
| puno                            | O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06                  |                   |     |     |     |            |        |            |                  |              |     |     | 4.0        | - α        | 2.7    | 3.5  | 4.5  |
| SH10 NorlSH10 Southbound        | 541.44<br>5.5<br>2977.92<br>1254.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82                  |                   |     |     |     |            |        |            |                  |              |     | 4.0 | - ţ        | - c        | 3.6    | 4.3  | 5.2  |
| 110 NortSF                      | 599.04 541.44<br>5.5 5.3294.72 2977.92<br>4706.736 4254.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                  |                   |     |     |     |            |        |            |                  |              | 0.4 | 6.0 | 1.7        | 7. c.      | 5. 4.  | 2    | 9    |
| 2036<br>SF                      | 0700-1900<br>00000-0000<br>Difference<br>Geomeric<br>Total TT<br>Additional 4<br>Total TT 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                  |                   |     |     |     |            |        |            |                  | 5            | 6.0 | 1.6 | 5.3        | - ი<br>ი   | 9 4    | 5.7  | 6.7  |
| punoc                           | 00000445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                  |                   |     |     |     |            |        |            |                  | 4.0          | 5.1 | 2.2 | 2.9        |            | 5.5    | 6.4  | 7.4  |
| H10 South                       | 458.72<br>20<br>70<br>4.1<br>770.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65                  |                   |     |     |     |            |        |            | 0.3              | 0.8          | 2.1 | 5.8 | 3.6        | 4. r.      | 6.1    | 7.1  | ω    |
| SH10 NortSH10 Southbound        | 507.52<br>20<br>70<br>4.1<br>490.995 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 09                  |                   |     |     |     |            |        | d          | 0.3              | <u>τ.</u> τ. | 2.6 | 3.4 | 4.2<br>1.2 | ກິດ        | 6.7    | 7.7  | 9.8  |
| Ø                               | 0700-1900 0000-0000 0000-0000 Curve Spe 20 20 Initial Spet 70 70 Additional 4.1 4.1 Cotal VOC 7490.995 6770.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                  |                   |     |     |     |            |        | 0.3        | 1.2              | - c          | 3.2 | 3.9 | 7.4        | o. 6       | 7.3    | 8.3  | 9.3  |
| punoqu                          | 00005466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                  |                   |     |     |     |            | 0.3    | 0.7        | 1.7              | 23           | 3.7 | 4.5 | 5.3        | - 0        | 7.9    | 8.9  | 8.6  |
| SH10 NorlSH10 Southbound        | 458.72<br>5.5<br>2522.96<br>3604.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                  |                   |     |     |     | c          | 0.0    | - 4        | 2.1              | 2.8          | 5.4 | 2   | 5.0        | 9.0        | 5. 4.8 | 9.4  | 10.4 |
| SH10 Norts                      | 507.52<br>5.5<br>2791.36<br>3987.652 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40                  |                   |     |     |     | 0.3        | <br>-  | 4.1        | 2.6              | 3.2          | 4.7 | 5.4 | 6.3        | '          | ത      | 6.6  | 10.9 |
| 2026                            | 0700-1900<br>0000-0000<br>Growth<br>Geomeric<br>Total TT<br>Additional<br>Total TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                  |                   |     |     |     | 0.5        |        | 8.5        |                  | 3.7          |     |     |            |            | 9.9    | 10.4 | 11.5 |
| punoq                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                  |                   |     | 0.0 |     |            |        |            |                  | 4.4          |     |     |            |            | 0.00   |      |      |
| H10 South                       | 3679<br>4055<br>376<br>20<br>70<br>4.1<br>5549.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                  |                   |     | 0.0 | 0.7 | <u>.</u> . |        | 2.5        | <br>3.8          | 4.4          | 5.9 | 6.7 | 7.5        | χ. Q       | 10.3   | 11.4 | 12.4 |
| SH10 North!SH10 Southbound      | 3821<br>4237<br>416<br>20<br>70<br>4.1<br>6140.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                  |                   | 0.2 | 0.4 | -   | 4. 0       | 2.3    | 9.3<br>1.9 | ა. 4<br>შ. 1.    | 4. r         | 6.3 | 7.1 | 7.9        | xo o       | 10.8   | 11.8 | 12.9 |
| Ÿ                               | 0700-1900<br>0000-0000<br>Difference<br>Curve Speed<br>Initial Speed<br>Additional VC<br>Total VOC<br>Total VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                  |                   | 0.3 | 9.0 | 1.2 | 9.5        | - 5    | 3.1        | .8<br>4.4<br>4.4 | ro 01        | 6.5 | 7.4 | 8.2        |            |        | 12.2 | 13.2 |
|                                 | 0700<br>00000<br>Diffe<br>Curv<br>Initia<br>Addita<br>Tota<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                  | 1.0               | 0.2 | 1.1 | 4.  | 8: 0       | 2.8    | 3.3        | 3.9<br>9.6       | 5.3          | 8.9 | 9.7 | 8.2        | 4.0        | 11.4   | 12.5 | 13.6 |
| -                               | 3679<br>4055<br>376<br>5.5<br>2068<br>31611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                   | 0.1               | 0.6 | 6.0 | 9.  | 2 2        | 2.9    | 3.5        | 4.7              | 4.6          | 7   | 7.8 | 8.7        | 9. C       | 11.6   | 12.7 | 13.9 |
| Southbound                      | 3675<br>4055<br>376<br>5.5<br>2066<br>2954.281611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |     |     |     |            |        |            |                  |              |     |     |            |            |        |      |      |
| und SH10                        | 3821<br>4237<br>416<br>5.5<br>2288<br>566889<br><b>2.20%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                   | 0.1<br>0.3<br>0.3 | 0.5 | - e | 1.7 | 2.1        | ი<br>ი | 3.6        | 4 4<br>2 6 9     | 5.6          | 7.1 | œ   | 6.9        | ω c<br>ω α | 11.9   | 13   | 14.1 |
| SH10 Northbound SH10 Southbound | 3821<br>4237<br>416<br>5.5<br>2288<br>3268.56689<br>6222.8485<br>6222.8485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                   |     |     |     |            |        |            |                  |              |     |     |            |            |        |      |      |
| 2016<br>SH                      | 0700-1900         3821         3879         0700-1900           0000-0000         4237         4055         0000-000           010ffeence         416         376         Diffeence           Geometic delay (s)         5.5         5.5         Curve Speed           Additional TT Cost         3288.566889         2954.281611         Additional VOC           Total TT         6222.8485         2954.281611         Total VOC           Growth         220%         Total VOC           FEM Table A5.4.1 Additional VOC district Speed Charge Contact Speed Cycles         Total VOC | d(km/h)             | c t t             | ଥ ଧ | 8 8 | 8   | £ 5        | 818    | 8 g        | 8 8              | 8 3          | 8 8 | 06  | පි දි      | 3 5        | 2 5    | 115  | 120  |
|                                 | 0700-1900 0000-0000 Difference Geomeric delay (s) Total TT Additional TT Cost Additional TT Growth FEM Table 65.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial speed(km/h) |                   |     |     |     |            |        |            |                  |              |     |     |            |            |        |      |      |

#### Hourly Count Export

Site Ref: 01000015 ( 1km south of Waimate Nth Rd ) Start Date ( dd-mon-yyyy ): 01-Jan-2015 End Date ( dd-mon-yyyy ): 31-Dec-2015 Direction: Both Data Type: ALL Vehicles

