
Bridge manual commentary

First edition

New Zealand Government

superseded

Bridge manual commentary

© NZ Transport Agency www.nzta.govt.nz First edition, Amendment 0 Effective from October 2018

ISBN 978-1-98-851240-2 (online)

Copyright information

This publication is copyright © NZ Transport Agency. Material in it may be reproduced for personal or in-house use without formal permission or charge, provided suitable acknowledgement is made to this publication and the NZ Transport Agency as the source. Requests and enquiries about the reproduction of material in this publication for any other purpose should be made to:

Manager, Information NZ Transport Agency Private Bag 6995 Wellington 6141

The permission to reproduce material in this publication does not extend to any material for which the copyright is identified as being held by a third party. Authorisation to reproduce material belonging to a third party must be obtained from the copyright holder(s) concerned.

Disclaimer

The NZ Transport Agency has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. However, the document does not override governing legislation. The NZ Transport Agency and its employees, agents and contractors involved in the preparation and publication of this document do not accept liability for any consequences arising from the use of this document. Users of this document should apply and rely upon their own skill and judgment, and should not rely on the document's contents in isolation from other sources of advice and information. In applying their own skill and judgment, the standards of safety and serviceability explicitly required or implied by this document shall not be reduced. If the user is unsure whether the material is correct, they should make direct reference to the relevant legislation or regulations and contact the NZ Transport Agency.

More information

Published October 2018 ISBN 978-1-98-851240-2 (online)

If you have further queries, call our contact centre on 0800 699 000 or write to us: NZ Transport Agency Private Bag 6995 Wellington 6141

This document is available on the NZ Transport Agency's website at www.nzta.govt.nz

Document management plan

1) Purpose

This management plan outlines the updating procedures and contact points for the document.

2) Document information

Document name	Bridge manual commentary
Document number	
Document availability	This document is located in electronic form on the NZ Transport Agency's website at www.nzta.govt.nz.
Document owner	National Structures Manager
Document sponsor	National Manager Network Outcomes
Prepared by	Network Outcomes, NZ Transport Agency

3) Amendments and review strategy

All corrective action/improvement requests (CAIRs) suggesting changes will be acknowledged by the document owner.

	Comments	Frequency
Amendments (minor revisions)	Updates to be notified to users by publication of a technical advice note placed on the NZ Transport Agency's website.	As required.
Review (major revisions)	Periodic updates will be undertaken where amendments fundamentally changing the content or structure of the guide or new technology resulting from research or ongoing refinement have been identified.	As required.
Notification	All users that have registered their interest by email to hip.feedback@nzta.govt.nz will be advised by email of amendments and updates.	Immediately.

4) Distribution of this management plan

Copies of this document management plan are to be included in the NZ Transport Agency intranet.

Record of amendments

This document is subject to review and amendment from time to time. Amendments will be recorded in the table below.

Changes since the previous amendment are indicated by a vertical line in the margin. The date of issue or amendment of a page appears in the header on each page. This page will be updated each time a new amendment is released.

Description of change	Effective date Updated by
Bridge manual commentary 1st edition published.	October 2018 Nigel Lloyd

Introduction

This informative commentary provides background to various sections of the Transport Agency's *Bridge manual*. It will be added to as appropriate.

Contents

C4	Analysis	s and design criteria	C4-1
	C4.2	Reinforced concrete and prestressed concrete	C4-1
	Referen	ces for C4	C4-2
C5		ake resistant design of structures - Commentary to the provisions for ement based design	C5-1
	C5.1	General	C5-2
	C5.2	Design limit state (5.1)	C5-4
	C5.3	Bridge classification and importance level (2.1.3)	C5-5
	C5.4	Design seismicity (5.2.4)	C5-5
	C5.5	Design displacement spectrum for earthquake response	C5-5
	C5.6	Seismic mass distribution (5.3.8)	C5-6
	C5.7	Pier elastic flexibility	C5-6
	C5.8	Seismic analysis for design strength of plastic hinges	C5-9
	C5.9	Design displacements	C5-14
	C5.10	Distribution of design lateral force (5.4.6)	C5-17
	C5.11	Seismic design moments in potential plastic hinges (5.4.7)	C5-17
	C5.12	Vertical seismic response (5.3.3)	C5-18
	C5.13	Required moment capacity	C5-18
	C5.14	P-delta effects (5.3.7)	C5-20
	C5.15	Design abutment forces (5.4.8)	C5-20
	C5.16	Design displacements (5.6.1 – 5.6.3)	C5-21
	C5.17	Span – support overlap at non-integral abutments (5.7.2(d))	C5-25
	C5.18	References	C5-26
Append	lix C5A	Displacement based design worked example 1 - Maitai River Bridge	C5-27
	C5A.1	Bridge description	C5-28
	C5A.2	Example cases analysed	C5-31
	C5A.3	Two-degree of freedom dynamic model	C5-34
	C5A.4	Response to earthquake ground motion	C5-37
	C5A.5	Abutment stiffness for longitudinal response	C5-38
	C5A.6	Analysis for case 1: rigid foundations and bearings	C5-39
	C5A.7	Analysis for case 2: flexible foundation and elastomeric bearings	C5-43
	C5A.8	Analysis for case 3: lead-rubber bearings (review type analysis)	C5-44
	C5A.9	Spreadsheet analysis	C5-45
	C5A.10	References	C5-53
	C5A.11	Spreadsheets	C5-54

Appendix C5B	Displacement based design worked example 2 - Mangatewa River Bridge	ai-iti C5-97
C5B.1	Bridge description	C5-98
C5B.2	Example cases analysed	C5-100
C5B.3	Longitudinal analysis	C5-101
C5B.4	Transverse analysis: Sliding bearings at abutments	C5-105
C5B.5	Transverse analysis: Restraint at abutments	C5-106
C5B.6	Shear ratio in piers	C5-111
C5B.7	References	C5-112
C5B.8	Spreadsheets	C5-113
C6 Site si	ability, foundations, earthworks and retaining walls	C6-1
C7 Evalua	ation of bridges and culverts	C7-1
C7.3	Material strengths	C7-1

C4 Analysis and design criteria

C4.2 Reinforced concrete and prestressed concrete

C4.2.1 General e. Shrinkage and creep effects in concrete

New Zealand average relative humidities

Relative humidity data is available from the NIWA CliFlo⁽¹⁾ database which can be analysed to determine appropriate average relative humidities for locations throughout New Zealand for use in assessing the shrinkage and creep of concrete.

The following outlines the process that needs to be adopted to access and analyse the NIWA data through the internet, as the process is not obvious from the NIWA website:

Bring up the CliFlo database: http://cliflo.niwa.co.nz/>.

Establish an On-Line Subscription to CliFlo, and then Login. The subscription will be valid for 2 years and allow the subscriber to download up to 2,000,000 lines of data, but with a limit of 40,000 lines of data per individual search.

Ensure that your internet browser has its security settings set to allow pop-up menus on the NIWA website.

In the Database Query form, make the following selections:

In panel 1: - Click "Select Datatype" and select "Daily and Hourly Observations" from the pop-up menu, then select "Hly Air T" as the option.

In panel 2: - Click "Choose Stations" and then on the pop-up menu click against "region" and from the drop-down list select the region closest to the site of interest. Then click on "Get Station List" This will open as a new webpage. From the listing of stations select an appropriate station near the site of interest to download the data for, by clicking on its "Select" tick box. Confirm that the stations start and end dates encompass the period of time for which data is sought. Then at the bottom of the screen click on "Replace Selected Stations".

Return to the Database Query form by clicking on its webpage tab at the top of the screen.

In panel 3: - Input the start and end dates for the period of time for which data is required. It is suggested that a recent ~5 year period be specified. (40,000 lines of hourly data = 4.566 years)

In panel 4: - Against "Split data into date and time columns" click against "No (single data column)", and against "File download option" select "Excel file" from the drop-down list.

Then click "Send Query" and wait. The website will eventually return an Excel file named wgenf.genform1_proc. Open the file using Microsoft Excel (ignoring any messages about inappropriate file naming). Check that the file contains RH data for each line of data supplied, and that the data is hour by hour for 24 hours of each day, as for some stations some RH data is missing. That data is missing is usually evident from inspection of the first and last few pages of output.

C4.2.1 continued

For datasets that are complete, calculate the average RH by summing the RH data column (column E) and dividing the sum by the number of data rows (\leq 40,000).). It is suggested that, for each individual site, 2 data searches be undertaken for consecutive periods and averaged to provide an average RH across 9 years' worth of data.

Note that 40,000 lines of data equates to ~700 pages of A4 output, so printing the output file is not recommended.

References for C4

 National Institute of Water and Atmospheric Research CliFlo - The national climate database. Last accessed 28 September 2018.
 http://cliflo.niwa.co.nz/>.

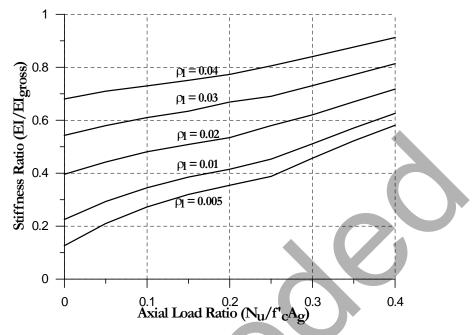
C5 Earthquake resistant design of structures – Commentary to the provisions for displacement based design

In this section	Section		Page
	C5.1	General	5-2
	C5.2	Design limit state (5.1)	5-4
	C5.3	Bridge classification and importance level (2.1.3)	5-5
	C5.4	Design seismicity (5.2.4)	5-5
	C5.5	Design displacement spectrum for earthquake response	5-5
	C5.6	Seismic mass distribution (5.3.8)	5-6
	C5.7	Pier elastic flexibility	5-6
	C5.8	Seismic analysis for design strength of plastic hinges	5-9
	C5.9	Design displacements	5-14
	C5.10	Distribution of design lateral force (5.4.6)	5-17
	C5.11	Seismic design moments in potential plastic hinges (5.4.7)	5-17
	C5.12	Vertical seismic response (5.3.3)	5-18
	C5.13	Required moment capacity	5-18
	C5.14	P-delta effects (5.3.7)	5-20
	C5.15	Design abutment forces (5.4.8)	5-20
	C5.16	Design displacements (5.6.1 - 5.6.3)	5-21
	C5.17	Span – support overlap at non-integral abutments (5.7.2(d))	5-25
	C5.18	References	5-26

C5.1 General

The topics of this commentary are presented in the order that a designer would be expected to address them in, whereas the order in section 5 of the *Bridge manual* differs to group requirements relevant to both displacement-based design and force-based design together and to group requirements relevant to one or other of the design methods separately. Cross-referencing is provided to the relevant clauses in the *Bridge manual*.

The approach in these provisions has been provided as an alternative to the force-based approach in the *Bridge manual* and utilizes displacement-based principles. As noted in *Displacement-based seismic design of structures*⁽¹⁾, force-based seismic design of bridges is based on a number of assumptions that are invalid, and which can result in inappropriate global strength, and/or poor distribution of strength between different structural elements participating in seismic resistance. Areas of particular concern with current force-based seismic design of bridges include the following:


- Elastic stiffness of piers. It is incorrectly assumed that elastic stiffness of piers (reinforced concrete or steel) is independent of strength. For reinforced concrete piers a value of $0.5I_{gross}$ is often assumed. However, it can easily be shown that, dependent on axial load and reinforcement content, the stiffness can be as low as $0.12I_{gross}$ and as high as $0.9I_{gross}$ (see figure C5.1). The consequence can be significant errors in calculation of structural periods, and hence required design strength.
- Distribution of design strength to structural elements in proportion to elastic stiffness. Elastic stiffness is irrelevant once piers respond inelastically. The correct value to use is the secant stiffness to maximum design displacement. The errors induced by forcebased design are particularly serious when a combination of elastic (superstructure flexure) and inelastic load paths (pier flexure) contribute to seismic resistance.
- The assumption that a given ductility factor is appropriate for all bridges of a given configuration (e.g. cantilever piers with bearing supported superstructures). In fact, bearing flexibility and column aspect ratio (height/width) can result in large variation of ductility capacity.
- The assumption that the equal displacement approximation is valid. In fact, displacements predicted on the basis of elastic stiffness often underestimate the true inelastic displacements. This error is compounded by errors in estimated elastic stiffness, as noted above.
- The inability of force-based design methodology to correctly account for foundation flexibility and foundation damping.

Direct displacement-based seismic design (DDBD) does not suffer from any of the above defects, and is simple to apply. The procedure is of similar complexity to the equivalent-lateral force procedure in force-based seismic design.

Even if force-based design is adopted, the influence of the errors noted above can be greatly reduced by adopting appropriate parts of this commentary, such as distribution of design base shear between different piers, or determining whether a bridge in a low seismic region can be expected to respond elastically. Information in this commentary can also be used to justify reductions in transverse reinforcement of piers compared with requirements of NZS 3101.1&2 *Concrete structures standard*⁽²⁾, where appropriate.

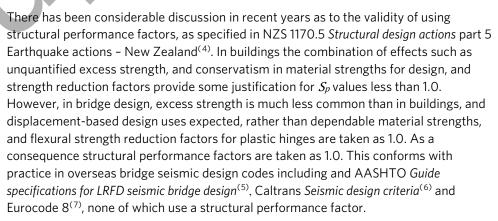

C5.1 continued

Figure C5.1: Stiffness of circular bridge columns as a function of axial load ratio and flexural reinforcement content (*Displacement-based seismic design of structures*⁽¹⁾)

Limitations are placed on categories of bridges that can be designed, with confidence, by DDBD without additional verification. For structures that do not comply with these limitations, and for bridges of high importance, DDBD can still be used to determine the distribution of required strength, but the design should be verified by modal response-spectrum analysis using effective member stiffness and equivalent viscous damping or by non-linear time-history analysis regardless of requirements of 5.4.1. Bridges with subtended angles between abutments less than 90 degrees may be treated as straight bridges in design, as extensive non-linear time-history analyses indicate the error imposed by this approximation is minimal (see *Comparison of the seismic performance of equivalent straight and curved bridges due to transverse seismic excitation*⁽³⁾).