| Day             |     | 00:00 - 01 01:00 | - 02 02:0 | 0 - 03 03:00 - 0 | 4 04:00 - 05 | 05:00 - 06 06 | 6:00 - 07  | 07:00 - 08 08 | :00 - 09 09 | 9:00 - 10  | 10:00 - 11 | 11:00 - 12 | 12:00 - 13 | 13:00 - 14 1 | 14:00 - 15 1 | 5:00 - 16 16 | S:00 - 17 1 | 17:00 - 18 | 18:00 - 19 | 19:00 - 20 | 20:00 - 21 21 | :00 - 22 22: | 00 - 23 23 | :00 - 00 To | otal         |
|-----------------|-----|------------------|-----------|------------------|--------------|---------------|------------|---------------|-------------|------------|------------|------------|------------|--------------|--------------|--------------|-------------|------------|------------|------------|---------------|--------------|------------|-------------|--------------|
| 27-Feb          | FRI | 13               | 11        | 7 1              |              |               | 158        | 381           | 529         | 490        |            | 446        | 516        | 488          | 563          | 636          | 676         | 526        |            | 204        | 149           | 94           | 57         | 37          | 6960         |
| 6-Mar           | FRI | 16               | 13        | 10 10            |              |               | 132        | 379           | 545         | 458        | 495        | 550        | 508        | 507          | 577          | 624          | 645         | 539        |            | 240        | 162           | 106          | 78         | 37          | 7089         |
| 29-May          | FRI | 12               | 15        | 12               | 9 26         | 73            | 133        | 395           | 508         | 460        | 416        | 500        | 507        | 538          | 577          | 688          | 632         | 575        | 279        | 208        | 168           | 97           | 118        | 46          | 6992         |
| 7-Aug           | FRI | 11               | 7         | 11 12            | 2 23         | 61            | 155        | 365           | 484         | 445        |            | 436        | 470        | 440          | 481          | 561          | 605         | 471        | 259        | 149        | 98            | 75           | 60         | 35          | 6145         |
| 30-Oct          | FRI | 10               | 6         | 11 10            | 6 15         | 65            | 157        | 440           | 548         | 457        | 483        | 502        | 528        | 452          | 558          | 652          | 589         | 562        | 293        | 172        | 126           | 83           | 61         | 33          | 6819         |
| 6-Nov           | FRI | 19               | 14        | 16 1             | 1 19         | 67            | 150        | 395           | 549         | 474        | 480        | 518        | 529        | 507          | 554          | 667          | 607         | 584        | 337        | 208        | 140           | 116          | 90         | 27          | 7078         |
| 2-Mar           | MON | 15               | 16        | 9 2              | 4 27         | 70            | 176        | 456           | 536         | 435        | 423        | 509        |            | 398          | 419          | 570          | 566         | 503        |            | 164        | 77            | 60           | 35         | 31          | 6225         |
| 9-Mar           | MON | 15               | 8         | 12 1             | 8 37         |               | 149        | 406           | 509         | 419        |            | 432        | 414        | 387          | 479          | 477          | 530         | 546        |            | 122        | 88            | 53           | 18         | 20          | 5876         |
| 25-May          | MON | 7                | 9         | 7 10             |              |               | 162        | 388           | 519         | 421        |            | 423        | 430        | 426          | 438          | 522          | 528         | 498        |            | 116        |               | 40           | 40         | 11          | 5731         |
| 10-Aug          | MON | 12               | 7         | 14 10            | 6 25         |               | 142        | 397           | 468         | 373        |            | 394        | 422        | 384          | 468          | 455          | 535         | 420        |            | 117        | 67            | 45           | 27         | 12          | 5396         |
| 2-Nov           | MON | 15               | 13        | 10 1;            |              |               | 165        | 448           | 537         | 452        |            | 427        | 475        | 463          | 480          | 547          | 591         | 532        |            | 149        | 78            | 48           | 41         | 16          | 6368         |
| 9-Nov           | MON | 14               | 9         | 14 19            |              |               | 185        | 426           | 577         | 441        |            | 495        |            | 438          | 493          | 549          | 591         | 550        |            | 156        | 114           | 59           | 36         | 15          | 6494         |
| 28-Feb          | SAT | 21               | 12        | 11 12            | 2            |               | 94         | 194           | 287         | 456        |            | 581        | 507        | 465          | 440          | 343          | 358         | 308        |            | 160        | 116           | 92           | 67         | 50          | 5376         |
| 7-Mar           | SAT | 26               | 13        | 12 10            |              |               | 88         | 171           | 271         | 416        |            | 560        | 527        | 496          | 464          | 379          | 316         | 304        |            | 139        | 94            | 99           | 66         | 31          | 5280         |
| 23-May          | SAT | 17               | 9         | 7 1              |              |               | 54         | 118           | 186         | 284        |            | 449        | 422        | 367          | 316          | 273          | 281         | 238        |            | 81         | 61            | 60           | 45         | 23          | 3954         |
| 8-Aug           | SAT | 17               | 10        |                  | 8 26         |               | 54         |               | 250         | 410        |            | 521        | 499        | 397          | 377          | 343          | 271         | 242        |            | 106        |               | 61           | 44         | 24          | 4622         |
| 31-Oct          | SAT | 18               | 12        | 12 1:            |              | 23            | 91         | 196           | 311         | 453        |            | 570        | 550        | 460          | 438          | 408          | 431         | 306        |            | 195        | 136           | 92           | 59         | 27          | 5575         |
| 7-Nov           | SAT | 17               | 12        | 11               | 7 16         |               | 86         |               | 332         | 475        |            | 549        | 504        | 424          | 399          | 354          | 363         | 314        |            | 315        | 232           | 290          | 195        | 30          | 6083         |
| 1-Mar           | SUN | 29               | 12        | 16               | 4 10         |               | 46         |               | 145         | 322        |            | 489        | 410        | 374          | 416          | 431          | 341         | 301        | 223        | 165        | 115           | 53           | 34         | 17          | 4509         |
| 8-Mar           | SUN | 17               | 14        |                  | 5 10         |               | 48         |               | 148         | 286        |            | 468        | 420        | 405          | 409          | 374          | 354         | 335        |            | 158        | 120           | 60           | 30         | 18          | 4440         |
| 24-May          | SUN | 28               | 24        |                  | 4 12         |               | 35         |               | 129         | 272        |            | 394        | 349        | 370          | 288          | 336          | 286         | 232        |            | 104        | 50            | 34           | 12         | 8           | 3602         |
| 9-Aug           | SUN | 22               | 11        |                  | 4 9          |               | 34         |               | 126         | 226        |            | 309        | 391        | 320          | 340          | 289          | 284         | 248        |            | 104        | 69            | 44           | 20         | 13          | 3421         |
| 1-Nov           | SUN | 17               | 12        | 8 1:             |              |               | 42         |               | 177         | 313        |            | 354        | 402        | 368          | 377          | 392          | 370         | 279        |            | 151        | 126           | 72           | 26         | 18          | 4264         |
| 8-Nov           | SUN | 19               | 14        |                  | 6 11         |               | 55         |               | 202         | 305        |            | 433        | 414        | 352          | 347          | 448          | 321         | 313        |            | 151        | 117           | 55           | 25         | 22          | 4418         |
| 5-Mar           | THU | 12               | 8         | 9 1              |              |               | 141        | 393           | 592         | 469        |            | 479        | 481        | 510          | 530          | 594          | 590         | 579        |            | 193        | 126           | 87           | 46         | 35          | 6789         |
| 12-Mar          | THU | 7                | 3         | 13 2             |              |               | 149        | 397           | 551         | 439        |            | 502        |            | 481          | 478          | 540          | 596         | 590        |            | 187        | 136           | 91           | 55         | 30          | 6609         |
| 28-May          | THU | 9                | 9         | 15 1;            |              |               | 172        |               | 553         | 484        |            | 474        | 472        | 444          | 504          | 582          | 604         | 552        |            | 146        |               | 62           | 59         | 21          | 6439         |
| 6-Aug           | THU | 19               | 8         |                  | 8 20         |               | 139        | 384           | 499         | 442        |            | 404        | 425        | 439          | 494          | 515          | 530         | 487        |            | 120        | 88            | 61           | 46         | 22          | 5889         |
| 29-Oct          | THU | 7                | 8         | 15 1             |              | 69            | 158        | 402           | 547         | 469        |            | 482        | 512        | 457          | 489          | 572          | 562         | 563        |            | 167        | 84            | 68           | 37         | 24          | 6475         |
| 5-Nov           | THU | 8                | 7         |                  | 9 24         |               | 160        | 421           | 536         | 544        |            | 531        | 549        | 503          | 556          | 566          | 604         | 614        |            | 196        | 118           | 87           | 57         | 22          | 6973         |
| 3-Mar           | TUE | 12               | 15        | 12 14            |              |               | 143        | 395           | 542         | 431        |            | 454        | 475        | 461          | 521          | 545          | 581         | 541        | 248        | 150        | 112           | 78           | 36         | 17          | 6302         |
| 10-Mar          | TUE | 16               | 6         | 11 1:            |              |               | 143        | 384<br>412    | 528<br>522  | 470<br>450 |            | 439<br>425 | 486<br>466 | 445<br>447   | 447<br>470   | 546<br>566   | 581<br>529  | 524<br>520 |            | 175        | 107           | 74<br>63     | 36         | 20<br>33    | 6236<br>6049 |
| 26-May          | TUE |                  | 6         | 15 10            |              |               | 161        |               | 477         | 429        |            | 425        | 455        | 384          |              |              | 563         | 471        |            | 108        | 66<br>60      |              | 33<br>22   |             | 5611         |
| 11-Aug          | TUE | 12               | 10        | 7 1:             | 8 14         |               | 152<br>174 | 369<br>446    | 550         | 429        |            | 536        | 503        | 466          | 412<br>505   | 487<br>546   | 588         | 506        |            | 104<br>147 | 114           | 49<br>67     | 43         | 18<br>21    | 6608         |
| 3-Nov<br>10-Nov | TUE | 9                | 9         | 14 1             |              |               | 187        | 396           | 605         | 481        |            | 437        | 491        | 459          | 540          | 589          | 574         | 518        |            | 179        |               | 73           | 50         | 16          | 6638         |
| 4-Mar           | WED | 7                | 7         | 14 1             |              |               | 139        | 432           | 536         | 449        |            | 528        | 480        | 405          | 471          | 563          | 572         | 601        | 293        | 179        |               | 82           | 42         | 19          | 6497         |
| 11-Mar          | WED | 8                | 17        | 9 1              |              |               | 164        | 432           | 554         | 449        |            | 523        | 478        | 484          | 460          | 545          | 580         | 568        |            | 169        | 118           | 78           | 40         | 20          | 6572         |
| 27-May          | WED | 10               | 11        | 11 1             |              |               | 171        | 402           | 515         | 461        |            | 440        | 478        | 416          | 474          | 529          | 539         | 504        |            | 127        | 80            | 87           | 28         | 17          | 6044         |
| 5-Aug           | WED | 8                | 9         | 7 1              |              |               | 142        |               | 482         | 398        |            | 423        | 432        | 454          | 460          | 525          | 528         | 422        |            | 108        | 74            | 73           | 35         | 17          | 5653         |
| 4-Nov           | WED | 10               | 11        | 11 10            |              |               | 159        | 387           | 538         | 500        |            | 423        | 547        | 467          | 534          | 536          | 585         | 562        | 302        | 173        | 103           | 87           | 44         | 20          | 6668         |
| 11-Nov          | WED | 10               | 5         | 10 10            |              | 74            | 173        | 441           | 572         | 517        |            | 494        | 537        | 494          | 505          | 549          | 600         | 603        | 311        | 200        | 124           | 108          | 53         | 30          | 6900         |
| 11-1404         | WED | 00:00 - 01 01:00 | - US US-U |                  |              |               |            |               |             |            |            |            |            |              |              |              |             |            |            |            |               |              |            |             |              |
| Weekday         | 1   | 11               | 02 02.0   | 12 14            |              |               | 156        | 404           | 534         | 457        |            | 471        |            | 455          | 498          | 561          | 580         | 534        | 271        | 161        | 105           | 75           | 47         | 24          | ıaı          |
| Sat             | 1   | 19               | 11        | 10 1             |              |               | 78         |               | 273         | 416        |            | 538        |            | 435          | 496          | 350          | 337         | 285        | 230        | 166        | 121           | 116          | 79         | 31          |              |
| Sun             | 1   | 22               | 15        |                  | 6 16         |               | 43         |               | 155         | 287        |            | 408        |            | 365          | 363          | 378          | 326         | 285        |            | 139        | 100           | 53           | 25         | 16          |              |
| Juli            |     | 22               | 10        |                  | ا ا          | 19            | 43         | 30            | 100         | 201        | 300        | 400        | 390        | 303          | 303          | 3/0          | 320         | 200        | 190        | 139        | 100           | 55           | 20         | 10          |              |