The format of the provisions has been prepared to be as compatible as possible with the recently prepared displacement-based bridge seismic design code for Australian conditions, while recognizing differences imposed by the higher seismicity in New Zealand, and current design practice. This should facilitate interaction between construction and design practice in the two countries.

C5.2 Design limit state (5.1)

NZS 1170.5⁽⁴⁾ requires consideration of three limit states: two serviceability limit states (SLS1 and SLS2) and one "ultimate" limit state (ULS) when determining required strength. Because of the annual probability of exceedance for the three limit states, current force-based design will generally result in SLS2 governing the required strength for bridges designated as appropriate for the maximum specified ductility demand of μ =6, making this ductility limit irrelevant.

SLS2 requires full functionality to be maintained (table 5.1). Knock-off elements "should not be damaged or dislodged".

Although the performance objective for the SLS2 earthquake response is satisfactory, it is not clear that the structural strength should be determined from this limit state. It should be noted that potential for damage to structural elements (eg plastic hinge regions of columns) cannot be correlated well with the design ductility level. Damage potential is related to reinforcing steel tension strain and to concrete compression strain. These depend strongly on structural configuration. For example, plastic hinge damage will occur at lower ductility levels for slender piers than for squat piers, and multi-column bents with flexible cap beams will suffer damage at lower displacement ductility factors than will cantilever columns. It is thus inappropriate to use a specified ductility level at SLS2 to determine required strength.

It should also be noted that for bridges designed for some level of ductility at the ULS, structural damage at the SLS2 limit state will be minor or non-existent, and associated with spalling or permanently open crack width in the bridge piers. This type of damage would not affect the primary functionality of the bridge to carry full traffic loading, and repairs could be carried out with the bridge in service.

The requirement for avoiding damage to knock-off devices etc, is however important. This is related primarily to maximum displacement response rather than to designed strength. Assuming the "equal-displacement" approximation holds (it is a coarse, but adequate approximation at low ductility levels), strength would be irrelevant to displacement demand, except for very stiff structures, which are uncommon for bridges.

The discussion above is presented in a form appropriate for force-based design, but the conclusions are also relevant to DDBD. Currently strength is illogically dictated by SLS2 and this requirement should be dropped. Strength should be determined by the ULS limit state, but displacement-sensitive elements of the bridge (such as knock-off devices) should be checked at SLS2. Design limit state SLS1 should be completely dropped as irrelevant for bridges. This approach has been adopted for DDBD.

Finally, it should be noted that "ultimate" is an inappropriate description for the ULS, as it gives the impression that seismic intensity greater than the ULS would cause failure. In fact, the ULS has been formulated as a "damage control" limit state (DCLS), and the limit-state strains defined in the commentary should provide a capacity for displacement corresponding to at least 1.5ULS. The intent is that bridges responding at the DCLS (this terminology will be used in preference to ULS in these provisions) should be economically repairable.

C5.3 Bridge classification and importance level (2.1.3)

Different requirements, including different methods of analysis and consideration of vertical acceleration effects are defined for different importance levels. The principal difference between designs at different importance levels will, however, be in the return period defined for each importance level.

C5.4 Design seismicity (5.2.4)

The design seismicity is directly compatible with both NZS 1170.5⁽⁴⁾ and the *Bridge manual*, but is expressed in terms of displacement spectra, rather than acceleration spectra. Figure 5.2 and table 5.5 present the spectral shapes in graphical and tabular forms. It will be noted that NZS 1170.5⁽⁴⁾ implies a displacement plateau initiating at T=3 seconds. The implication is that elastic displacement demand for bridges with elastic fundamental periods greater than T=3 seconds will not exceed the displacement predicted for T=3 seconds.

C5.5 Design displacement spectrum for earthquake response

C5.5.1 Elastic design spectrum for horizontal earthquake response (5.2.4)

C5.5.2 Elastic design spectrum for vertical response (5.2.4)

The design firm shall ensure that there is sufficient site information to form the basis of the structure options report or structure design statement. The bridge site information summary given in appendix E is a suitable checklist. However, it is the design firm's responsibility to ensure that the information is sufficiently comprehensive to enable sound judgement to be made on all aspects of the design. This applies particularly to subsurface and hydrological information and if these or other data are not adequate the design firm shall obtain the necessary information before the structure design statement is produced.

Recent recordings of vertical response in near-field conditions (eg Christchurch, 2011) indicate that vertical peak ground accelerations (PGAs) and response accelerations can be very large. It is suggested that for these conditions, the vertical response spectrum should equal the horizontal spectrum in the low-period range of response. Where near-field conditions are not expected, the common assumption of vertical response ordinates equal to $\frac{2}{3}$ of the horizontal ordinates should be conservative.

On the other hand, recorded accelerograms indicate that the vertical response spectrum tends to decrease rapidly as period increases. Because of this, it is suggested that the displacement spectrum for vertical response should reach a plateau at 1.5 seconds, rather than 3.0 seconds, as is the case for horizontal response. This is still considered to be a conservative approximation.

The vertical acceleration response spectra presented in NZS 1170.5⁽⁴⁾ has been revised by amendment 1 promulgated in September 2016. In most cases vertical response spectra, where required, will be utilized to determine elastic forces in superstructures or pier cap beams. In these cases it will generally be more convenient to express the vertical spectrum in acceleration, rather than displacement format.

C5.5.3 Reduced design displacement spectrum for ductile response (5.4.2, 5.4.3)

In DDBD the effects of ductility are expressed by equivalent viscous damping which modifies the elastic 5% spectra. This approach is more accurate than the "equal displacement" approximation used for periods greater than about 1 second in force-based design, which does not recognize the influence of different hysteretic rules on ductile displacement demand. It also allows the effect of abutment damping and foundation rotation to be directly incorporated in the design process. Equation (5–17) is taken from a superseded version of Eurocode $8^{(7)}$; the relationships between ductility and equivalent viscous damping in 5.4.3 have been calibrated to be compatible with equation (5–17). Note that a revised expression for the influence of damping on the elastic spectra is provided in the current version of Eurocode $8^{(7)}$; this should not be used, as it would require recalibration of the damping/ductility relationships of 5.4.3.

The reduced efficiency of ductility and damping in reducing displacement response in near-field forward-directivity effects is expressed by a different value for the power parameter (α) applied in equation (5-17). Though this near-field expression is believed to be conservative, (see *Scaling of spectral displacement ordinates with damping ratios*⁽⁸⁾) it should be considered tentative until further data is available.

C5.6 Seismic mass distribution (5.3.8)

The section is self-explanatory. With very tall piers higher mode effects may become significant, and further discretization of mass up the pier height may be advisable. Note, however, that this will primarily be needed to determine the influence of higher modes on pier response, and will not influence the basic displacement-based design determination of total base shear force. Further information on mass distribution for analysis and design is available in *Displacement-based seismic design of structures*⁽¹⁾.

C5.7 Pier elastic flexibility

C5.7.1 Pier yield curvature (5.3.4)

The elastic stiffness is dependent on strength, as influenced by reinforcement content and axial load, in the case of reinforced concrete, and by plate thickness in the case of structural steel, and hence is not known at the start of the design process. The yield curvature (ϕ_y) depends only weakly on the section shape (circular or rectangular, or even architectural, within limits). It is also not strongly dependent on the material of the pier, reinforced concrete or structural steel. The value given in equation (5–8) is an average of all section shapes and materials, and is accurate to within 15% in all cases. This is accurate enough for most designs. More accurate values are provided in chapter 4 of *Displacement-based seismic design of structures*⁽¹⁾. Note that the yield curvature is effectively independent of strength, and is thus known at the start of the design process, if section sizes have been determined. The yield curvature is used in DDBD to determine the structural ductility demand corresponding to the DCLS displacement profile, and is a fundamental parameter in DDBD.

Once the required structural strength of a section has been determined, the effective elastic stiffness can be found from equation (5–9).

C5.7.2 Yield displacement of piers (5.3.4)

With the section yield curvature known, the pier yield displacements can be determined at the start of the design process, before strength has been determined. As well as being needed for DDBD, the yield displacements can be used to determine whether the piers can be expected to respond elastically to the DCLS seismic intensity.


As indicated in equation (5–10), the yield displacement of the pier depends on the structural displacement of the pier plus any lateral displacement of the foundation. To obtain the lateral displacement of the superstructure at the pier position this will be further modified by the deflection of any bearings. The structural displacement, in turn, depends on the condition of fixity at the top and bottom of the pier. Some common examples for longitudinal response are illustrated in figure C5.2.

For complex section shapes 5.3.4 may be too coarse, and more detailed analyses may be required. In such cases, cracking and non-linearity of materials should be modelled. First yield displacement should be determined at steel yield strain or concrete compression strain of 0.002, whichever occurs first, with the equivalent bi-linear yield deformation calculated by linear extrapolation of the first-yield deformation to the nominal moment capacity at the critical section. Refer to *Displacement-based seismic design of structures*⁽¹⁾ for details.

Different values of the flexibility coefficient (C_1) will apply for each case. For example, in figure C5.2(a) the superstructure is bearing-supported, and the footing is considered rigid against rotation and translation. The effective height is measured to the centre of the bearing and includes an allowance for strain-penetration into the base. For this case the coefficient is $C_1=1/3$. For the case in figure C5.2(b), representing longitudinal response of a pier monolithically connected to a stiff superstructure the coefficient $C_1=1/6$. Note that the same pier in the transverse direction would have an effective height of $H + h_{ss}/2$ and the coefficient would be $C_1=1/3$. Further details, including appropriate values for C_1 for pile columns (figure C5.2(e)) are provided in *Displacement-based seismic design of structures*⁽¹⁾.

Bearing and soil flexibility will increase the yield displacement, and a preliminary, conservative check may be made ignoring these.

Figure C5.2: Some possible fixity conditions for pier longitudinal response (*Displacement-based seismic design of structures*⁽¹⁾)

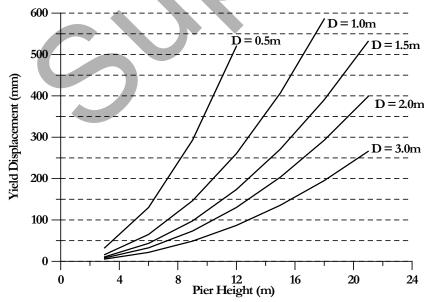
C5.7.2 continued Equation (5-10) includes an allowance for strain penetration. This recognizes that for reinforced concrete piers, the reinforcement strain does not immediately drop to zero at the support (eg the foundation pad), but is gradually reduced due to bond. Adding a length L_{sp} based on experimental measurements, to the effective height of the pier is a simple method for allowing for this. Note that for the longitudinal response case of figure C5.2(b) a strain penetration length would need to be added to both top and bottom of the column.

Note that the structural component of yield displacement depends only on the pier geometry, the yield strain, and the end fixity conditions, and is independent of the strength. For example, increasing the flexural strength of a reinforced concrete section increases its stiffness proportionately, and the yield curvature remains unchanged. The same happens for a structural steel section where the strength is altered by, for example, increasing the flange thickness.

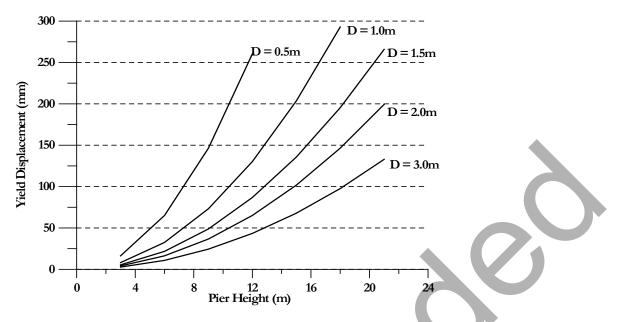
The structural component of yield displacement corresponding to cases (a) and (b) in figure C5.2 are plotted in figures C5.3(a) and C5.3(b) respectively for a yield stress of 500MPa, for a variety of pier diameters (circular columns) or depths (rectangular columns) and heights. Total yield displacement will often exceed the structural component of displacement, due to deformation of the soil, or of the bearings.

For example, consider the pier on a spread footing in figure C5.2(d). If the length of the spread footing in the direction of the seismic shear force is L and the width B, and the soil vertical subgrade coefficient is k_{v} , then the additional yield displacement at the bearing due to foundation rotation will be:

$$\Delta_{f} = \frac{\left(M_{N} + V_{N}h_{f}\right)\left(H + h_{f}\right)}{\left(k_{v}\left(\frac{L^{3}B}{12}\right)\right)} \tag{C5-1}$$


Where:

 M_N = the design moment at the base of the column


the design shear at the base of the column V_N =

 h_{f} = the foundation slab thickness defined in figure C5.2(d)

Figure C5.3(a): Yield displacements for prismatic piers of reinforced concrete or structural steel F_v =500MPa (bearing and foundation flexibility ignored) - cantilever pier (single bending)

The NZ Transport Agency's Bridge manual commentary First edition, Amendment 0 Effective from October 2018

Figure C5.3(b): Yield displacements for prismatic piers of reinforced concrete or structural steel F_y =500MPa (bearing and foundation flexibility ignored) – pier in double bending

C5.8 Seismic analysis for design strength of plastic hinges

C5.8.1 General (5.4.1) This section defines the basic DDBD design process. With long bridges it is very unlikely that the ground motion at different piers or abutments, separated by a distance that is significant by comparison with the seismic wave length, will be synchronous (perfectly in phase) and coherent (of same amplitude). Variations in soil properties along the bridge also affect this. Consequently there is little point in designing as though the seismic input at all points of a bridge is perfectly in phase and of equal amplitude. Further information on this phenomenon is available in *Seismic design and retrofit of bridges*⁽⁹⁾. As a consequence, it is suggested that long bridges be conceptually separated into segments (frames) delineated by movement joints.

The procedure for displacement-based seismic design of bridges has been outlined in some detail elsewhere (*Displacement-based seismic design of structures*⁽¹⁾) and is only briefly described here. There are four stages in the process:

- . representation of the bridge as an equivalent single degree of freedom (SDOF) structure (figure C5.4(a))
- 2. representation of the seismic response by the effective stiffness at the design response displacement (figure C5.4(b))
- 3. determination of the relationship between displacement ductility demand and equivalent viscous damping (figure C5.4(c))
- 4. representation of seismicity by displacement spectra for different levels of equivalent viscous damping (figure C5.4(d)).

The design procedure is typically represented by the following sequence:

- a. Determine the critical displacement capacities of the piers from code-specified strain or drift limits (5.4.5).
- b. Estimate the inelastic mode shape (see C5.9.1 and figure C5.6) and hence determine the critical pier.

C5.8.1 continued

- c. Scale the inelastic mode shape (equation (5-34)) so that the critical pier just reaches its limit state.
- d. Determine the characteristic equivalent SDOF displacement (equation (5-20)) and mass (equation (5-21)) for the frame.
- e. Determine the equivalent viscous damping (equation (5–23)) for the frame from the damping of the bridge components (5.4.3(f)).
- f. Enter the displacement spectra set (eg figure C5.4(d)) with the characteristic displacement and equivalent viscous damping, and determine the effective period at peak displacement response.
- g. From the calculated period, determine the equivalent effective stiffness (equation (5-21)).
- h. From the effective stiffness and the characteristic displacement, determine the frame design lateral earthquake force (total base shear) (equation (5-19)).
- i. Distribute the design force to the mass locations in proportion to mass and displacement (equation (5-39)).
- j. Analyse the frame, using effective stiffness values for the piers, to determine moments in plastic hinges (5.4.7).
- k. Use capacity design principles to determine required shear strength etc (5.6.1).

For a frame under longitudinal seismic response the critical pier will normally be the shortest one, if the different piers have different heights. The design displacements will be the same for all columns. The procedure to estimate design displacement of the critical pier is outlined in 5.4.5. Yield displacements for all piers will differ, if the heights are different, and will be given by equation (5-10) with the displacement of any bearings also added. Hence the ductility demand, and the damping will be different for the different piers. For piers with negligible foundation or bearing deformation the ductility demand of each pier (*i*), can thus be found as:

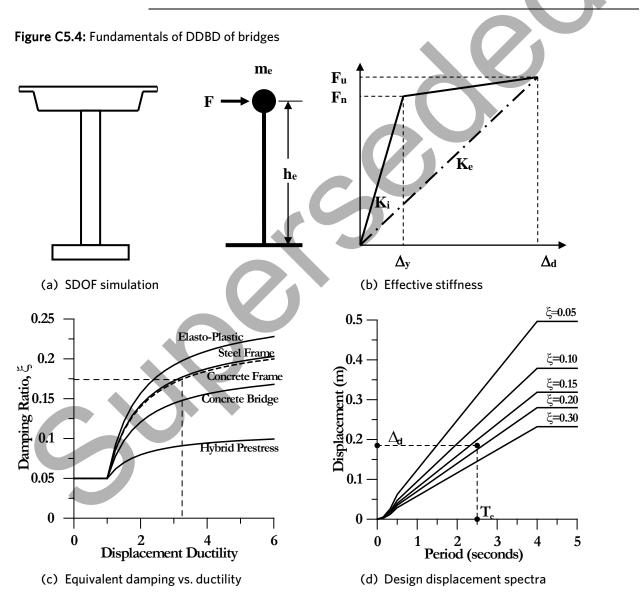
$$\mu_i = \frac{\Delta_c}{\Delta_y}$$

(C5-2)

Where foundation and/or bearing flexibility are significant, and the damping associated with the foundation or bearing deformation is conservatively assumed to be 5%, then equation (C5-2) will still apply, where the ductility is related to the total design and yield displacement of the pier plus bearing/foundation. However, if different values of damping are assigned to foundation or bearing flexibility, and deformation associated with these is significant (say more than 20% of total deformation), then the structural ductility (μ_{si}) should be separately determined from equation (C5-3):

$$u_{si} = \frac{\left(\Delta_d - \Delta_{yf} - \Delta_b\right)}{\left(C_1 \phi_{yi} \left(H + L_{sp}\right)^2\right)}$$
(C5-3)

The effective damping for the pier will then include contributions from structural deformation of the pier, and from foundation and bearing compliance, where appropriate, in accordance with equation (5–23). Since the shear force transmitted through the bearings into the pier and subsequently to the foundation is essentially constant (ignoring small variations due to pier mass), equation (5–23) simplifies, for a given pier, to:


$$\xi_e = \frac{\left(\Delta_s \xi_s + \Delta_b \xi_b + \Delta_f \xi_f\right)}{\Delta_d} \tag{C5-4}$$

where the suffixes *s*, *b* and *f* refer to structure, bearing and foundation respectively, and the displacement components are measured at the height of the pier centre of mass (see 5.3.8).

C5.8 continued

Note that under transverse response, the design displacement at each pier will generally be different, depending on the transverse mode shape (see C5.9). The approach may require some iteration when the seismic inertia forces are carried by two or more different load paths (eg superstructure flexure to abutments, and pier inelastic bending to foundations under transverse seismic response). An initial estimate of the proportion of the total seismic inertia forces carried by superstructure flexure is made, enabling the system damping to be found in accordance with equation (5–23). This is checked by structural analysis after the design base shear is determined, and the seismic forces are distributed to the different mass locations in accordance with equation (5–39). Guidance is given in *Displacement-based seismic design of structures*⁽¹⁾.

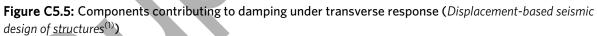
The sequence of code clauses in 5.4 does not follow the above sequence, but defines the basic equation for required strength, then explains how to determine the components of the basic equation.

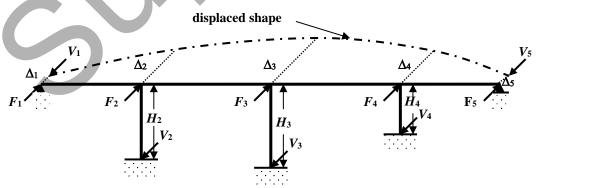
The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

C5.8.2 Design lateral earthquake force (5.4.3(a))	Equation (5-19) expresses the relationship shown in figure C5.4(b), that the design for is the product of the design displacement and the effective stiffness.	ce	
C5.8.3 Frame characteristic design displacement (5.4.3(b))	Equation (5-20) defines the characteristic (equivalent single degree of freedom (SDOF)) displacement of the multi degrees of freedom frame. This is based on the displacement mode shape and the critical displacement of a pier, as defined in 5.4.3 ar 5.4.4. For longitudinal response, the mode shape is normally unity (ie all piers have the same displacement), and the displacement capacity of the critical (shortest) pier corresponding to the damage control limit state strains (see 5.3.5) defines the scaling of the displacement mode shape to obtain the design displacement.	9	
C5.8.4 Frame effective stiffness (5.4.3(c))	The effective stiffness of the SDOF model of the frame, needed in equation (5-19) is found from the effective period, and is defined in equation (5-21). Note that this equation is a simple inversion of the standard equation for the period of a SDOF structure.	Þ.	
C5.8.5 Frame effective mass (5.4.3(d))	Equation (5–21) requires the equivalent mass participating in the fundamental inelastic mode. This mass is defined in equation (5–22). Under longitudinal response the frame effective mass will normally be the total seismic mass of the frame, as defined in 5.3.8. Under transverse response with significant flexibility the frame mass will still be close to the total mass – often as high as 95%.		
	Note that a common, uninformed, criticism of DDBD is that it only considers the fundamental mode whereas modal analysis considers sufficient modes to capture 90% of the total structural mass.	, 0	
	Dividing the bridge into frames separated by movement joints, for reasons discussed in C5.8.1, means that fewer modes are needed to capture sufficient mass, and modes with strong anti-symmetric deformation components participate only to an insignificant degree. It should be noted that the higher modes in a single frame do not contribute significantly to the displacements at the pier tops, and hence are not significant in determining pier design forces. Forces in components of bridges that are sensitive to higher mode effects, such as bridge transverse superstructure moments, and, particularly, abutment forces, are determined by capacity design considerations (see 5.6.1).		
C5.8.6 Frame effective period (5.4.3(e))	The effective period, corresponding to design displacement response is found from the elastic design spectrum for horizontal earthquake response (5.2.4), with modifications for different damping values in accordance with equation (5-17), and as represented conceptually in figure C5.4(d) (displacement spectra set) entering with the design displacement, and using the displacement spectrum corresponding to the calculated equivalent viscous damping. Normally this is done analytically, rather than graphically.		
	Note that the inelastic fundamental period of almost all bridges supported by ductile piers will be greater than 1.0 sec. Examination of figure 5.2 indicates that it is conservative, and only slightly in error to assume that the displacement/period relationships for all four soil conditions are linear from T=0 to T=3.0 sec. If this approximation is made, the effective period (T_e) is given by:		
	$T_e = 3.0 \frac{\Delta_d}{M_{\xi} \Delta_h(3.0)} \tag{C5-5}$	5)	
	where M_{ξ} is given by equation (5-17).		

C5.8.7 Frame equivalent viscous damping (5.4.3(f))

The area of greatest complexity in displacement-based design of bridges is associated with determining the equivalent viscous damping. Consider the typical bridge shown in figure C5.5 under transverse seismic response. The ends of the bridge are restrained by shear keys, but there is some flexibility of the abutments, meaning that the abutment reactions will dissipate some energy by damping. The piers have different heights, different response displacements, and different yield displacements, so the damping of each pier will be different. Foundation flexibility and bearing displacement may influence the pier damping as discussed in C5.8.1. Finally, the superstructure carries some of the inertia forces back to the abutments, and some elastic damping of the superstructure needs to be considered.


Equation (5-23) defines the structure equivalent viscous damping as a composite of the damping values for each of the structural components (piers, abutments, and superstructure). It is necessary to know the shear force carried by each component, their displacement, and their equivalent viscous damping.


First consider a single pier with flexible foundations, flexible bearings and structural ductility. Deflections at the pier top at design displacement response are Δ_f , Δ_b and Δ_s from the three components respectively, and damping values for the three components are ξ_f , ξ_b and ξ_s respectively, found from the data provided in 5.4.3(g). The shear force corresponding to the three deformations are essentially the same, and hence the effective damping for the pier is given by equation (C5-6):

$$\xi_p = \frac{\left(\Delta_b \xi_b + \Delta_f \xi_f + \Delta_s \xi_s\right)}{\left(\Delta_b + \Delta_f + \Delta_s\right)} \tag{C5-6}$$

To determine the global (system) damping, the displacement, damping ratio, and proportion of total design force carried by each pier must be estimated, and the proportion of total design force carried back to the abutments by superstructure flexure, and abutment deformation and damping must be determined.

The procedure is outlined in detail in *Displacement-based seismic design of structures*⁽¹⁾ with reference to design examples. Further details are presented in C5.8.8. Note that the structural damping of a pier may include components of displacement and damping associated with pier, bearing and foundation deformation, in accordance with equation (5–23).

C5.8.8 Equivalent viscous damping of component actions (5.4.3(g)) Pier structural damping is defined in terms of displacement ductility demand at the design displacement. Note that the ductility demand will be known at the start of the design process, since the design displacement will be defined (5.4.4), and the yield displacement is also known and is independent of design strength (5.3.4).

C5.8.8 continued Pile/column designs (figure C5.2(e)) are a special case, as the displacement and damping resulting from foundation and structural deformation are difficult to separate. The values in 5.4.3(g) are simplified from detailed analytical work given in *Direct displacement-based seismic design of drilled shaft bents with soil-structure interaction*⁽¹⁰⁾.

This clause also defines the damping associated with foundation rotation, with superstructure flexure, and with abutment displacement. For the latter, a conservatively low estimate of 0.12 (12%) is assumed. The actual value will depend on the shear strain of soil in the abutment region, and can be difficult to compute without expert geotechnical advice.

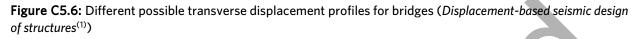
Note that systems identification analyses related to actual seismic response of two bridges with integral superstructure/abutment designs (Melloland, and Painter Ave) in Californian earthquakes have resulted in damping values of at least 25% (see *Displacement based seismic assessment of existing bridges in regions of moderate seismicity*⁽¹¹⁾).

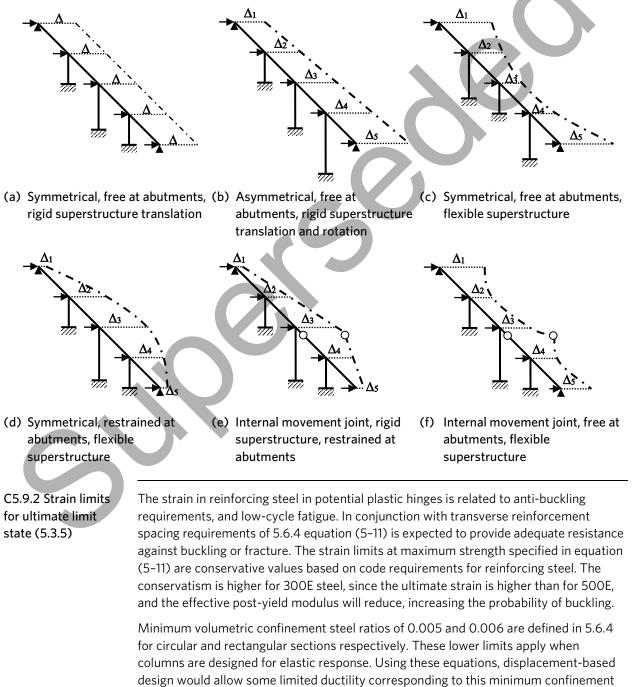
The equations for damping associated with rotation of spread footings on soil (equations (5-26) and (5-27)) are simplified from work by Paolucci et al (*Interazione dinamica non-lineare terreno-struttura nell'ambito della progettazione sismica agli spostamenti*⁽¹²⁾). A more detailed analysis of the variation of foundation rotational stiffness and damping as a function of foundation rotational angle and bearing capacity, based on the work of Paolucci et al⁽¹²⁾ is available in *A model code for the displacement-based seismic design of structures*⁽¹³⁾. The damping associated with bearing flexibility will depend on the type of bearing adopted and the bearing displacement. Manufacturers' data, or local test results should be used where available.

With designs where the piers are deliberately designed to rock on structural foundations (as distinct from the structural foundation rocking on the soil), the equivalent viscous damping should be taken as ξ_{eq} =0.05, unless special damping elements are provided between the pier and structural foundation. In the latter case, damping should be based on the type of special damping element provided.