|                   | PERIOD | Days/Yr | hrs/day | Hrs/Year | flow/hr |                    |                         |      |
|-------------------|--------|---------|---------|----------|---------|--------------------|-------------------------|------|
| weekday night     |        | 240     | 13      | 3120     | 75      |                    |                         |      |
| week day AM       |        | 240     | 1       | 240      | 534     |                    |                         |      |
| week day PM       |        | 240     | 2       | 480      | 571     |                    |                         |      |
| week day IP       |        | 240     | 8       | 1920     | 469 5   | Same as Saturday p | € Counte                |      |
| Saturday          |        | 52      | 6       | 312      | 468 (   | Count was 11-12    | Sidra Volmes reduced by | 0.87 |
| Sunday            |        | 68      | 6       | 408      | 383 8   | 32% of IP          | Sidra Volmes reduced by | 0.71 |
| Weekend offpeak/n | ight   | 120     | 18      | 2160     | 115     |                    |                         |      |

Calculated: Nerissa Harrison Opus International Consultants

#### TIME STREAMS AND DISCOUNTING

#### **OPTION Option 6 Alternative Roundabout**

#### WORKSHEET A1.1 and A1.2

BASE DATE TIME ZERO 2016 2017

| DESCRIPTION                         | PAYMENT   | START     | END         | DURATION  | BASE      | YEAR      | START     | YEAR      | YEAR OF  | UPDATE | PRESENT VALUE |       | DISCOUNTI | NG      |
|-------------------------------------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|----------|--------|---------------|-------|-----------|---------|
|                                     | TYPE      | YEAR.     | YEAR        | YEARS     | COST/YR.  | GROWTH.   | COST/YR   | GROWTH    | ESTIMATE | FACTOR | TIMEZERO      |       |           |         |
|                                     | т         |           |             | n         | \$        | %         | \$        | %         |          |        | \$            | SPPWF | UNSPWF    | AGPWF   |
| COSTS & MAINTENANCE                 |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| Construction Cost                   | С         | 1.5       | 1.5         | 0.0       | 6,330,048 |           | 6,330,048 |           | 2017     | 0.96   | \$5,567,592   | 0.916 | 0.000     | 0.000   |
| Fees                                | F         | 0.3       | 0.3         | 0.0       | 343,731   |           | 343,731   |           | 2017     | 0.96   | \$325,209     | 0.986 | 0.000     | 0.000   |
| Fees                                | F         | 0.8       | 0.8         | 0.0       | 343,731   |           | 343,731   |           | 2017     | 0.96   | \$315,871     | 0.957 | 0.000     | 0.000   |
| Property                            | L         | 1.3       | 1.3         | 0.0       | 2,336,100 |           | 2,336,100 |           | 2017     | 0.96   | \$2,084,867   | 0.930 | 0.000     | 0.000   |
| Maintenance (ignored)               | М         |           |             |           |           |           |           |           |          |        |               |       |           |         |
|                                     |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| OPERATING COSTS                     |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| Travel Time 2016-2026               | Т         | 1.8       | 10.0        | 8.2       | 127,668   | 4.35%     | 137,406   | 4.04%     | 2002     | 1.45   | \$1,358,980   | 0.903 | 6.549     | 24.852  |
| Travel Time 2026-2036               | Т         | 10.0      | 20.0        | 10.0      |           |           | 183,249   | 5.40%     | 2002     | 1.45   | \$1,398,718   | 0.558 | 7.579     | 34.234  |
| Travel Time 2036-2056               | Т         | 20.0      | 41.3        | 21.3      |           |           | 282,189   | 1.30%     | 2002     | 1.45   | \$1,725,798   | 0.312 | 12.187    | 103.433 |
|                                     |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| VOC 2016-2026                       | V         | 1.8       | 10.0        | 8.2       | 720,900   | 3.49%     | 765,026   | 3.29%     | 2008     | 0.98   | \$4,987,087   | 0.903 | 6.549     | 24.852  |
| VOC 2026-2036                       | V         | 10.0      | 20.0        | 10.0      |           |           | 972,750   | 3.06%     | 2008     | 0.98   | \$4,592,549   | 0.558 | 7.579     | 34.234  |
| VOC 2036-2056                       | V         | 20.0      | 41.3        | 21.3      |           |           | 1,270,749 | 0.53%     | 2008     | 0.98   | \$4,945,286   | 0.312 | 12.187    | 103.433 |
|                                     |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| CO2 2016-2026                       | CO2       | 1.8       | 10.0        | 8.2       | 45,494    | 3.52%     | 48,297    | 3.31%     | 2008     | 0.98   | \$315,053     | 0.903 | 6.549     | 24.852  |
| CO2 2026-2036                       | CO2       | 10.0      | 20.0        | 10.0      |           |           | 61,491    | 3.09%     | 2008     | 0.98   | \$290,649     | 0.558 | 7.579     | 34.234  |
| CO2 2036-2056                       | CO2       | 20.0      | 41.3        | 21.3      |           |           | 80,509    | 0.54%     | 2008     | 0.98   | \$313,497     | 0.312 | 12.187    | 103.433 |
|                                     |           |           |             |           |           |           |           |           |          |        |               |       |           |         |
| Crash Costs Period 1                | Α         | 1.8       | 41.3        | 39.5      | 143,137   | 0.00%     | 143,638   | 0.20%     | 2006     | 1.03   | \$2,115,831   | 0.903 | 15.444    | 197.192 |
|                                     |           |           |             |           |           | 1         |           | 1         |          |        |               |       |           |         |
| TRANSFERED IN FROM OTHER WORKSHEETS | TT/yr     | growth/yr | VOC/yr      | growth/yr | C02       | growth/yr | crashes   | growth/yr |          |        |               |       |           |         |
| 2016                                | \$127,668 |           | \$720,900   |           | \$45,494  |           | 143137    | 286       |          |        |               |       |           |         |
| 2026                                | \$183,249 | \$5,558   | \$972,750   | \$25,185  | \$61,491  | \$1,600   |           |           |          |        |               |       |           |         |
| 2036                                | \$282,189 | \$9,894   | \$1,270,749 | \$29,800  | \$80,509  | \$1,902   |           |           |          |        |               |       |           |         |