C5.9 Design displacements

C5.9.1 Design displacement profile (5.4.4)


The design displacement profile requires knowledge of both the deflected shape and the magnitude of displacements. For longitudinal response, this is straightforward as displacements of all piers will be effectively identical, and thus the design displacement will be equal to the displacement capacity of the critical (normally the shortest) pier, given in 5.4.5, measured at the deck level.


For transverse response, since the displaced shape, and in particular the magnitude of the displacements will not be known with any accuracy at the start of the design process, it is suggested that a displacement modal shape, of arbitrary magnitude, be adopted. Note that the designer will generally have a good idea of the shape. For example, lateral displacement of a bridge constrained transversely by shear keys at abutments, with internal flexible piers can be approximated with adequate accuracy by a sine or parabolic shape. The displacement capacities of the various piers are then calculated, based on the strain limits, and the displacement shape is scaled until the first pier reaches its displacement capacity. This is expressed by equation (5-34).

The critical structural element will normally be a pier. However, it may be bearing or an energy dissipating device. The critical displacement will be calculated at a mass location, and will include all contributing elastic and inelastic displacement components.

C5.9.1 continued Chapter 10 of *Displacement-based seismic design of structures*⁽¹⁾ gives advice on displacement shapes for bridges. Examples of possible transverse displacement shapes are presented in figure C5.6 for bridges with both stiff and flexible superstructures. This is used as the basis of displacement-based design. An inelastic mode shape is assumed (see figure C5.6, for examples), and then scaled in accordance with equation

assumed (see figure C5.6, for examples), and then scaled in accordance with equation (5-34) so that the critical pier or abutment just reaches its limit-state displacement, defined in 5.4.5. These limit-state displacements are calculated from the permissible strains for the damage control limit state, defined in 5.3.5.

ratio, since the permitted steel strain from equation (5-11) would be 0.015.

C5.9.2 continued Equation (5-12) defines the permitted concrete compression strain as a function of transverse reinforcement ratio and confinement steel properties. This is a well-established and conservative expression (*Seismic design and retrofit of bridges*⁽⁹⁾ and *Displacement-based seismic design of structures*⁽¹⁾).

Note that in the design situation, a required ultimate compression strain, corresponding to a required displacement may be calculated, and the required confining steel ratio can be determined from inverting equation (5-12). Note further that the confinement steel ratio of 0.005 suggested for elastic response of circular columns (see previous paragraph) would typically result in a permissible concrete compression strain of about 0.01. This would imply considerable ductility, which could be taken advantage of in displacement-based design, or used as protection against seismic demand exceeding the design level.

(C5-7)

For circular columns, the volumetric ratio of confinement is given by:

$$\rho_s = \frac{4A_b}{D's}$$

Where:

 A_b = the area of the hoop or spiral confinement with pitch circle diameter of D'measured to the centre of the spiral, which has a spacing or pitch of *s* along the column axis

For rectangular column sections, the volumetric ratio of confinement is the sum of the area ratios of confinement in the two orthogonal section directions:

$$\rho_s = \rho_{ax} + \rho_{ay} = \frac{\sum A_{bx}}{d'_y s} + \frac{\sum A_{by}}{d'_x s}$$
(C5-8)

Where:

 $\sum A_{bx}$ and = the total areas of transverse reinforcement in the x and y directions of the section within a spacing of s along the column axis

 d'_x and d'_y = the confined core dimensions of the section in the x and y directions, measured to the centreline of the peripheral hoop

For hollow piers, a maximum compression strain of 0.005 is specified, since experimental research indicates that spalling of external cover can rapidly shift the neutral axis, increasing the compression strain on the inside surface, and causing spalling of the inside cover. This can result in a rapid compression failure (see *Displacement-based seismic design of structures*⁽¹⁾, chapter 10). The value of 0.005 should still provide adequate reserve of performance for the collapse limit state (see *Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face*⁽¹⁴⁾).

C5.9.3 Displacement capacity of piers (5.4.5)

The displacement capacity of a pier at the damage control limit state is the sum of the yield displacement (Δ_y) given by equation (5-10), and the plastic displacement (Δ_p) given by equation (5-36). Since for reinforced concrete piers the plastic displacement depends on the plastic curvature, which in turn depends on the ultimate (damage control) limit strains, variations in the limit strains by varying the volumetric ratio of lateral reinforcement can be used to increase or decrease the plastic displacement.

Note that for reinforced concrete sections the limit state reinforcement tension and concrete compressive strains will not occur simultaneously. Curvatures corresponding to each limit should be calculated, and the lower one adopted for design. Thus if c is the distance from the extreme compression fibre of the concrete to the neutral axis and d is the distance from the extreme compression fibre to the reinforcing bar furthest from the neutral axis, then the limit state curvatures corresponding to the concrete and reinforcement limit strains are, respectively,

C5.9.3 continued

ete:
$$\phi_{cd} = \frac{\varepsilon_{cd}}{c}$$
 (C5-9)

reinforcement:
$$\phi_{sd} = \frac{\varepsilon_{sd}}{(d-c)}$$
 (C5-10)

The lower of ϕ_{cd} and ϕ_{sd} is chosen as the design limit state curvature (ϕ_{ls}) for the section.

In equation (5-37) the plastic hinge length for reinforced concrete piers is expressed as the sum of the strain penetration length, and a section of column length proportional to the distance to the column point of contraflexure. The constant of proportionality depends on the shape of the post-elastic stress-strain curve for the flexural reinforcement, expressed by the ratio of ultimate to yield strength of the reinforcement. If this ratio is large, plasticity spreads to a greater extent up the column than if it is small.

Note that the plastic hinge length is a mathematical convenience based on constant plastic curvature, and provides the correct plastic rotation as that expected from the pier, where plastic curvature will decrease with distance from the critical section, and will be distributed over a greater length than L_p . For this reason, the plastic end region, over which special transverse confinement is needed, given in 5.6.4(e) is greater than L_p . With knowledge of the plastic rotation capacity of critical section, the structural plastic displacement can be readily found, and added to the yield displacement. If foundation and bearing flexibility are an issue, the corresponding displacements would need to be added. For a simple cantilever column with height L_c to the point of contraflexure (or centre of bearing), the design displacement will thus be:

$$\Delta_d = \Delta_y + \theta_p L_c + \Delta_{yf} + \Delta_b \tag{C5-11}$$

Where:

concr

 Δ_{yf} = lateral displacement at superstructure resulting from foundation deformation

 Δ_b = lateral displacement of pier-cap bearing

 Δ_y = structural component of yield displacement

$$= C_1 \phi_y (H + L_{sp})^2$$
 (see 5.3.4) (C5-12)

For structural steel piers, the strain penetration length should be taken as zero.

C5.10 Distribution of design lateral force (5.4.6)

The displacement-based design process directly yields the total base shear force (sum of shears at the base of all piers plus abutment base shears) for the frame under consideration. This base shear force is distributed to the mass locations chosen during the seismic mass distribution (5.3.8) in accordance with equation (5-39).

C5.11 Seismic design moments in potential plastic hinges (5.4.7)

This section requires that structural analysis under the design lateral forces should not be based on elastic stiffness, but on the effective secant stiffness to maximum design displacement. Thus ductile members will have their elastic stiffness reduced approximately by their displacement ductility factor. This enables the moment demands at the potential plastic hinges to be determined by a structural analysis that is compatible with the principles of displacement-based design summarized in figure C5.4.

C5.11 continued

Note that this procedure requires the effective stiffness of the piers to be known, which implies that both displacement, and flexural strength of the piers are known before the analysis proceeds. In practice the actual strengths will not be known at this stage, but if rational decisions are made about the relative pier strengths, the analysis is greatly simplified. The normal assumption will be to use uniform flexural strength in all piers, resulting from, eg constant section size and equal reinforcement ratios in all piers.

Note also that this analysis also provides a check on displacements. The displacement profile from the analysis should correspond to the initial design assumption. In the case of a bridge with two load paths (eg transverse seismic response with superstructure elastic flexure and inelastic column flexure, as illustrated in figure C5.5), the proportion of the total lateral inertia force carried by superstructure flexure and column bending will need to be assumed at the start of the design, in order to determine the equivalent viscous damping. If the displacements from the analysis differ from the assumed displacement profile, adjustments will need to be made, by a simple iterative process to this proportion. The procedure is outlined in detail in *Displacement-based seismic design of structures*⁽¹⁾.

Note further that analyses reported in *Displacement-based seismic design of structures*⁽¹⁾ show that if the structure represented by figure C5.5 has columns with identical stiffness in both longitudinal and transverse directions (eg circular cantilever columns with bearings-supported superstructure), then longitudinal design, which is much simpler, will always govern.

C5.12 Vertical seismic response (5.3.3)

Since no ductility is permitted for vertical response of superstructures, conventional analysis using modal superposition, or time-history analysis may be used to determine design seismic moments induced in superstructures or cap-beams. In simply supported spans, equivalent lateral force procedures will be adequate. Although ductility is not permitted, some moment redistribution (up to 30%) may be adopted to reduce peak superstructure moments resulting from the combination of seismic and gravity actions.

The reduced damping associated with vertical response of structural steel or prestressed superstructures implies increased seismic response. The vertical design spectrum defined in 5.2.4(c) should thus be increased by use of equation (5-17) where ξ is taken as 0.02 or 0.03 for structural steel or prestressed concrete respectively. The value for α in equation (5-17) should be taken as 0.5 in all cases.

C5.13 Required moment capacity

C5.13.1 At potential plastic hinge locations (5.6.2(a), 5.6.2(b)(i))

This is a significant deviation from current seismic design practice in New Zealand. For force-based design for (say) gravity loads, the use of flexural strength reduction factors is essential to provide protection for the unlikely case that material strengths are less than specified, for errors in dimensions and placement of reinforcing steel, and for errors in analytical procedures. Uncertainty in load values is accounted for mainly by load factors associated with, eg dead and live load values. The consequence of strength being less than applied load is certain failure.

C5.13.1 continued

In seismic response these arguments do not apply. The flexural strength of the bridge is expected to be reached under design excitation when design permits ductility. Hence load factors are currently not applied to seismic forces since the requirement that moment capacity must exceed moment demand is meaningless. The same argument applies to flexural strength reduction factors. There is no point in using a conservative estimate of moment capacity, since the actual capacity will be achieved in design-level response. All that will be achieved by use of flexural strength reduction factors is a (possible, though not certain) reduction in ductility demand below the adopted design level. Protection against failure is increased only marginally, if at all.

As a consequence Priestley et al (in Seismic design and retrofit of bridges⁽⁹⁾ and *Displacement-based seismic design of structures*⁽¹⁾) have argued that flexural strength reduction factors should not be used for estimating flexural strength of potential plastic hinge regions. This approach has also been adopted by the Applied Technology Council (see *Improved seismic design criteria for California bridges: Provisional recommendations: ATC32*⁽¹⁵⁾) and has been standard practice for the California Department of Transportation (Caltrans) for almost 20 years.

Using conservative estimates of expected material strengths, rather than lower 5% characteristic strengths, and eliminating flexural strength reduction factors for design, results in obvious design efficiencies. It has a secondary economic advantage when capacity design (5.6.1) is considered. Note that *Seismic design and retrofit of bridges*⁽⁹⁾, *Displacement-based seismic design of structures*⁽¹⁾ and ATC32⁽¹⁵⁾, also permit the consideration of strain-hardening of flexural reinforcement and enhanced compression strength of concrete from confinement by transverse reinforcement to be considered when estimating flexural strength in potential plastic hinges. This is particularly relevant for displacement based design, since the required strength relates to the design displacement, rather than the "yield" displacement as in force-based design.

Values for expected strengths will depend on local data for steel and concrete strengths. In the absence of local data, the values listed in table 5.7 may be used.

Generally, moments induced in potential plastic hinge regions by gravity, creep and shrinkage, and temperature are small compared with seismic moments. Since nonseismic moments are typically based on elastic analyses of the bridge frame, often without consideration of column cracking, it is inappropriate to directly add them to seismic moments, which are adjusted for pier ductility, either by use of a ductility factor (force-based design) or by analysis using reduced member stiffness (displacement based design). A more appropriate method for determining the level of gravity moment to be added to the seismic moment is to reduce the gravity moments by the pier ductility factor, or to carry out the non-seismic-load analysis using the same reduced pier stiffness used for seismic moment determination. These more rational approaches result in greatly reduced non-seismic moments in potential plastic hinges.

A detailed discussion of this issue is provided in *Displacement-based seismic design of structures*⁽¹⁾. Since the level of gravity moment to be added to seismic moment becomes very small, with the approach outlined above, it is recommended that the design moment in potential plastic hinges be the greater of (a) the factored non-seismic-moments without consideration of seismic effects, and (b) the pure seismic moment, determined from the DDBD procedure, without consideration of non-seismic moments. This may imply some limited moment redistribution between potential plastic hinges, but this level will always be acceptable.

Note that if factored non-seismic moments govern, then conventional strength reduction factors should apply.

C5.13.2 At other locations (5.6.2(a), 5.6.2(b)(ii))

In regions where plastic hinges must not develop, the dependable moment capacity, determined using conventional estimates of material strengths, and strength reduction factors as used for gravity-load design, should exceed the moment demand corresponding to formation of over-strength capacity in plastic hinge locations. This is illustrated in more detail in C5.16. In these cases, gravity and seismic moments are directly added, though again the gravity moments should take into account the reduced stiffness of potential plastic hinges.

C5.14 P-delta effects (5.3.7)

The provisions here are taken from *Displacement-based seismic design of structures*⁽¹⁾ and result from extensive non-linear time-history analyses of reinforced concrete and steel structures.

C5.15 Design abutment forces (5.4.8)

The DDBD analysis procedure is a single mode approach, using design lateral forces that recognize the reductions of member forces resulting from pier ductility. Although this is suitable for determining the design moments in plastic hinges, it is non-conservative when abutment reactions are considered, since the analysis approach implies that these will also be reduced as a consequence of pier ductility. In fact, higher mode effects, which have only minor significance to plastic hinge moments, can significantly increase the abutment reactions above the value predicted from the lateral analysis using ductility-reduced lateral forces. This is the reason that failures of abutments and shear keys are the most common form of damage to bridges in earthquakes.

Elastic modal superposition analysis can significantly underestimate abutment forces when ductile response is expected and elastic forces are reduced by a ductility factor. It has been found (see *Displacement-based design of continuous concrete bridges under transverse seismic excitation*⁽¹⁶⁾ and *Displacement-based seismic design of structures*⁽¹⁾) that a modified form of modal superposition analysis, where the stiffness of ductile piers is reduced by the expected ductility factor, while members responding elastically (eg superstructure) retain their elastic stiffness provides results that are in close agreement with results from non-linear time history analyses. In this "effective stiffness" modal analysis, the damping used should be the global damping used in the structural displacement-based design.

This procedure can also be used for design verification of bridge seismic response.

The magnitude of the abutment reactions can be accurately estimated by either of the two methods (effective modal superposition, or non-linear time-history analysis) presented in C5.15. When elastic response to the design earthquake is assured, abutment reactions may be determined by conventional elastic modal analysis.

C5.16 Design displacements (5.6.1 - 5.6.3)

It is essential that inelastic deformations only occur in intended plastic hinges, and that non-ductile inelastic modes be avoided. To ensure this is the case, a hierarchy of failure is required where, eg the dependable shear strength of a bridge pier exceeds the shear associated with maximum feasible flexural strength, noting that with ductile design, it is the actual, not design level of flexural strength that will be developed. If the flexural strength is high because material strengths exceed the expected values (the normal situation) or as a result of reinforcement strain-hardening, then the corresponding elevated shear force, rather than the design level shear force will be developed.

Similar arguments apply to the required flexural strength of sections that must not form plastic hinges (eg cap beam sections). The best, and least conservative way to determine the actual moment capacity of potential plastic hinges is to carry out a moment-curvature analysis, using actual material strengths, with strain-hardening of reinforcement and confinement of concrete modelled, and checking the resultant moment at the design curvature for the pier. This will almost always result in a moment amplification factor significantly lower than the default option of 1.5 in the case of steel grade 500 reinforcement or 1.7 in the case of grade 300 reinforcement. Actual upperbound material strengths should be based on local information. Commonly used values, included in table 5.7 are:

reinforcement:	$f_y^{\circ} = 1.25 f_y$		(C5-13)
concrete:	$f'_c \circ = 1.7 f'_c$	V	(C5-14)

Where:

 f_y = reinforcement yield strength

 f'_c = characteristic concrete compression strength

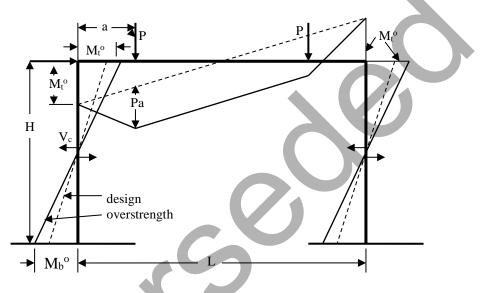
Equilibrium considerations are illustrated in figure C5.7 which represents a simple twocolumn bent, subjected to lateral seismic force and applied vertical loads from superstructure beams. The demand seismic moments for the left column are shown by the dashed line, and will have been calculated without considering any moment contribution from gravity loads *P*, in accordance with 5.6.2. (Note, however, that the gravity loads *P* must be considered when determining the moment capacity of the piers). The maximum feasible moments in the column (overstrength moments) are shown by the solid line, and have a value of M_b° at the bottom and M_t° at the top. Note that the sketch shows column-top moments at the beam centre line, which requires extrapolation from the critical moment at the soffit of the cap beam.

The column overstrength moments are found from moment-curvature analyses using actual material strengths, or by multiplying the design moments by 1.5 or 1.7 depending on the grade of reinforcement, as above. The design shear force for the column is thus:

$$V_{c} = \frac{(M_{b}^{\circ} + M_{t}^{\circ})}{H}$$
(C5-15)

At the joint between the column and the cap beam, the moments must be in equilibrium. For convenience of illustration, it is assumed that the moment at the top of the right column is also M_t° (this will not generally be the case, because of different seismic axial force levels between left and right columns). Hence the maximum design positive cap beam moment, which occurs under the left point load *P*, is:

$$M_{cb} = M_t^{\circ} \left(1 - \frac{2a}{L} \right) + Pa \tag{C5-16}$$


C5.16 continued

The maximum cap beam shear, which occurs between the right column and the right point load *P* is:

$$V_{cb} = \frac{2M_t^{\circ}}{L} + P \tag{C5-17}$$

Note that in the above example that vertical seismic response has not been considered. When vertical acceleration is included this would cause an increase in the free cap beam moments (Pa) that would be added to equation (C5-16).

Figure C5.7: Equilibrium considerations for capacity design of a bridge bent (*Displacement-based seismic design of structures*⁽¹⁾)

Shear strength of compression members: It is recommended that shear strength of concrete compression members be determined by the modified UCSD model. This has been shown in independent assessments to provide the best estimate deterministic models of shear strength. Full details are provided in *Displacement-based seismic design of structures*⁽¹⁾, and only a summary of the procedure is provided here. An alternative approach is to use modified compression field theory as detailed in the *LRFD bridge design specifications*⁽¹⁷⁾.

In the modified UCSD model, the dependable shear strength of concrete sections is found from the additive equation:

$$V_{des} = \phi_s V_{cap} = \phi_s \left(V_c + V_s + V_p \right) \tag{C5-18}$$

Where:

 V_c

 V_{s}

= shear strength component provided by concrete mechanism

= shear strength component provided by transverse reinforcement

- V_p = shear strength component provided by axial force mechanisms
- a. Concrete shear resisting mechanism

This reduces with increasing ductility as a result of a decrease in effectiveness in aggregate interlock as crack width increases. The shear strength provided by concrete mechanisms is given by equation (C5-19):

$$V_c = k \sqrt{f'_{ce}} A_e = \alpha \beta \gamma \sqrt{f'_{ce}} (0.8A_g)$$
(C5-19)

C5.16 continued

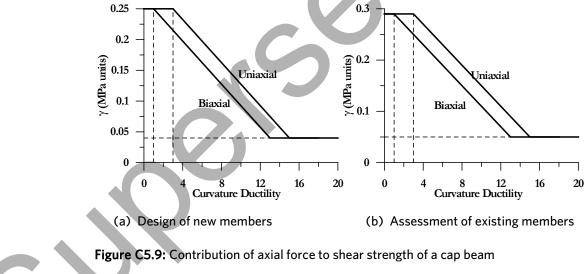
Where:

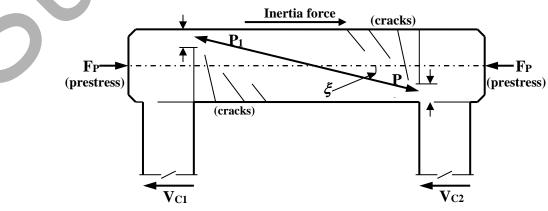
$$1.0 \le \alpha = 3 - \frac{M}{VD} \le 1.5$$
 (C5-20)

$$\beta = 0.5 + 20\rho_l \le 1.0 \tag{C5-21}$$

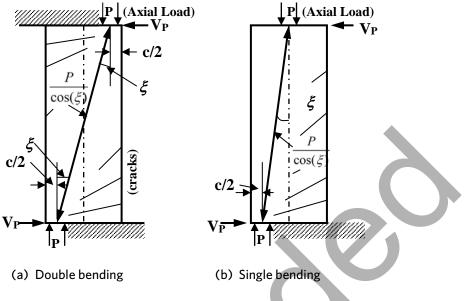
In equation (C5-20) *M* and *V* are the moment and shear force at the critical section of the member, of section depth *D*. In equation (C5-21) ρ_l is the longitudinal reinforcement ratio of the section and A_g is the gross section area. The coefficient γ in equation (C5-19) depends on the curvature ductility demand, and is given in figure C5.8.

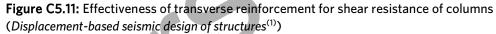
b. Axial load component

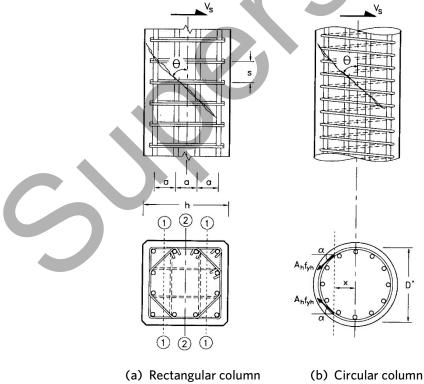

The axial load in a compression member enhances the shear strength as a consequence of the inclination of the axial force relative to the member axis, as shown in figure C5.9 for a beam, and figure C5.10 for a column. To provide a conservative lower bound to the axial load component the lateral component of the inclined compression strut is reduced by 15%. Hence:


 $V_P = 0.85P \tan \zeta$

(C5-22)


where ζ is defined in figure C5.9 and figure C5.10 for beams and columns respectively.




C5.16 continued **Figure C5.10:** Contribution of axial force to column shear strength (*Displacement-based* seismic design of structures⁽¹⁾)

c. Transverse reinforcement truss shear-resisting mechanism

The strength of transverse reinforcement truss mechanisms is illustrated in figure C5.11 for rectangular and circular columns. The rectangular column illustration is also relevant for beams.

For design, the angle of the critical crack to the column axis is taken as θ =35°. The yield capacity of all bars of transverse reinforcement crossing the critical crack is summed, providing the following equations for shear strength:

C5.16 continued

Rectangular column
$$V_s = \frac{A_v f_{yh} (D - c - c_o) \cot(35^\circ)}{s}$$
 (C5-23)

Where:

$$A_v$$
 = the effective area of hoops in a single layer, as discussed above

For a circular column with circular hoops or spirals:

Circular column
$$V_s = \frac{\pi}{2} \frac{A_h f_{yh} (D - c - c_o) \cot(35^\circ)}{s}$$
(C5-24)

In equations (C5-23) and (C5-24), c is the depth of the flexural compression zone from the extreme compression fibre to the neutral axis, c_o is the cover measured to the centre of the peripheral hoop, spiral or tie, and s is the spacing of tie sets, spirals or hoops along the column axis.

For assessment of existing bridge columns, somewhat less conservative assumptions apply. These are defined in *Displacement-based seismic design of structures*⁽¹⁾.

C5.17 Span – support overlap at non-integral abutments (5.7.2(d))

The minimum support overlap at non-integral abutments at which linkages are not provided, expressed by equation (5-51) is made up of a number of components as follows:

- The first component represents the maximum feasible response displacement of the frame. A simple expression for this is the corner period elastic displacement ($\Delta(3.0)$) found from the displacement spectrum (see 5.2.4). Note that this will always be conservative, and will exceed the peak ground displacement.
- The second component, a function of length, reflects thermal and creep and shrinkage effects.
- The third component, related to average pier height is generally reflects the effect of rotation of the pier foundations due to travelling surface waves.
- The fourth component is related to bridge width. If the seating is wide, transverse displacement will inevitable involve rotation about the vertical axis, inducing a longitudinal component at the ends of the seating. The value of 0.005*W* is considered to be conservative, particularly since peak transverse and longitudinal response are not expected to occur simultaneously.
- There is also the question of skew, which is allowed for in the support overlap requirements of most seismic bridge codes. It does not seem that this should be a modifier to the bridge length or bridge height components, and in fact is only significant for skew angles above about 40°. It could be applied to the $\Delta(3.0)$ component. Skew response is thought to be limited to a value dictated by the gap between the bridge end diaphragms and the abutments. Unseating of skew bridges has generally occurred at the acute corners of bridges with very small seating lengths and short spans. The science behind such equations is questionable. It is considered better to have a conservative seating length that will cope with all reasonable skew angles and that equation (5-51) is sufficiently conservative in this respect.
- Finally, a minimum seating length of 400 mm, as previously applied in situations of no linkage, is retained.

A more complete discussion of the issues is provided in *Seismic design and retrofit of bridges*⁽⁹⁾, pp418-421.

C5.18 References

- (1) Priestley MJN, Calvi GM and Kowalsky MJ (2007) *Displacement-based seismic design of structures*. IUSS Press, Pavia, Italy.
- (2) Standards New Zealand NZS 3101.1&2:2006 Concrete structures standard. (Incorporating Amendment No. 3: 2017)
- (3) Khan E, Kowalsky MJ and Nau JM (2012) Comparison of the seismic performance of equivalent straight and curved bridges due to transverse seismic excitation. Proceedings, 15WCEE, Lisboa, Portugal.
- (4) Standards New Zealand NZS 1170.5:2004 *Structural design actions*. Part 5 Earthquake actions - New Zealand. (Incorporating Amendment No. 1: 2016)
- (5) American Association of State Highway and Transportation Officials (2011) Guide specifications for LRFD seismic bridge design. 2nd edition. Washington DC, USA.
- (6) California Department of Transportation (Caltrans) (2013) *Seismic design criteria*. Version 1.7, Sacramento, CA, USA.
- (7) British Standards Institution BS-EN 1998-2:2005 Eurocode 8. Design of structures for earthquake resistance. Part 2 Bridges.
- (8) Bommer JJ and Mendis R (2005) *Scaling of spectral displacement ordinates* with damping ratios. Earthquake engineering and structural dynamics vol.34, no. 2, pp 145-165.
- (9) Priestley MJN, Sieble F and Calvi GM (1996) Seismic design and retrofit of bridges. John Wiley and Sons, New York, NY, USA.
- (10) Suarez V and Kowalsky MJ (2007) Direct displacement-based seismic design of drilled shaft bents with soil-structure interaction. Journal of earthquake engineering, vol.11, no. 6, pp 1010-1030
- (11) Bimschas M (2010) Displacement based seismic assessment of existing bridges in regions of moderate seismicity. IBK report no. 326. vdf Hochschulverlag, ETH Zürich, Switzerland.
- (12) Paolucci R, Prisco d.C, Figini R, Petrini L and Vecchiotti M (2009) Interazione dinamica non-lineare terreno-struttura nell'ambito della progettazione sismica agli spostamenti. Progettazione Sismica, vol. 1, no. 2, EUCENTRE, Pavia, Italy.
- (13) Sullivan TJ, Priestley MJN and Calvi GM (2012) A model code for the displacement-based seismic design of structures, DBD12. IUSS Press, Pavia, Italy.
- (14) Zahn F, Park R and Priestley MJN (1990) Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face. ACI Structural Journal vol.87, no.2, pp 1757-1772.
- (15) Applied Technology Council (ATC) (1996) *Improved seismic design criteria for California bridges: Provisional recommendations: ATC32.* Redwood City, CA, USA.
- (16) Alvarez JC (2004) *Displacement-based design of continuous concrete bridges under transverse seismic excitation*. MSc thesis, Rose School. IUSS Pavia, Italy.
- (17) Washington DC, USA. American Association of State Highway and Transportation Officials (AASHTO) (2014) *LRFD Bridge design specifications, customary U.S. units, 7th edition.* Washington DC, USA.