89,165

\$433

0.20%

\$3,655

2056

355,293

1,405,530

\$6,739

# APPENDIX E Economics

NZ TRANSPORT AGENCY October 2017

Calculated: Kristoffer Hansson
Opus International Consultants

#### COST-BENEFIT ANALYSIS OF THE OPTIONS WORKSHEET 4

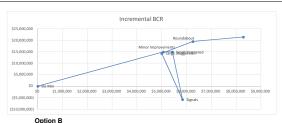
Const Starts 1-Oct-18
Const Ends 1-Apr-19

Project : Waipapa Road/SH10 Intersection

Calculated by : Kristoffer Hansson

Reviewed by:

Time Zero: 1-Jul 2017


Base Date: 1-Jul 2016

| OPTION                     |                 | Roundabout   | Head Right turn<br>Bays)              | Option 5 (Close<br>Waipapa Loop) | Signals      | Option 1 (Right<br>Turn Bay)) | Option 6 Alternative<br>Roundabout | Do Min       | Roundabout   | Option 4 (Head to Head Right turn Bays) | Option 5 (Close<br>Waipapa Loop)      | Signals                        | Option 1 (Right<br>Turn Bay)) | Option 6 Alternative<br>Roundabout |
|----------------------------|-----------------|--------------|---------------------------------------|----------------------------------|--------------|-------------------------------|------------------------------------|--------------|--------------|-----------------------------------------|---------------------------------------|--------------------------------|-------------------------------|------------------------------------|
| <br>TANGIBLE BENEF<br>     | FITS CALCULATIO | N:           |                                       |                                  |              |                               |                                    |              |              |                                         | NET BENEFITS C                        | OF THE OPTION                  | IS                            |                                    |
| Travel Time                |                 | \$6,465,175  | \$9,838,281                           | \$10,203,623                     | \$29,877,354 | \$9,838,281                   | \$4,483,495                        | \$21,037,803 | \$14,572,628 | \$11,199,523                            | \$10,834,181                          | (\$8,839,551)                  | \$11,199,523                  | \$16,554,308                       |
| 2. Vehicle Oper.           |                 | \$14,838,274 | \$15,743,905                          | \$16,027,995                     | \$16,098,854 | \$15,743,905                  | \$14,524,923                       | \$18,924,446 | \$4,086,173  | \$3,180,541                             | \$2,896,451                           | \$2,825,592                    | \$3,180,541                   | \$4,399,524                        |
| 3. Accidents               |                 | \$1,794,968  | \$1,927,424                           | \$1,927,424                      | \$2,223,937  | \$1,927,424                   | \$2,115,831                        | \$2,247,576  | \$452,608    | \$320,152                               | \$320,152                             | \$23,639                       | \$320,152                     | \$131,745                          |
| 4.Carbon dixiode (\$40/ton | ine)            | \$939,343    | \$1,017,102                           | \$1,031,307                      | \$1,032,524  | \$1,017,102                   | \$919,199                          | \$1,212,531  | \$273,188    | \$195,429                               | \$181,224                             | \$180,007                      | \$195,429                     | \$293,332                          |
| 6. TOTAL (1+2+3+4)         |                 | \$24,037,760 | \$28,526,712                          | \$29,190,348                     | \$49,232,670 | \$28,526,712                  | \$22,043,448                       | \$43,422,356 | \$19,384,597 | \$14,895,645                            | \$14,232,008                          | (\$5,810,313)                  | \$14,895,645                  | \$21,378,909                       |
|                            |                 |              | · · · · · · · · · · · · · · · · · · · | 1                                |              |                               |                                    |              |              |                                         | · · · · · · · · · · · · · · · · · · · |                                |                               |                                    |
| COSTS CALCULA              | TION:           |              |                                       |                                  |              |                               |                                    |              |              |                                         | NET COSTS OF                          | T COSTS OF THE PROJECT OPTIONS |                               |                                    |
| 1. Fees                    |                 | \$473,810    | \$453,859                             | \$449,037                        | \$493,118    | \$434,350                     | \$641,080                          | \$0          | \$473,810    | \$453,859                               | \$449,037                             | \$493,118                      | \$434,350                     | \$641,080                          |
| 2. Property                |                 | \$1,069,609  | \$457,027                             | \$100,401                        | \$439,892    | \$294,243                     | \$2,084,867                        | \$0          | \$1,069,609  | \$457,027                               | \$100,401                             | \$439,892                      | \$294,243                     | \$2,084,867                        |
| 3. Construction            |                 | \$4,716,741  | \$4,522,905                           | \$4,449,102                      | \$4,904,331  | \$4,333,368                   | \$5,567,592                        | \$0          | \$4,716,741  | \$4,522,905                             | \$4,449,102                           | \$4,904,331                    | \$4,333,368                   | \$5,567,592                        |
| Maintenance                |                 |              |                                       |                                  |              |                               |                                    | \$0          |              |                                         |                                       |                                |                               |                                    |
| 5. TOTAL (1+2+3+4)         |                 | \$6,260,159  | \$5,433,791                           | \$4,998,541                      | \$5,837,341  | \$5,061,960                   | \$8,293,540                        | \$0          | \$6,260,159  | \$5,433,791                             | \$4,998,541                           | \$5,837,341                    | \$5,061,960                   | \$8,293,540                        |
| TANGIBLE BENE              | FIT TO COST RAT | ПО           |                                       |                                  |              |                               |                                    |              | 3.1          | 2.7                                     | 2.8                                   | N/A                            | 2.9                           | 2.6                                |
| Ranking B/C Ratio          | 0               |              |                                       |                                  |              |                               |                                    |              |              |                                         |                                       |                                |                               |                                    |
| Intangible Benefit         | ts              |              |                                       |                                  |              |                               |                                    |              |              |                                         |                                       |                                |                               |                                    |

#### INCREMENTAL COST-BENEFIT ANALYSIS OF PROJECT OPTIONS

WORKSHEET 5

| Incremental BCR in order of increasing cost: |             |               |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|-------------|---------------|--|--|--|--|--|--|--|--|--|
| Target BCR                                   | 3.0         |               |  |  |  |  |  |  |  |  |  |
| Ranked by increasing cos                     | t           |               |  |  |  |  |  |  |  |  |  |
| Option                                       | Net Costs   | Net Benefits  |  |  |  |  |  |  |  |  |  |
| Do Min                                       | \$0         | \$0           |  |  |  |  |  |  |  |  |  |
| Minor Improvements                           | \$5,061,960 | \$14,895,645  |  |  |  |  |  |  |  |  |  |
| Small Staggered                              | \$5,433,791 | \$14,895,645  |  |  |  |  |  |  |  |  |  |
| Signals                                      | \$5,837,341 | (\$5,810,313) |  |  |  |  |  |  |  |  |  |
| Large Staggered                              | \$4,998,541 | \$14,232,008  |  |  |  |  |  |  |  |  |  |
| Roundabout                                   | \$6,260,159 | \$19,384,597  |  |  |  |  |  |  |  |  |  |
| PW Roundabout                                | \$8,293,540 | \$21,378,909  |  |  |  |  |  |  |  |  |  |
|                                              | Option A    |               |  |  |  |  |  |  |  |  |  |



| Step |  |
|------|--|
|      |  |

|   | Option                       | Costs       | Benefits     | Option                  | Costs       | Benefits      | Incremental Costs 101 | remental Benefit Inc | remental BCR |  |
|---|------------------------------|-------------|--------------|-------------------------|-------------|---------------|-----------------------|----------------------|--------------|--|
| 1 | Option 1 (Right Turn Ba      | \$5,061,960 | \$14,895,645 | Option 4 (Head to I-    | \$5,433,791 | \$14,895,645  | \$371,830             | \$0 N/A              |              |  |
| 2 | 2 Option 1 (Right Turn Bay)) | \$5,061,960 | \$14,895,645 | Signals                 | \$5,837,341 | (\$5,810,313) | \$775,380             | (\$20,705,958) N/A   |              |  |
| 3 | Option 1 (Right Turn Bay))   | \$5,061,960 | \$14,895,645 | Option 5 (Close Waipa   | \$4,998,541 | \$14,232,008  | (\$63,419)            | (\$663,636) N/A      |              |  |
| 4 | 1 Option 1 (Right Turn Bay)) | \$5,061,960 | \$14,895,645 | Roundabout              | 6260159.312 | 19384596.87   | \$1,198,199           | \$4,488,952          | 3.7          |  |
| 5 | Roundabout                   | \$6,260,159 | \$19,384,597 | Option 6 Alternative Rc | \$8,293,540 | \$21,378,909  | \$2,033,380           | \$1,994,312          | 1.0          |  |

# APPENDIX F Cost Estimates

NZ TRANSPORT AGENCY October 2017

### Elemental Breakdown for Physical Works

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PN4234   | PN4234 SH10 Waipapa Road Intersection Improvements  ALTERNATIVE ROUNDABOUT                                                                                  |      |                             |                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------|----------------|--|--|--|
| C   Pre-implementation Phase Fees   \$ 490,354.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elementa | al Breakdown for Physical Works                                                                                                                             |      | 7.27.21.07.11.02.11.00.11.2 |                |  |  |  |
| D1   Implementation Phase fees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Item     | Description                                                                                                                                                 | Unit | Sub-Element Totals          | Element Totals |  |  |  |
| December   December  | С        | Pre-implementation Phase Fees                                                                                                                               |      |                             | \$ 490,354.7   |  |  |  |
| 2.00   Earthworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D1       | Implementation Phase fees                                                                                                                                   |      |                             | \$ 377,195.9   |  |  |  |
| 2.00   Earthworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D2       | Physical Works                                                                                                                                              |      |                             | \$ 4,939,510.4 |  |  |  |
| 2.00   Earthworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.01   Site clearance - greenfield such as small trees, shrubs, hedging etc.   S   Committee - Demoitton - building demoitton, structures, fences, retaining walls, utility   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00     | Environmental Compliance                                                                                                                                    |      |                             | \$ 50,000.0    |  |  |  |
| Demolition - building demolition, structures, fences, retaining walls, utility temporary works etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00     | Earthworks                                                                                                                                                  |      |                             | \$ 379,914.9   |  |  |  |
| 2.02   services, stormwater pipe, manholes, cesspits, surfacing, kerbs, lights, signs, temporary fencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.01     |                                                                                                                                                             |      | \$ -                        |                |  |  |  |
| 2.03   Temporary fencing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.02     | services, stormwater pipe, manholes, cesspits, surfacing, kerbs, lights, signs,                                                                             | m3   | \$ 350,000.00               |                |  |  |  |
| 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | Temporary fencing                                                                                                                                           |      |                             |                |  |  |  |
| 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.06   Service to the state (Walpapa Corridor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                             | m3   |                             |                |  |  |  |
| 2.09   Imported fill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.07     | Cut to waste (Waipapa Corridor)                                                                                                                             |      | \$ 12,871.95                |                |  |  |  |
| 2.10   Undercutting soft spots   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.08     | Borrow to fill                                                                                                                                              |      |                             |                |  |  |  |
| 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.12   Conditioning of cut and/or fill materials   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.14   Responding topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.14   Respreading topsoil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.13     |                                                                                                                                                             |      | s -                         |                |  |  |  |
| 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 14     |                                                                                                                                                             |      | \$ -                        |                |  |  |  |
| 2.16   Foreshore works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.17   Temporary Pathworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.18   Temporary haul roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                             |      |                             |                |  |  |  |
| Construct, maintain & remove temporary sediment control measures, temporary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 2.20   Dust control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | Construct, maintain & remove temporary sediment control measures, temporary sediment control ponds, including temporary hydroseeding, rock check dams, silt |      |                             |                |  |  |  |
| 3.00   Ground Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.20     |                                                                                                                                                             |      | \$ -                        |                |  |  |  |
| A.00   Drainage   Stormwater drainage, temporary stream diversion and culverts including headwalls, chambers and rip-rap   Stormwater drainage, temporary stream diversion and culverts including headwalls, chambers and rip-rap   Stormwater drainage   Stormwater d | 2.21     | Archaeological treatment/mitigation works                                                                                                                   |      | \$ -                        |                |  |  |  |
| A.00   Drainage   Stormwater drainage, temporary stream diversion and culverts including headwalls, chambers and rip-rap   Stormwater drainage, temporary stream diversion and culverts including headwalls, chambers and rip-rap   Stormwater drainage   Stormwater d | 3.00     | Ground Improvements                                                                                                                                         |      |                             | \$ -           |  |  |  |
| Stormwater drainage, temporary stream diversion and culverts including headwalls, chambers and rip-rap   Subsoil and pavement drains   Subsoil (Incl. subsoil) (Waipapa Corridor)   May   Subsoil and pavement drains   Subsoil (Incl. subsoil) (Waipapa Corridor)   May   Subsoil and pavement drains   Subsoil (Incl. subsoil) (Waipapa Corridor)   May   Subsoil (Incl. subsoil) (Option)   Subsoil (Incl. subsoil) (Incl. subsoil) (Incl. subsoil) (Incl. subsoil) (Incl. subsoil) (Incl. subsoil) (Incl. subsoil (Incl. subsoil) (Incl. subsoil) (In | 5.00     | dround improvements                                                                                                                                         |      |                             | <b>4</b>       |  |  |  |
| 4.01   headwalls, chambers and rip-rap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.00     |                                                                                                                                                             |      |                             | \$ 691,368.2   |  |  |  |
| 4.03   Kerb blocks (incl. subsoil) (Waipapa Corridor)   m   \$ 264,866.51     4.04   Kerb without Channel (Incl.subsoil) (Waipapa Corridor)   m   \$ 1,280.00     4.05   Kerb blocks (incl. subsoil) (Option)   m   \$ 146,422.69     4.06   Kerb without Channel (Incl.subsoil) (Option)   m   \$ 14,400.00     4.07   Surface water channel   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | headwalls, chambers and rip-rap                                                                                                                             |      |                             |                |  |  |  |
| 4.04   Kerb without Channel (Incl. subsoil) (Waipapa Corridor)   m   \$   1,280.00     4.05   Kerb blocks (Incl. subsoil) (Option)   m   \$   146,422.69     4.06   Kerb without Channel (Incl. subsoil) (Option)   m   \$   14,400.00     4.07   Surface water channel                   4.08   Erosion control                       4.09   Flumes                       4.10   Rain gardens                       4.11   Permanent ponds                       4.12   Wetlands                       4.13   Grassed swales                     4.14   Treatment devices                       4.15   Manhole I 200mm                         4.16   RCRRJ Pipe - 300mm dia, Class 4 (Waipapa Corridor)   m                   4.17   RCRRJ Pipe - 450mm dia, Class 4                         4.18   RCRRJ Pipe - 450mm dia, Class 4                         4.19   RCRRJ Pipe - 450mm dia, Class 4                       4.10   RCRRJ Pipe - 500mm dia, Class 4                       4.20   RCRRJ Pipe - 750mm dia, Class 4                     4.21   RCRRJ Pipe - 300mm dia, Class 4                     4.22   RCRRJ Pipe - 300mm dia, Class 4                     4.23   RCRRJ Pipe - 375mm dia, Class 4                     4.24   RCRRJ Pipe - 300mm dia, Class 4                     4.25   RCRRJ Pipe - 300mm dia, Class 4                     4.26   RCRRJ Pipe - 300mm dia, Class 4                       4.27   RCRRJ Pipe - 600mm dia, Class 4                         4.28   RCRRJ Pipe - 600mm dia, Class 4                             4.29   RCRRJ Pipe - 300mm dia, Class 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.05   Kerb blocks (incl. subsoil) (Option)   m   \$   146,422.69     4.06   Kerb without Channel (Incl. subsoil) (Option)   m   \$   14,400.00     4.07   Surface water channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.07   Surface water channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.08   Erosion control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                                                             | m    |                             |                |  |  |  |
| 4.10   Rain gardens   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.10       Rain gardens       \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.12       Wetlands       \$ -         4.13       Grassed swales       \$ -         4.14       Treatment devices       \$ -         4.15       Manhole 1200mm       ea       \$ 6,474.55         4.16       RCRRJ Pipe - 300mm dia, Class 4 (Waipapa Corridor)       m       \$ -         4.17       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 60,860.50         4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$ -         4.21       RCRRJ Pipe - 750mm dia, Class 4       m       \$ -         4.21       RCRRJ Pipe - 300mm dia, Class 4 (Option)       m       \$ -         4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$ -       -         4.23       RCRRJ Pipe - 357mm dia, Class 4 (Option)       \$ -       -         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 21,202.83         4.25       RCRRJ Pipe - 500mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 500mm dia, Class 4       \$ -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.13       Grassed swales       \$       -         4.14       Treatment devices       \$       -         4.15       Manhole 1200mm       ea       \$       6,474.55         4.16       RCRRJ Pipe - 300mm dia, Class 4 (Waipapa Corridor)       m       \$       -         4.17       RCRRJ Pipe - 375mm dia, Class 4       m       \$       4,791.60         4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$       60,860.50         4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$       110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$       -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$       -         4.22       RCRRJ Pipe - 300mm dia, Class 4       m       \$       -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$       21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$       21,202.83         4.25       RCRRJ Pipe - 450mm dia, Class 4       m       \$       26,572.00         4.25       RCRRJ Pipe - 500mm dia, Class 4       m       \$       26,572.00         4.26       RCRRJ Pipe - 900mm dia, Class 4       \$       -     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.14       Treatment devices       \$       -         4.15       Manhole 1200mm       ea       \$       6,74.55         4.16       RCRRJ Pipe - 300mm dia, Class 4 (Waipapa Corridor)       m       \$       -         4.17       RCRRJ Pipe - 375mm dia, Class 4       m       \$       4,791.60         4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$       60,860.50         4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$       110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$       -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$       -         4.22       RCRRJ Pipe - 307mm dia, Class 4 (Option)       \$       -       -         4.23       RCRRJ Pipe - 375mm dia, Class 4 (Option)       m       \$       21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$       21,202.83         4.25       RCRRJ Pipe - 450mm dia, Class 4       m       \$       26,572.00         4.25       RCRRJ Pipe - 500mm dia, Class 4       m       \$       26,572.00         4.26       RCRRJ Pipe - 900mm dia, Class 4       \$       -         4.27       RCRRJ Pipe - 900mm dia, Class 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.15       Manhole 1200mm       ea       \$ 6,474.55         4.16       RCRRJ Pipe - 300mm dia, Class 4 (Waipapa Corridor)       m       \$ -         4.17       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 4,791.60         4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 60,860.50         4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$ -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$ -         4.22       RCRRJ Pipe - 300mm dia, Class 4       m       \$ -         4.23       RCRRJ Pipe - 300mm dia, Class 4       m       \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 500mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 500mm dia, Class 4       \$ -       -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -       -         4.28       Single Sump Catchpit       ea.       \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.17       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 4,791.60         4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 60,860.50         4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$ -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$ -         4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$ -       -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$ -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       \$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.15     | Manhole 1200mm                                                                                                                                              | ea   | \$ 6,474.55                 |                |  |  |  |
| 4.18       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 60,860.50         4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$         4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$       -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$       -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$       -         4.28       Single Sump Catchpit       ea.       \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.19       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 110,716.67         4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$ -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$ -         4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$ -       -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$ -       -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -       -         4.28       Single Sump Catchpit       ea.       \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.20       RCRRJ Pipe - 750mm dia, Class 4       m       \$       -         4.21       RCRRJ Pipe - 900mm dia, Class 4       m       \$       -         4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$       -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$       21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$       15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$       26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$       -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$       -         4.28       Single Sump Catchpit       ea.       \$       12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                             |      |                             |                |  |  |  |
| 4.22       RCRRJ Pipe - 300mm dia, Class 4 (Option)       \$ -         4.23       RCRRJ Pipe - 375mm dia, Class 4       m \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$ -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       ea. \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.20     | RCRRJ Pipe - 750mm dia, Class 4                                                                                                                             | m    | \$ -                        |                |  |  |  |
| 4.23       RCRRJ Pipe - 375mm dia, Class 4       m       \$ 21,202.83         4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$ -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       ea.       \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                             | m    |                             |                |  |  |  |
| 4.24       RCRRJ Pipe - 450mm dia, Class 4       m       \$ 15,975.88         4.25       RCRRJ Pipe - 600mm dia, Class 4       m       \$ 26,572.00         4.26       RCRRJ Pipe - 750mm dia, Class 4       \$       -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$       -         4.28       Single Sump Catchpit       ea.       \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                             | m    |                             |                |  |  |  |
| 4.26       RCRRJ Pipe - 750mm dia, Class 4       \$ -         4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       ea. \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.24     | RCRRJ Pipe - 450mm dia, Class 4                                                                                                                             |      | \$ 15,975.88                |                |  |  |  |
| 4.27       RCRRJ Pipe - 900mm dia, Class 4       \$ -         4.28       Single Sump Catchpit       ea. \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                             | m    |                             |                |  |  |  |
| 4.28 Single Sump Catchpit ea. \$ 12,949.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                                                             |      |                             |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                             | ea.  |                             |                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                             |      |                             |                |  |  |  |