Appendix C5A Displacement based design worked example 1 – Maitai River Bridge

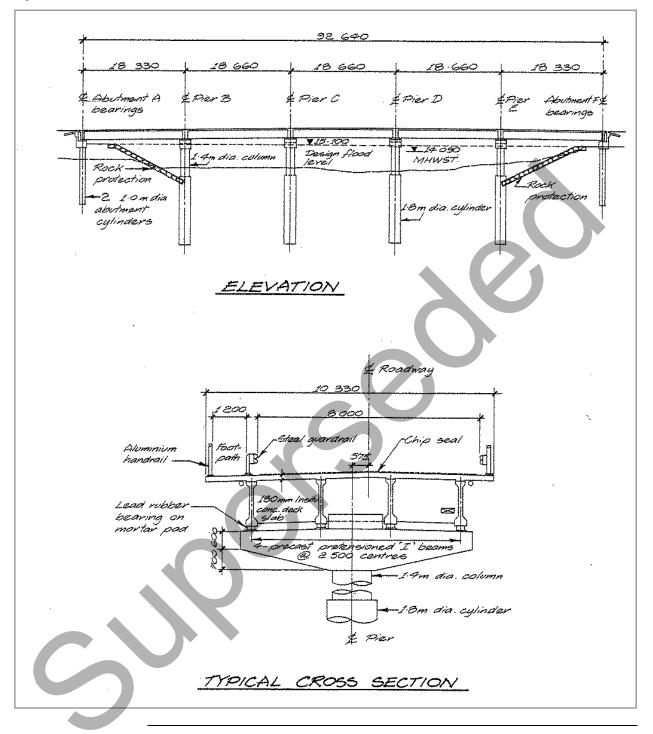
Section		Page
C5A.1	Bridge description	5-2
C5A.2	Example cases analysed	5-3
C5A.3	Two-degree of freedom model	5-3
C5A.4	Response to earthquake ground motion	5-3
C5A.5	Abutment stiffness for longitudinal response	5-3
C5A.6	Analysis for case 1: rigid foundations and bearings	5-3
C5A.7	Analysis for case 2: flexible foundation and elastomeric bearings	5-4
C5A.8	Analysis for case 3: lead-rubber bearings (review type analysis)	5-4
C5A.9	Spreadsheet analysis	5-4
C5A.10	References	5-5
C5A.11	Spreadsheets	5-5

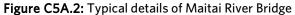
S

In this section

C5A.1 Bridge description

The Maitai River Bridge was constructed in 1988 and is located at the mouth of the Maitai River, about 0.6km north of the central business area of Nelson City. The bridge has five precast prestressed concrete I beam spans with a cast in-situ reinforced concrete deck. The superstructure is supported on four piers with single 1.4m diameter reinforced concrete columns and hammerhead type column caps. Each pier has a 1.8m diameter cylinder foundation that consists of a reinforced concrete core cast in a 12mm thick steel liner. The cylinders were placed by excavation and top driving of the steel shell. Typical details of the structure are shown in figure C5A.1 to figure C5A.3.




Figure C5A.1: Maitai River Bridge (looking south)

The prestressed I beams are seated on lead rubber bearings on both the piers and abutments. The bearings provide energy dissipation and act as base isolators to limit the lateral loads on the substructure during earthquake loading. The bearings are shown on the drawings as having dimensions of 280x230x131mm on the piers and 380x300x175mm on the abutments. They are prevented from sliding by locating dowels in top and bottom plates with the top plate cast into the bearings are shown on the drawings except for the rubber hardness (or rubber shear modulus). A hardness of 53 IRHD was assumed for the worked examples.

Shear keys on the hammerhead column caps are located each side of twin transverse beams formed by diaphragms at the end of the spans. For longitudinal earthquake response there is a clearance of 75mm between the diaphragm beams and the shear keys. In the transverse direction there is also a clear gap of 75mm between the keys and the bottom flange of the beams. There are deck joints on the centre-line of the piers and no linkage bolts between the diaphragms either side of the joints so the spans can displace independently and hammering contact between the diaphragm beams may occur during strong longitudinal response.

C5A.1 continued

The 1.4m diameter columns are reinforced with 34 D32 longitudinal bars with a specified minimum yield stress of 275MPa. Confinement over a 1.5m length at the base of the column is provided by D20 hoops at 125mm spacing. All four columns have a height of 7.62m measured from the top of the cylinders to the top of the hammer-head pier caps. Although the bridge is base isolated, the pier columns were designed to have a relatively high resistance to lateral load and details at the base of the columns provide for moderate amounts of ductility in the unlikely event of a plastic hinge developing.

The main longitudinal reinforcement in the 1.8 m diameter cylinder foundations consists of 36 D32 bars (275MPa specified minimum yield).

C5A.1 continued

Figure C5A.3: Typical details of bridge piers

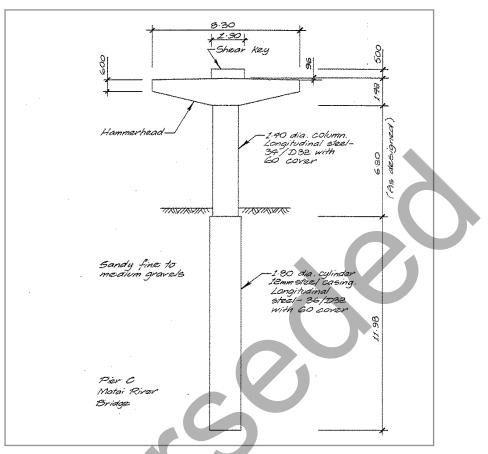
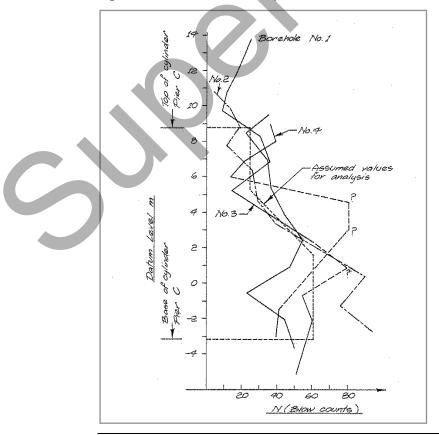



Figure C5A.4: SPT results for cylinder foundation

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

C5A.1 continued

Four investigational bore holes were drilled to provide foundation design data. The upper sections of the foundation cylinders are embedded in unweathered to moderately weathered fine gravels in a matrix of yellowish brown silty fine sand with a trace of clay. In the upper layers the soil is medium dense with the coarser gravel layers towards the bottom of the cylinders becoming dense to very dense. The investigational work showed that the foundation soil was relatively uniform over the extent of the bridge site. A summary of the standard penetration test (SPT) results is shown in figure C5A.4.

The bridge site is within the tidal influence of Nelson Harbour and the tops of the foundation cylinders are between 3.2 to 3.7m below mean sea level. The maximum tidal range is about 4.0m and thus the cylinder tops are below ground water level during the complete tidal range.

Static lateral load tests were carried out during construction of the bridge to determine the stiffness of three of the completed piers and their cylinder foundations. The maximum load applied at the tops of the piers was 325kN which is about 52% of the load estimated to develop the ultimate flexural strengths of the columns based on estimates of probable steel yield and concrete compressive strengths.

C5A.2 Example cases analysed

Three different configurations of the bridge were considered in the example calculations and for each case both transverse and longitudinal directions of loading were analysed. (Note that the example calculations were undertaken using an annual probability of exceedance of 1/2500 for this bridge having been written prior to the change of annual probabilities of exceedance introduced in amendment 3 to the *Bridge manual*.)

For case 1 the foundation was assumed to be rigid and the superstructure supported on rigid bearings on the piers and sliding bearings (no restraint) at the abutments. This is not a good representation of the as-built bridge. However, the rigid foundation assumption simplifies the analysis and provides a convenient introduction to the displacement based design (DBD) method. For case 2 the bridge foundation piles were assumed to be flexible and the superstructure supported on elastomeric bearings on the piers and abutments. Case 3 represented the as-constructed bridge with the superstructure mounted on lead-rubber bearings on the piers and abutments.

It is uncertain whether the bridge site should be subsoil category C or D, although it is probably a category C site. Both C and D categories were considered for the case 1 and 2 analyses. Only category C was assumed for case 3 as lead-rubber bearings should not be used on a soft or deep soil site.

For all cases the basic weights and geometry of the as-constructed bridge were used in the analyses. For cases 1 and 2 the column reinforcement details and the column diameter for soil category C were modified so that the flexural strength and ductility of the piers approximately matched the earthquake load demands. Steel reinforcement yield strengths were taken as either 300 or 500MPa instead of the specified value of 275MPa. The column reinforcement details, column diameter and lead-rubber bearings for case 3 were based on the as-constructed bridge but it was found that the usually accepted requirement that the substructure remain elastic when using a base isolation system to support the superstructure was not satisfied. The flexural strength of the piers was increased for this case by using a reinforcement yield strength of 500MPa.

C5A.2 continued For case 2 (elastomeric bearings without lead cores) it was found that the plan dimensions of the pier bearings shown on the drawings for the lead rubber bearings were insufficient to limit the shear strain in the bearings to approximately 1.0. For the example analyses the dimensions were increased from 280x230mm to 350x280mm for soil category C and to 380x380mm for soil category D. For both soil categories the abutment bearing plan dimensions were taken as 380x300mm, which is the size of the lead rubber bearings shown on the drawings.

For each case the modified design was checked against the DBD provisions of section 5 of the *Bridge manual*. For case 1 and in the transverse loading direction of case 2, two types of analysis procedures were used. The first type was a design approach and the second a review type procedure. The design approach is more direct and does not involve any iteration when the shape of the first mode of vibration is known. The review approach is more appropriate for checking a given design but is rather more complicated with iteration steps required. Only the review analysis procedure was used for case 2 in the longitudinal load direction and in both loading directions for case 3. The analysis procedures are described below for each analysis case.

A summary of the analysis case, load direction, soil category and analysis procedure used in the 16 separate analyses (nine transverse and seven longitudinal load directions) undertaken for this example is given in table C5A.1.

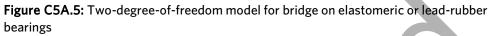
Analysis case	Case description	Load direction	Subsoil category	Method	Column diameter (m)
		Transverse	С	Review	1.2
		Inalisverse	L	Design	1.2
		Longitudinal	С	Review	1.2
1	Rigid foundation and bearings.	Longituumai	C	Design	1.2
, I	Unrestrained at abutments	Transverse	D	Review	1.4
		Hallsverse	U	Design	1.4
		Longitudinal	D	Review	1.4
		Longitudinai	D	Design	1.4
			С	Review	1.2
	Flexible foundation and elastomeric	Transverse	C	Design	1.2
2	bearings		D	Review	1.4
2	Abutments restrained by		D	Design	1.4
	elastomeric bearings and piles	Longitudinal	С	Review	1.2
		Longitudinai	D	Keview	1.4
3	Flexible foundation and lead-rubber bearings.	Transverse	С	Review	1.4
J	Abutments restrained by lead- rubber bearings and piles	Longitudinal	C	1/27127	1.4

Table C5A.1: Bridge configuration cases and analysis methods for example calculations

C5A.2 continued A sur

A summary of the main results is given in table C5A.2.

For case 3 the ratio of the flexural capacities of the piers to the demands from the response moments were 1.6 and 1.8 for the transverse and longitudinal directions respectively.


Overstrength of the lead cores or rubber stiffness variations in the bearings is unlikely to result in the piers reaching their flexural capacities under a DCLS event. The piers have sufficient ductility to withstand displacement demands 1.5 times greater than expected in the DCLS earthquake.

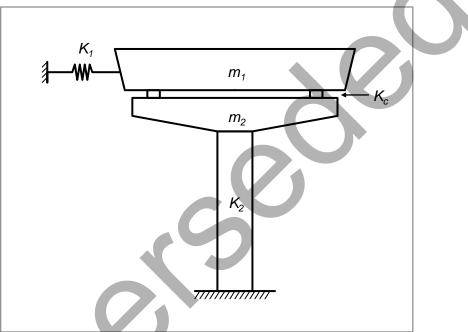
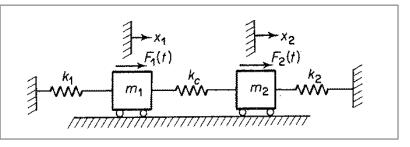

Analysis case	Load	Load irection Subsoil Method M		diameter	Column r (kN	moments Im)	Column ductility				
Cusc	uncetion			Capacity	Demand	Capacity	Demand				
	Transverse	С	Review	1.2	20	300	16/100	3700	3700	4.2	3.3
	Transverse	C	Design	1.2	20	500	10/100	5100	3500	-τ.Ζ	3.5
	Longitudinal	С	Review	1.2	20	300	16/100	3700	3700	4.3	3.7.
1	Longitudinai	C	Design	1.2	20	500		5/00	3800	ч.5	3.5
'	Transverse	D	Review	1.4	28	500	20/100	7750	7750	3.2	2.7
	Transverse	D	Design	1.4	20	500	20/100	///50	7200	J.Z	3.0
	Longitudinal	D	Review	1.4	28	500	20/100	7750	7750	3.5	2.9
	Longitudina	D	Design	1.4	20	500	20/100	1150	7600	5.5	3.0
		С	Review	1.2	20	300	16/120	3700	3800	3.7	2.8
	Transverse	C	Design	1.2	20	500	10/120	5700	3200	5.7	3.5
2	Transverse	D	Review	1.4	28	500	20/100	7750	7900	3.7	2.3
2			Design	1.4	20	500	20/100	1150	6200	5.7	3.0
	Longitudinal	C	Review	1.2	20	300	16/120	3700	3700	3.8	2.8
	Longitudindi	D	Neview	1.4	28	500	20/100	7750	7800	4.0	2.3
3	Transverse	ſ	Review	1.4	34	500	20/125	8200	5200	-	-
	Longitudinal		NEVIEW	1.7	JT	500	20/123	0200	4600	-	-

Table C5A.2: Summary of Main Results

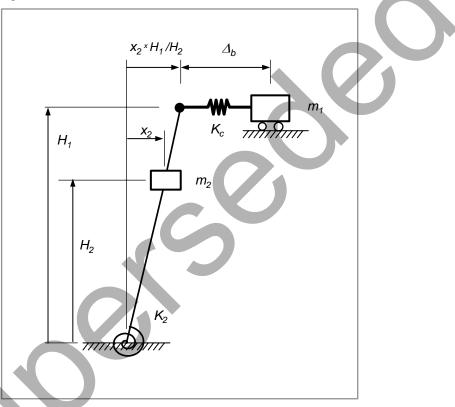
C5A.3 Two-degree of freedom dynamic model

The two-degree-of-freedom dynamic model shown in figure C5A.5 was used in the review analysis procedure for case 2 (elastomeric bearings on piers and abutments) and case 3 (lead-rubber bearings on piers and abutments). The model takes into account the pier cap mass in a more correct manner than simply lumping it with the superstructure mass or using an equivalent single mass model. This is important when a significant part of the total mass acting on the piers is in pier caps located beneath flexible superstructure bearings.