### Elemental Breakdown for Physical Works

| PN4234   | SH10 Waipapa Road Intersection Improvements                                                                                                                       | ALTERNATIVE ROUNDABOUT |                       |      |     |             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|------|-----|-------------|
| Elementa | l Breakdown for Physical Works                                                                                                                                    | AETERIOTITE ROOMBABOOT |                       |      |     |             |
| Item     | Description                                                                                                                                                       | Unit                   | Sub-Element To        | tals | Ele | ment Totals |
|          | Pavement and Surfacing                                                                                                                                            |                        |                       |      | \$  | 784,136.42  |
|          | Subgrade stabilisation/improvement (aggregate, lime or cement)                                                                                                    |                        | \$                    | -    |     |             |
|          | Subgrade preparation and testing Sub-basecourse (Waipapa Corridor)                                                                                                | m3                     | \$ 48,93              | -    |     |             |
|          | Pavement Stabilisation (150mm, 4kg/m2, 1.5% Hydrated Lime)                                                                                                        | m2                     | \$ 8,15               |      |     |             |
| 5.05     | Base course                                                                                                                                                       | m3                     | \$ 53,63              |      |     |             |
| 5.06     | Surfacing (chip seal)                                                                                                                                             | m2                     | \$ 12,22              |      |     |             |
|          | Surfacing (Stone Mastic Asphalt)                                                                                                                                  |                        | \$                    | -    |     |             |
|          | Surfacing (second coat) Sub-basecourse (Option)                                                                                                                   | m2<br>m3               | \$ 75,90<br>\$ 149,19 |      |     |             |
| 5.10     | Pavement Stabilisation (150mm, 4kg/m2, 1.5% Hydrated Lime)                                                                                                        | m3                     | \$ 25,27              |      |     |             |
|          | Base course                                                                                                                                                       | m2                     | \$ 113,37             |      |     |             |
|          | Surfacing (chip seal)                                                                                                                                             | m2                     | \$ 48,61              |      |     |             |
|          | Surfacing (Stone Mastic Asphalt)                                                                                                                                  | m2                     | \$ 204,00             |      |     |             |
|          | Surfacing (second coat)                                                                                                                                           | m2                     | \$ 44,82              |      |     |             |
| 5.15     | Upgrade existing carriageway(s).                                                                                                                                  |                        | \$                    | -    |     |             |
|          | Sawcutting<br>Joints                                                                                                                                              |                        | \$                    | -    |     |             |
|          | Scarifying                                                                                                                                                        |                        | \$                    | -    |     |             |
|          | Ancillary roadworks                                                                                                                                               |                        | \$                    | -    |     |             |
|          |                                                                                                                                                                   |                        |                       |      |     |             |
| 6.00     | Bridges                                                                                                                                                           |                        |                       |      | \$  | -           |
|          |                                                                                                                                                                   |                        |                       |      | _   |             |
|          | Retaining Walls and Access Works Timber-piled walling                                                                                                             |                        | \$                    | _    | \$  | 62,550.00   |
|          | Concrete-piled walling including ground anchors                                                                                                                   |                        | \$                    | -    |     |             |
|          | Gabion walling                                                                                                                                                    |                        | \$                    | -    |     |             |
|          | Crib walling                                                                                                                                                      |                        | \$                    | -    |     |             |
| 7.05     | Mechanically stabilised earth (MSE) walling                                                                                                                       |                        | \$                    | -    |     |             |
| 7.06     | Backfill behind retaining walls where the estimator is to consider the provisions included in the earthworks element and allow extra for special materials and/or |                        | \$                    | -    |     |             |
|          | placement requirements behind retaining walls).                                                                                                                   |                        |                       |      |     |             |
|          | Stone strong walling                                                                                                                                              |                        | \$                    | -    |     |             |
|          | Diaphragm walling Precast concrete facing panels                                                                                                                  |                        | \$                    | -    |     |             |
|          | Drainage in association with retaining walls                                                                                                                      |                        | \$                    | -    |     |             |
|          | Temporary works associated with retaining walls.                                                                                                                  |                        | \$                    | -    |     |             |
|          | Residential Vehicle crossing (Waipapa Corridor)                                                                                                                   | Ea                     | \$ 6,00               | 0.00 |     |             |
|          | Commercial Vehicle Crossing (Waipapa Corridor)                                                                                                                    | Ea                     | \$ 18,90              |      |     |             |
|          | Residential Vehicle crossing (Option)                                                                                                                             | Ea                     | \$ 3,00               |      |     |             |
| 7.15     | Commercial Vehicle Crossing (Option)                                                                                                                              | Ea                     | \$ 34,65              | 0.00 |     |             |
| 8.00     | Traffic Services                                                                                                                                                  |                        |                       |      | \$  | 220,500.00  |
|          | Barrier (wire/concrete median barrier and verge barrier)                                                                                                          |                        | \$                    | -    |     |             |
|          | Pavement markings, pavement markers (Waipapa Corridor)                                                                                                            | LS                     | \$ 5,00               | 0.00 |     |             |
| 8.03     | Pavement markings, pavement markers (Option)                                                                                                                      | LS                     | \$ 12,00              |      |     |             |
|          | Road signs, gantries (Waipapa Corridor)                                                                                                                           | LS                     |                       | 0.00 |     |             |
|          | Road signs, gantries (Option)                                                                                                                                     | LS                     | \$ 3,00               |      |     |             |
|          | Traffic signals<br>Marker posts                                                                                                                                   |                        | \$                    | -    |     |             |
|          |                                                                                                                                                                   | Fo                     |                       |      |     |             |
|          | Lighting (Waipapa Corridor)                                                                                                                                       | Ea                     | \$ 150,00<br>\$ 50,00 |      |     |             |
|          | Lighting (Option) Emergency cross-overs and phones                                                                                                                | Ea                     | \$ 50,00<br>\$        | -    |     |             |
|          | Variable Message Signs                                                                                                                                            |                        | \$                    | -    |     |             |
|          | Intelligent Traffic Signals/ATMS.                                                                                                                                 |                        | \$                    | -    |     |             |
| 8.13     | Bus/cycleway green paint marking                                                                                                                                  |                        | \$                    | -    |     |             |
|          | Guardrails                                                                                                                                                        |                        | \$                    | -    |     |             |
|          | Leading and trailing end terminals                                                                                                                                |                        | \$                    | -    |     |             |
| 8.16     | Crash cushions                                                                                                                                                    |                        | \$                    | -    |     |             |

| Flem                                            | nental Breakdown for Physical Works                                                                                                              |              |                              |                |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|----------------|--|
|                                                 | 4 SH10 Waipapa Road Intersection Improvements                                                                                                    |              |                              |                |  |
|                                                 | al Breakdown for Physical Works                                                                                                                  |              | ALTERNATIVE ROUND            | ABOUT          |  |
|                                                 | Description                                                                                                                                      | Unit         | Sub-Element Totals           | Element Totals |  |
| <b>9.00</b><br>9.01                             | Service Relocations  NZTA cost of local authority and utility companies (after cost share) and contractors on costs a TOR ENERGY                 |              | \$ 300,000.00                | \$ 1,040,000   |  |
| 9.02                                            | contractors on costs - TOP ENERGY  NZTA cost of local authority and utility companies (after cost share) and contractors on costs - CHORUS       |              | \$ 500,000.00                |                |  |
| 9.03                                            | NZTA cost of local authority and utility companies (after cost share) and contractors on costs - FNDC                                            |              | \$ 115,000.00                |                |  |
| 9.04                                            | NZTA cost of local authority and utility companies (after cost share) and contractors on costs - KERIKERI IRRIGATION                             |              | \$ 10,000.00                 |                |  |
| 9.05                                            | NZTA cost of local authority and utility companies (after cost share) and contractors on costs - EDWARD LOCK                                     |              | \$ 50,000.00                 |                |  |
| 9.06<br>9.07                                    | Civil works associated with utility services such as trenching.  Temporary works associated with utility services                                |              | \$ 50,000.00<br>\$ 15,000.00 |                |  |
| 10.00                                           | Landscaping & Urban design                                                                                                                       |              |                              | \$ 168,490     |  |
| 10.01                                           | Landscaping (aesthetic and environmental)                                                                                                        |              | \$ -                         | 3 100,         |  |
| 10.02                                           | Grassing (Waipapa Corridor)                                                                                                                      | m2           | \$ 3,712.00                  |                |  |
| 10.03                                           | Grassing (Option) Architecture                                                                                                                   | m2           | \$ 10,400.00<br>\$ -         |                |  |
| 10.05                                           | Fencing                                                                                                                                          | m            | \$ 1,178.10                  |                |  |
| 0.06                                            | Streetscaping Land accommodation costs (also refer to project property cost funding)                                                             | <u> </u>     | \$ -<br>\$ -                 |                |  |
| 0.07                                            | Footpaths (1.5m) and cycleway                                                                                                                    | m2           | \$ 63,000.00                 |                |  |
| 0.09                                            | Footpaths (2.5m) and cycleway                                                                                                                    | m2           | \$ 43,500.00                 |                |  |
| 0.10                                            | Building relocations                                                                                                                             |              | \$ -                         |                |  |
| 0.11                                            | Traffic islands - splitter Traffic islands - pedestrian                                                                                          | m2<br>m2     | \$ 40,800.00<br>\$ 3,400.00  |                |  |
| 0.12                                            | Pram crossings with kerb and tactile pavers                                                                                                      | Ea           | \$ 3,400.00                  |                |  |
| 0.14                                            | Urban design features to bridges, structures, barriers, retaining walls etc.                                                                     |              | \$ -                         |                |  |
| 0.15                                            | Mountable Concrete Apron                                                                                                                         |              | \$ -                         | <del></del>    |  |
| 11.00                                           | - CC 14 Tanananan Warks                                                                                                                          |              |                              | \$ 375.00      |  |
| 1.00                                            | Traffic Management and Temporary Works Temporary traffic diversions                                                                              |              | \$ -                         | \$ 375,000     |  |
| 1.01                                            | Traffic management physical works costs                                                                                                          | <u> </u>     | \$ -                         |                |  |
| 11.03                                           | Temporary roads                                                                                                                                  |              | \$ -                         |                |  |
| 12.00                                           | Preliminary and General                                                                                                                          |              |                              | \$ 301,75      |  |
|                                                 | Establishment, temporary accommodation, clean up, disestablishment and other                                                                     |              | 112.159.70                   | 301,75         |  |
| 12.01                                           | site operating costs                                                                                                                             | <u> </u>     | \$ 113,158.79                |                |  |
| 2.02                                            | Contractor's supervision, on site staffing, prescribed specialists and other time related costs.                                                 | Ī            | -                            |                |  |
| 2.03                                            | related costs.  Insurances, bonds, warrantees/guarantees, as-built requirement plans and other non time-related costs.                           |              | \$ -                         |                |  |
| 2.04                                            | Temporary works design and traffic management planning                                                                                           |              | \$ -                         |                |  |
| 12.05                                           | Project plans, quality assurance, traffic management plans, environmental management plans, programming and reporting, consent fees, stakeholder |              | \$ -                         |                |  |
|                                                 | management, health and safety, security management, contractor's escrow tender documents                                                         | i            |                              |                |  |
| 12.06                                           | Network maintenance                                                                                                                              |              | \$ -                         |                |  |
| 12.07<br>12.08                                  | QA systems Testing                                                                                                                               | <del> </del> | \$ -<br>\$ -                 |                |  |
| 2.00                                            | Testing                                                                                                                                          |              | 3                            |                |  |
| 13                                              | Extraordinary Construction Costs                                                                                                                 |              |                              | \$ 865,79      |  |
|                                                 | Base Estimate                                                                                                                                    |              |                              | \$ 5,807,06    |  |
| - <b>- 6</b> (                                  |                                                                                                                                                  | 1/10/2017    |                              |                |  |
| ite oi E                                        | Estimate                                                                                                                                         | 1/10/2017    |                              |                |  |
| Estimate prepared by Signed Naushaba Todd-Jones |                                                                                                                                                  |              |                              |                |  |
| timate                                          | e internal peer review by                                                                                                                        | Signed       | Chris Parker                 |                |  |
| stimate                                         | e external peer review by                                                                                                                        | Signed       |                              |                |  |
|                                                 |                                                                                                                                                  |              |                              |                |  |

Signed

Note: These estimates are exclusive of Contingency, Funding Risk Contingency, Escalation and GST.