The spring K_1 shown in figure C5A.5 was used to represent the stiffness of the abutments in the longitudinal direction analyses but was not used in the transverse direction analyses.

The model in figure C5A.5 is analogous to the simple spring-mass linear model shown in figure C5A.6, which has been presented as an illustrative example for two-degree-of freedom systems in *Vibration theory and applications*⁽¹⁾ and elsewhere.


Figure C5A.6: Two-degree-of-freedom example used in texts on structural dynamics (from *Vibration theory and applications*⁽¹⁾)



C5A.3 continued

One limitation of using the simple linear model shown in figure C5A.6 for dynamic analysis of the two-mass bridge model shown in figure C5A.5 is that rotation in the plastic hinge at the base of a pier may result in a significant additional displacement of the superstructure mass that is not represented by the sum of the horizontal translation components of displacement at the top of the pier and from shear in the bearings. The effect of pier base rotation on the dynamic response is significant when there is a significant height difference between the centre of gravities of the superstructure and pier masses.

To incorporate the effects of pier base rotation into the analysis for transverse response of the two-mass bridge model the modified model shown in figure C5A.7 was used.

It is convenient to define parameters, x_1 and aa to allow the analysis of the simplified model (figure C5A.7) to follow the solution given by Thompson for the "horizontal" twodegree-of freedom model shown in figure C5A.6. These parameters are defined as:

$$x_1 = x_2 + \Delta_b$$

$$aa = \left(\frac{H_1}{H_2} - 1\right)$$

Where:

- Δ_b = the displacement in the spring representing the bridge bearings of the model shown in figure C5A.5
- H_1 = the height of the superstructure mass m_1
- H_2 = the height of the pier mass m_2

C5A.3 continued The equations of motion for free vibration of the two masses of the model are then given by:

$$m_{1}(\ddot{x}_{1} + aa\ddot{x}_{2}) + K_{c}(x_{1} - x_{2}) = 0$$

$$m_{2}\ddot{x}_{2} + K_{2}x_{2} + K_{c}(x_{2} - x_{1}) = 0$$
Where:
(C5A-1)

 K_c = the effective horizontal stiffness of the bearings (see figure C5A.5)

 K_2 = the effective horizontal stiffness of the pier

Following Vibration theory and applications⁽¹⁾, equations (C5A-1) are solved by setting:

$$x_1 = A_1 \sin \omega t$$

$$x_2 = A_2 \sin \omega t$$

Cramer's rule is then used to evaluate the determinate of the resulting equations to give the following frequency equation:

$$\omega^4 - \left[\frac{K_1 + K_c}{m_1} + \frac{K_2 + K_c(1 + aa)}{m_2}\right]\omega^2 + \frac{K_1K_2 + (K_1 + K_2)K_c}{m_1m_2} = 0$$
(C5A-2)

Where:

 ω = the angular natural frequency for the two modes of vibration

Equation (C5A-2) can be written as:

$$\omega^4 - B\omega^2 + C = 0 \tag{C5A-3}$$

Equation (C5A-3) is a quadratic equation in ω^2 which has the solution:

$$\omega^2 = \frac{-B \pm \sqrt{B^2 - 4C}}{2}$$
(C5A-4)

Using equation (C5A-4) the first mode period is derived as:

$$T = \frac{2\pi}{\omega}$$
(C5A-5)

The mode shapes are given by:

$$\frac{A_1}{A_2} = \frac{K_2 + K_c - m_2 \omega^2}{K_c}$$
(C5A-6)

The springs and masses in the model represent the following bridge parameters:

- = the sum of the abutment stiffnesses for longitudinal response. For transverse response of piers supporting simply supported spans $K_1 = 0$
- = sum of the stiffness of the bearings on the pier
- K_2 = stiffness of the pier for transverse horizontal displacement at the centre of gravity of the pier mass or the sum of the pier stiffnesses for longitudinal response
- m_1 = mass of the superstructure supported by the pier for transverse response or the total mass of the superstructure for longitudinal response
- m_2 = mass of the pier cap plus $\frac{1}{3}$ of the mass of the column for transverse response and the sum of these items for longitudinal response

The total displacement of the superstructure mass is given by:

 $x_s = \Delta_b + x_2(1 + aa)$

(C5A-7)

Kc

(C5A-11)

(C5A-13)

(C5A-14)

(C5A-15)

C5A.3 continued

The mode shape A is given by:

$$A = \frac{x_1}{x_2} = \frac{x_2 + \Delta_b}{x_2}$$
(C5A-8)

From equations (C5A-7) and (C5A-8):

$$x_2 = \frac{x_s}{(A+aa)} \tag{C5A-9}$$

$$\Delta_b = x_s [1 - \frac{(1 + aa)}{(A + aa)}]$$
(C5A-10)

The base moment in the pier of the model is given by:

$$M_b = (m_1 x_s H_1 + m_2 x_2 H_2) \omega^2$$

The displacement in the bearings is given by:

$$\Delta_b = \frac{m_1 x_1 \omega^2}{K_c} \tag{C5A-12}$$

and for lead-rubber bearings,

$$K_c = \frac{Q_d}{\Delta_b} + K_d$$

Where Q_d and K_d are the characteristic strength and post yield stiffness of the lead rubber bearings (Q_d =0 for elastomeric bearings).

The shear in the pier is given by:

$$V_b = (m_1 x_s + m_2 x_2)\omega^2$$

For longitudinal bridge response, equations (C5A-11) and (C5A-14) need to be modified if restraint is provided by the abutments. For this case the shear forces in the piers are calculated by subtracting the shear forces developed by the abutment stiffness from the inertia forces acting on the superstructure.

C5A.4 Response to earthquake ground motion

From vibration theory for the response of multi-degree-of-freedom structures to a ground acceleration of $\ddot{y}(t)$ the normal coordinates for mode r are given in *Dynamics of structures*⁽²⁾:

$$\xi_r(t) = P_r D$$

Where:

 P_r = the modal participation factor for mode r

D = the displacement response of a single-degree-of -freedom system

The participation factor is given by:

$$P_r = \frac{\{\varphi_r\}^T \{M\}}{\{\varphi_r\}^T [M] \{\varphi\}}$$
(C5A-16)

C5A.4 continued

 $\{\varphi_r\}$ = the mode shape in mode r[M] = the diagonal mass matrix

 $\{M\}$ = the mass vector

For a two mass system with the mode shapes normalised so that the superstructure modal displacements are 1.0, the participation factor for the first mode is:

$$P_{1} = \frac{\left(m_{1} + \Delta_{1,2}m_{2}\right)}{\left(m_{1} + \left(\Delta_{1,2}\right)^{2}m_{2}\right)}$$
(C5A-17)

Where:

Where:

 $\Delta_{1,2}$ = the first mode normalised displacement of m_2

The first mode earthquake response displacements for the superstructure and pier $Z_{1,1}$ and $Z_{1,2}$ are given by:

$$Z_{1,1} = P_1 D$$

$$Z_{1,2} = \Delta_{1,2} P_1 D$$

(C5A-18)

C5A.5 Abutment stiffness for longitudinal response

In the analyses the stiffness of the abutments was modified using an approximate procedure to allow for the inertia load acting on the abutment and Mononobe-Okabe active earth pressure acting on the abutment backwall. It was conservatively assumed that these forces are in phase with the inertia force acting on the superstructure.

The effective stiffness of the abutment being pulled away from the soil backfill is given by:

$$K_{ea} = \frac{F_s}{\Delta_b + \Delta_a} \tag{C5A-19}$$

Where:

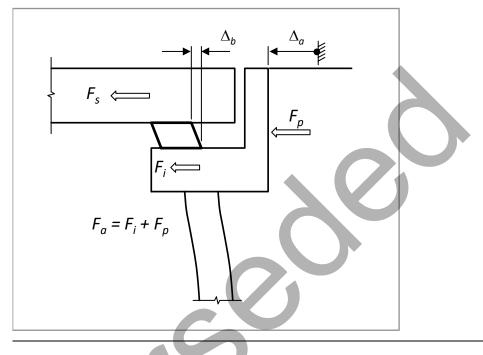
 F_s = the superstructure force acting on the abutment

 Δ_b, Δ_a = the displacement in the bearing and the displacement of the abutment respectively relative to the ground remote from the abutment as shown in figure C5A.8

Equation (C5A-19) can be written as:

$$K_{ea} = \frac{F_s}{\frac{F_s}{K_b} + \frac{F_a + F_s}{K_a}}$$
(C5A-20)

Where:


- K_b, K_a = the stiffness of the bearings and the abutment structure (essentially the piles) acting alone
- F_a = the sum of the inertia force from the mass of the abutment and the active pressure force on the backwall

C5A.5 continued

Equation (C5A-20) can be simplified to:

$$K_{ea} = \frac{K_b K_a}{K_a + K_b \left(1 + \frac{F_a}{F_s}\right)} \tag{C5A-21}$$

Figure C5A.8: Abutment model for pull loading from superstructure

C5A.6 Analysis for case 1: rigid foundations and bearings

C5A.6.1 Review type analysis procedure

In a "review" type of analysis procedure the pier section reinforcement details and column diameter are assumed to be known. The inelastic displacement capacity of the pier is calculated from these properties and compared with the displacement demand from the code defined displacement response spectrum. In general the capacity and demand will not be equal and the process gives a ratio of capacity/demand for the pier section based on the earthquake design level inelastic displacement.

To determine the displacement demand from the design displacement spectrum it is necessary to have an effective period of vibration and the equivalent viscous damping for the inelastic pier (based on the ductility and foundation interaction). The damping is used to modify the 5% code spectrum by calculating a damping modified corner period. The linear relationship assumed for the response spectrum displacement between zero and the modified corner period can then be used together with the effective period of vibration at maximum displacement response to calculate the inelastic displacement demand. However, both the effective period and the equivalent viscous damping are dependent on the demand displacement so an iterative procedure is necessary to determine the demand displacement.

C5A.6.1 continued

A convenient starting point for the iteration is to use an approximate ductility demand calculated by using the elastic period and the elastic response spectrum to calculate an approximate maximum elastic displacement demand. The yield displacement is calculated from the height and diameter of the column (equation (5–10)) and the shear force at yield is calculated from the flexural capacity of the section (moment curvature or strength analysis) to give the elastic stiffness of the pier. An elastic period is calculated from the elastic stiffness and the effective mass of the superstructure carried by the pier. The maximum elastic demand displacement divided by the yield displacement gives an approximate ductility demand ("equal displacement" rule).

The approximate ductility demand can then be used to calculate an equivalent viscous damping, and the elastic period and the approximate ductility demand can be used to calculate the effective or secant period at maximum displacement. A displacement demand can then be calculated (or scaled) from the damping modified displacement response spectrum. The ductility demand is then iterated until the assumed ductility agrees with the ductility demand calculated (or scaled) from the damping modified displacement response spectrum.

The main steps in the review analysis procedure are summarised as follows:

- a. Calculate the yield displacement from equation (5-10).
- b. Use moment curvature or a section strength analysis to calculate the flexural capacity of the section.
- c. Calculate the shear force at flexural capacity then calculate the elastic stiffness from the shear force and yield displacement.
- d. From the longitudinal and confining reinforcement details calculate the limiting reinforcement and concrete strains.
- e. From the neutral axis depth and the limiting strains calculate the damage limit state curvature.
- f. Calculate the plastic hinge length and use this and the plastic curvature limit to calculate the plastic rotation and the plastic displacement limit at the top of the pier.
- g. From the yield displacement and the plastic displacement limit calculate the ductility capacity for the pier.
- h. Calculate the elastic period: $T = 2\pi \sqrt{\frac{m}{k}}$

(Where k and m are the stiffness at yield and the effective mass respectively).

Calculate the elastic displacement demand from displacement response spectrum and elastic period.

Estimate the approximate ductility demand from the yield displacement and elastic response displacement.

- k. Use the approximate ductility demand as starting point for iteration to determine the more correct ductility demand using DBD equivalent damping theory.
- I. Calculate the equivalent viscous damping from the ductility demand assumption and equation (5–23).
- m. Calculate the effective period (secant stiffness) from the elastic period and the approximate ductility demand.
- n. Calculate the inelastic displacement demand from the effective period and the damping modifier (equation (5-17)).

C5A.6.1 continued

- o. Calculate the ductility demand from the inelastic displacement demand and the yield displacement.
- p. Iterate the estimated ductility demand until this agrees with the calculated demand in step (o).
- q. Compare the ductility demand with the ductility capacity calculated from the material strain limits.
- r. Calculate the P- Δ moment using the inelastic displacement demand from step (n). Using the provisions of clause 5.3.7 check that the moment capacity with any added P- Δ moment is satisfactory.
- s. Check that the shear strength of the pier is satisfactory.
- t. If the above procedure is part of the design process it may be necessary to modify the pier flexural capacity by modifying the section details to provide an economical (or safe) design with the capacity/demand ratio approximately equal to 1.0. If no change is made to the column diameter the yield displacement is unchanged as this is independent of the reinforcement details. However, the shear force in the pier is dependent on its flexural capacity which may change resulting in a change to the elastic stiffness and elastic period. These changes will affect the displacement demand and it therefore becomes necessary to repeat the complete analysis process if the reinforcement details are changed to modify the flexural and ductility capacities.