Estimate accepted by NZTA project manager

| PN4234 SH10 Waipapa Road Intersection Improvements |                                                                                                                               |        |                                   |                                    |                                            |                                       |                                                 |                                         |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------|------------------------------------|--------------------------------------------|---------------------------------------|-------------------------------------------------|-----------------------------------------|--|
| Nett Property Cos                                  |                                                                                                                               |        |                                   |                                    |                                            |                                       |                                                 |                                         |  |
| Property<br>Acquisition<br>Reference               | Property Requirements                                                                                                         |        | Property<br>Purchase Costs<br>(A) | (Less)<br>Disposal<br>Value<br>(B) | Nett Property<br>Purchase Costs<br>(A-B=C) | Property<br>Compensation Costs<br>(D) | Property owner<br>Accommodation<br>Works<br>(E) | Nett Project Property<br>Cost (C+D+E=F) |  |
| s e d                                              |                                                                                                                               | e<br>d |                                   |                                    | Alternative<br>Roundabout                  |                                       |                                                 |                                         |  |
|                                                    | Waipapa Corridor Treatment: Lot 1 DP 153739, Lot 4 DP 98489, Lot 3 DP 98489, Lot 4 DP 102236, Lot 5 DP 102236, Lot 3 DP 99619 |        | 0                                 | 0                                  | 46,750                                     | 0                                     | 0                                               | 0                                       |  |
|                                                    | Lot 1 DP 153739                                                                                                               |        | 0                                 |                                    |                                            |                                       | 0                                               |                                         |  |
|                                                    | Lot 1 DP 164804                                                                                                               |        | 0                                 |                                    | , ,                                        | 0                                     |                                                 |                                         |  |
|                                                    | Lot 1 DP 102334                                                                                                               |        | 0                                 | 0                                  | 50,000                                     | 0                                     | 0                                               | 0                                       |  |
|                                                    |                                                                                                                               |        | 0                                 | 0                                  |                                            | 0                                     | 0                                               |                                         |  |
| Fees                                               | Property Acquisition Agents Fees                                                                                              | -      | -                                 | -                                  |                                            | -                                     | -                                               | 0                                       |  |
| Base Estimate                                      | 2                                                                                                                             |        | 0                                 | 0                                  | 1,946,750                                  | 0                                     | 0                                               | 0                                       |  |
| Contingency                                        |                                                                                                                               |        |                                   |                                    |                                            |                                       |                                                 | 389,350                                 |  |
| Expected Esti                                      | mate                                                                                                                          |        |                                   |                                    |                                            |                                       |                                                 | 2,336,100                               |  |
| Funding Risk (                                     | Contingency                                                                                                                   |        |                                   |                                    |                                            |                                       |                                                 | 194,675                                 |  |
| 95th Percentil                                     | le Estimate                                                                                                                   |        |                                   |                                    |                                            |                                       |                                                 | 2,530,775                               |  |
| Date of Estim                                      | ate                                                                                                                           |        |                                   | Cost Index                         | Q04 / 2017                                 |                                       |                                                 |                                         |  |
| Estimate prepared by                               |                                                                                                                               |        |                                   | Signed Naushaba Todd-Jones         |                                            |                                       |                                                 |                                         |  |
| Estimate internal peer review by                   |                                                                                                                               |        |                                   | Signed Chris Parker                |                                            |                                       |                                                 |                                         |  |
| Estimate external peer review by                   |                                                                                                                               |        |                                   |                                    | Signed                                     |                                       |                                                 |                                         |  |
| Estimate accepted by NZTA project manager          |                                                                                                                               |        |                                   | Signed                             |                                            |                                       |                                                 |                                         |  |

Note: These estimates are exclusive of escalation and GST.

## Project Estimate - Form C

### PN4234 SH10 Waipapa Road Intersection Improvements

**Detailed Business Case Estimate Alternative Roundabout** 

|                                                     |                                                   |               | Alternativ  | e Roundabout                |  |  |  |
|-----------------------------------------------------|---------------------------------------------------|---------------|-------------|-----------------------------|--|--|--|
| ltem                                                | Description                                       | Base Estimate | Contingency | Funding Risk<br>Contingency |  |  |  |
| Α                                                   | Nett Project Property Cost                        | 1,946,750     | 389,350     | 194,675                     |  |  |  |
|                                                     | Project Development Phase                         | ,, ,, ,,      | ,           | . ,                         |  |  |  |
|                                                     | - Consultancy Fees                                | Nil           | Nil         | Nil                         |  |  |  |
|                                                     | - NZTA Managed Costs                              | Nil           | Nil         | Nil                         |  |  |  |
| В                                                   | Total Project Development                         | Nil           | Nil         | Nil                         |  |  |  |
|                                                     | Pre-implementation Phase                          |               |             |                             |  |  |  |
|                                                     | - Consultancy Fees                                |               |             |                             |  |  |  |
|                                                     | - NZTA Managed Costs                              |               |             |                             |  |  |  |
| C                                                   | Total Pre-implementation                          | 490,355       | 147,106     | 49,035                      |  |  |  |
|                                                     | Implementation Phase                              | ,             | ,           | •                           |  |  |  |
|                                                     | Implementation Fees                               |               |             |                             |  |  |  |
|                                                     | - Consultancy Fees                                |               |             |                             |  |  |  |
|                                                     | - NZTA Managed Costs                              |               |             |                             |  |  |  |
|                                                     | - Construction Monitoring Fees                    |               |             |                             |  |  |  |
|                                                     | Sub Total Base Implementation Fees                | 377,196       | 75,439      |                             |  |  |  |
|                                                     | Physical Works                                    | 377,130       | . 5, . 55   |                             |  |  |  |
| 1                                                   | Environmental Compliance                          | 50,000        | 10,000      |                             |  |  |  |
|                                                     | Earthworks                                        | 379,915       | 75,983      |                             |  |  |  |
|                                                     | Ground Improvements                               | 0             | 0           |                             |  |  |  |
|                                                     | Drainage                                          | 691,368       | 207,410     |                             |  |  |  |
|                                                     | Pavement and Surfacing                            | 784,136       | 156,827     |                             |  |  |  |
|                                                     | Bridges                                           | 0             | 0           |                             |  |  |  |
|                                                     | Retaining Walls                                   | 62,550        | 12,510      |                             |  |  |  |
|                                                     | Traffic Services                                  | 220,500       | 44,100      |                             |  |  |  |
|                                                     | Service Relocations                               | 1,040,000     | 312,000     |                             |  |  |  |
|                                                     | Landscaping                                       | 168,490       | 33,698      |                             |  |  |  |
|                                                     | Traffic Management and Temporary Works            | 375,000       | 75,000      |                             |  |  |  |
|                                                     | Preliminary and General                           | 301,757       | 60,351      |                             |  |  |  |
|                                                     | Extraordinary Construction Costs                  | 865,794       | 173,159     |                             |  |  |  |
| 1 3                                                 | Sub Total Base Physical works                     | 4,939,510     | 987,902     |                             |  |  |  |
| _                                                   | •                                                 |               |             |                             |  |  |  |
|                                                     | Total for Implementation Phase                    | 5,316,706     | 1,063,341   | 1,000,000                   |  |  |  |
| E                                                   | Project Base Estimate (A+C+D)                     | 7,753,811     |             |                             |  |  |  |
| - 1                                                 |                                                   |               |             |                             |  |  |  |
| F                                                   | Contingency (Assessed/Analysed)                   | (A+C+D)       | 1,599,798   |                             |  |  |  |
| G                                                   | Project Expected Estimate                         | (E+F)         | 9,353,609   |                             |  |  |  |
| Nett Proj                                           | ect Property Cost Expected Estimate               |               | 2,336,100   |                             |  |  |  |
| Project D                                           | evelopment Phase Expected Estimate                |               | Nil         |                             |  |  |  |
| Pre-imple                                           | mentation Phase Expected Estimate                 |               | 637,461     |                             |  |  |  |
| Impleme                                             | ntation Phase Expected Estimate                   |               | 6,380,048   |                             |  |  |  |
| Н                                                   | Funding Risk Contingency (Assessed/Analysed)      |               | (A+C+D)     | 1,243,710                   |  |  |  |
| -                                                   | 95th percentile Project Estimate                  |               | (G+H)       | 10,597,319                  |  |  |  |
| Nett Project Property Cost 95th percentile Estimate |                                                   |               |             |                             |  |  |  |
| Project Development Phase 95th percentile Estimate  |                                                   |               |             |                             |  |  |  |
| · · · · · · · · · · · · · · · · · · ·               |                                                   |               |             |                             |  |  |  |
|                                                     | Pre-implementation Phase 95th percentile Estimate |               |             |                             |  |  |  |
| rnpiemei                                            | ntation Phase 95th percentile Estimate            |               | 7,380,048   |                             |  |  |  |

| Date of Estimate                 | Cost Index (Qtr/Year) Q04 / 2017 |
|----------------------------------|----------------------------------|
| Estimate prepared by             | Signed<br>Naushaba Todd-Jones    |
| Estimate internal peer review by | Signed<br>Chris Parker           |
| Estimate external peer review by | Signed                           |
| Estimate accepted by NZTA        | Signed                           |

(1) These estimates are exclusive of escalation and GST.

(2) Project Development Phase Estimates are set to Nil as these are now sunk costs.

# APPENDIX G Land Requirement Plan

NZ TRANSPORT AGENCY October 2017