The above analysis procedure is used in the examples that are given in the Austroads *Design guideline for earthquakes*⁽³⁾.

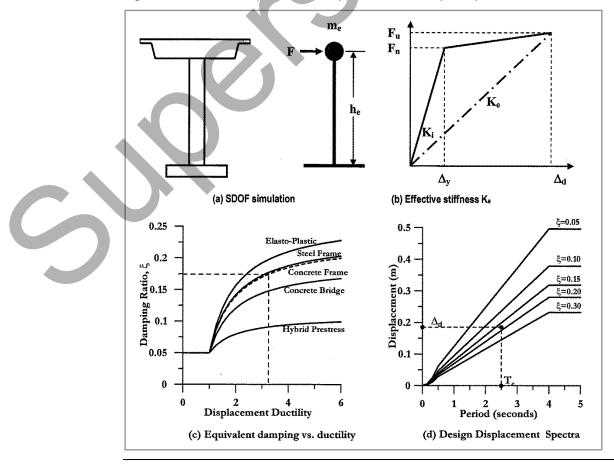


Figure C5A.9: Main steps in DBD analysis (from Priestley el al publications)

C5A.6.1 continued	Figure C5A.9, which appears in a number of Priestley et al publications (for example see <i>Performance based seismic design</i> ⁽⁴⁾), is useful for interpreting some of the above steps. In figure C5A.9(b) all the "capacity" force, displacement and stiffness parameters are known when the critical section reinforcement details are selected. However, the demand Δ_d (and K_e) is unknown. This is calculated by selecting a trial value, calculating K_e and T_e , entering figure C5A.9(c) to determine the equavalent damping, and then using figure C5A.9(d) to predict the demand displacement. Iteratons are required on the selected trial Δ_d until it agrees with the value from figure C5A.9(d).
C5A.6.2 Design type analysis procedure	An alternative to the above procedure is to use a "design" type of analysis. In this procedure the design demand ductility level (or a demand drift ratio) and the column diameter are assumed to be known at the start of the design process. These parameters enable the shear force and the corresponding base moment capacity required to satisfy the demand ductility ratio to be calculated. The reinforcement details are then selected to provide the demand moment strength and the confinement to meet the selected ductility demand. Iterations will be required in this step but when it is completed the demand and capacity will be approximately equal. For a design analysis when the pier section details are not determined from an existing bridge or by previous experience this procedure may be more direct than the "review" procedure in C5A.6.1.
	The main steps in the design analysis procedure are summarised as follows:
	a. Calculate the yield displacement from equation (5-10).
	 Calculate the design level inelastic displacement using the yield displacement and the selected ductility demand (or capacity).
	c. From the selected ductility demand calculate the equivalent viscous damping (see figure C5A.9(c)).
	d. Calculate the damping modifier for the design displacement response spectrum and adjust the 5% damping spectrum.
	e. From the design inelastic displacement calculated in step (b), calculate the effective secant response period by scaling from the modified spectrum corner period (see figure C5A.9(d)).
	f. Using the effective period calculate the secant stiffness for the design level inelastic response.
	g. From the secant stiffness and the design level inelastic displacement calculate the required design base shear (see figure C5A.9(b)).
	h. From the base shear and the effective height calculate the required moment capacity at the base of the pier.
	i. Using moment curvature or section strength analyses determine the reinforcement details to give the required flexural capacity.
	j. Select the longitudinal and confinement reinforcement details and calculate the limiting reinforcement and concrete strains.
	k. From the neutral axis depth and the limiting strains calculate the design (or damage) limit state curvature.
	I. Calculate the plastic hinge length and use this and the plastic curvature limit to calculate the plastic rotation and the plastic displacement limit at the top of the pier.

C5A.6.2 continued m. From the yield displacement and the plastic displacement limit calculate the ductility capacity for the pier. Iterate the reinforcement details as necessary to give agreement between the calculated capacity and the selected demand capacity. n. Calculate the P-Δ moment using the inelastic displacement demand from step (I). Using the provisions of clause 5.3.7 check that the moment capacity with any added P-Δ moment is satisfactory.

o. Check that the shear strength of the pier is satisfactory.

The above analysis procedure is used in DBD examples given in chapter 6 (by Priestley, Kowalsky and Calvi) of *Bridge engineering handbook: Seismic design*⁽⁵⁾.

C5A.7 Analysis for case 2: flexible foundation and elastomeric bearings

C5A.7.1 Review type analysis procedure

- a. Carry out steps (a) to (j) as described for case 1 in C5A.6.1. The elastic period of vibration calculation follows the method outlined above for the two-mass model.
- b. Calculate the displacements of the superstructure and the pier and the shears and moments in the pier at the yield displacement level. A minor adjustment can made to the pier stiffness to ensure that the base moment from the model agrees with the flexural capacity of the pier. The yield level actions are not used directly in the analysis but are useful checks on similar actions calculated for the inelastic response.
- c. Modify the pier stiffness using the approximate ductility demand estimated from the yield and elastic response displacements.
- d. Calculate the effective period and elastic design displacement using the two-mass model.
- e. From the elastic design displacement and an estimate of the damping, estimate the inelastic displacement demand.
- f. From the mode shape and the estimated inelastic displacement demand, calculate the bearing and pier displacements and the force actions in the bearings and piers.
- g. Calculate the equivalent viscous damping from the displacements and shears in the piers and bearings using equation (5-22).
- n. Calculate the damping modifier and the inelastic displacement demand from the damping modified spectrum.
- Compare the calculated inelastic displacement demand with the trial displacement demand determined in step (e). Iterate the estimated displacement demand until close agreement is obtained.
- j. Using the converged displacement demand, check the pier base moment. Adjust the assumed ductility in the pier and iterate steps (c) to (i) until the calculated base moment is in reasonable agreement with the flexural capacity of the pier.
- k. Carry out the iterations in steps (i) and (j) until convergence for both the base moment and the inelastic displacement response is achieved. The iteration function in Excel (set under the "Excel Options" and "Formulas" tabs) is a convenient method of undertaking this double iteration.
- I. Calculate the ductility demand from the pier top displacement and the yield displacement and compare with the ductility capacity calculated from material strain limits.

C5A.7.1 continued	m. Calculate the P- Δ moment using the inelastic displacement demand from step (k). Using the provisions of clause 5.3.7, check that the moment capacity with any added P- Δ moment is satisfactory.
	n. Check that the shear strength of the pier is satisfactory.
	Both the transverse and longitudinal responses are calculated using the above procedure. The longitudinal response is more complicated because of the interaction at the abutments. The abutments are assumed to respond elastically and the shears carried by them can be calculated using the superstructure demand displacement. For calculating the moments in the piers the total longitudinal inertia load is reduced by these shears. Alternatively the moments can be calculated from the shears in the bearings and the inertia load from the piers (see equations (C5A-11) and (C5A-13)).
	An adjustment should be made to the stiffness of the pulled abutment to allow for the abutment displacement resulting from the inertia load on the abutment and the active earthquake pressure on the back wall. The forces on the abutment can be estimated using the peak ground acceleration. Because the forces from the superstructure will not necessarily be in phase with the abutment forces it is difficult to accurately adjust the abutment stiffness. It is conservative to assume that the superstructure and abutment inertia forces are in phase and to modify the stiffness using equation (C5A-21).
C5A.7.2 Design type analysis procedure	The design type analysis procedure for case 2 generally follows the steps given in C5A.6.2 for the case 1 analysis. However, several modifications are required. Firstly the design inelastic displacement for an equivalent single mass system is calculated using equation (5-19). This displacement is then used to calculate the effective secant period and stiffness. The inertia forces acting at the two mass levels are calculated using equation (5-20).
	The other important modification is that with a two-mass model (or multi-mass model) to calculate the combined effective damping an estimate needs to be made of the first mode shape. In the present example this shape gives the relative displacement between the two masses. It can be checked once the effective period of vibration is calculated and the inertia forces acting on the masses are known. Iteration may be required to obtain a good estimate of the mode shape or alternatively the two-mass dynamic model used in the review analysis procedure can be used.

C5A.8 Analysis for case 3: lead-rubber bearings (review type analysis)

C5A.8.1 Transverse response

a. Calculate the stiffness from the yield displacement and the flexural moment capacity of the pier. Assume the pier remains elastic at the maximum displacement response of the superstructure for the DCLS displacement spectrum.

- b. Assume a displacement in the bearings based on the acceptable limits for the configuration of the bearing selected.
- c. Calculate the stiffness of the bearings (see equation (C5A-13)). The bearing stiffness depends on the displacement in the bearing.
- d. Calculate the period of vibration and mode shape using the two-mass model. From the period, calculate the elastic design displacement.
- e. From the mode shape, calculate the displacement of the superstructure and the pier top and the shear forces in the bearings and pier.

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

C5A.8.1 continued	f. Calculate the equivalent viscous damping using equation 1.16 of <i>Introduction to seismic isolation</i> ⁽⁶⁾ for the bearings, equation (5–31) for the piers and equation (5–22) to calculate the overall damping.
	g. From the damping reduction modifier (equation (5-17)) and the elastic design displacement, calculate the demand displacement for the superstructure.
	 Calculate the displacement in the bearings using the mode shape and compare with the assumed displacement selected in step (b). Iterate until there is reasonable agreement between these displacements.
	i. Calculate the pier base moment to check that there is a reasonable margin against yield. If not, strengthen the pier and repeat the analysis.
	j. Design the pier transverse reinforcement to give moderate ductility and the required shear strength.
C5A.8.2 Longitudinal response	The analysis for the longitudinal response generally follows the procedure above for the transverse response except that stiffness of the abutments and the lead-rubber bearings supporting the superstructure on the abutments needs to be considered. The stiffness of the abutments is dominated by the bearings and this stiffness is required to calculate the period of vibration.
	Because the stiffness of the bearings on both the abutments and piers is dependent on the displacement in them there is no straightforward analysis procedure. One method of analysis is to assume both a displacement of the superstructure and a displacement in the pier bearings. The bearing displacement can then be iterated to get convergence as outlined above for the transverse analysis. This is followed by iterations on the superstructure response so that the assumed response agrees with the demand response as calculated in step (g). Successive iterations are required to obtain convergence for both the demand displacement of the superstructure and the displacement in the pier bearings. The iteration function in Excel provides a convenient method of speeding up the analysis.
	After convergence is obtained for the displacements, the base moment in the piers should be checked and compared with their yield strength as undertaken in step (i) for the transverse analysis.
	As for case 2 longitudinal response analysis (see C5A.7.1), the stiffness of the pulled abutment should be adjusted to allow for the displacement from its inertia force and the active soil pressure force acting on it.
C5A.9 Spread	sheet analysis

C5A.9.1 Analysis case 1: rigid foundations and bearings: subsoil category C: transverse and longitudinal directions (see page C5-57)

a. Structural inputs

The weights and height dimensions were based on the bridge drawings. The calculation of the weights is summarised on the separate spreadsheet titled *Geometric and weight input parameters* (page C5-55).

A single span was considered (tributary mass assumption) with the total dynamic mass taken as the sum of the mass of a superstructure span plus the mass of a pier cap and one-third of the pier column. The mass of the column was assumed to act at the bottom of the pile cap as proposed in C5.

C5A.9.1 continued In the longitudinal direction the piers are pinned at their tops so the effective height

for the analysis is the height of the pier. Because the pier bearings can transfer axial loads under transverse loading they provide overturning fixity rather than a pinned joint between the superstructure and piers. For this loading direction the effective height for the transverse analysis was taken as the height of the centre-of-gravity of the dynamic mass.

For the purpose of the example the column diameter and reinforcement details were modified from the as-built structure (see C5A.2).

b. Earthquake inputs

The earthquake inputs were from the Bridge manual (same as NZS 1170.5 Structural design actions part 5 Earthquake actions - New Zealand ⁽⁷⁾) for a 2,500 year return period event. The bridge would have been designed to the earthquake load requirements of the Highway bridge design brief⁽⁸⁾, which was based on NZS 4203 General structural design and design loads for buildings⁽⁹⁾. Neither the Highway bridge design brief⁽⁸⁾ nor NZS 4203⁽⁹⁾ used return period factors. They used a force based design approach with coefficients based on assumed ductility factor reductions. It is therefore difficult to make a direct comparison between the design loads and the current force based provisions of the Bridge manual but the current 2,500 year loads would be approximately 50% greater than the design loads.

c. Calculated structural parameters

The steel areas and volumetric ratio are required for the column strength and ductility calculations. Gen-Col⁽¹⁰⁾ was used to calculate the moment capacity of the columns and the depth of the neutral axis. (Moment curvature analysis software can be used for these calculations.)

d. Yield displacements

The yield curvature was calculated using equation (5-8) and the yield strain based on the probable yield strength of the reinforcement as given in table 5.7.

The yield displacement was calculated from the curvature using equation (5-10) and *C*₁=0.333 (as given in C5.7.2).

e. Elastic period

The shear force at the flexural capacity of the column was calculated from the flexural capacity and the effective height of the superstructure dynamic mass. This was used to calculate an effective elastic stiffness based on the pier yield displacement. The period was calculated by substituting the effective stiffness and dynamic mass into the conventional period equation for a single-degree-of- freedom structure.

Elastic displacement

An elastic displacement response (assuming no yield) was calculated from the elastic period and the displacement spectrum 3 second corner period displacement. Based on the equal displacement assumption for elastic and inelastic response this displacement divided by the yield displacement gives an approximate ductility demand.

C5A.9.1 continued

g. Strain limits for plastic rotation

Strain limits were calculated using equations (5–11) and (5–12). The confined compressive strength of the concrete was calculated using empirical equations given in *Seismic design and retrofit of bridges*⁽¹¹⁾. (Alternatively this parameter can be selected from charts in *Seismic design and retrofit of bridges*⁽¹¹⁾.)

The neutral axis depth from the strength analysis was used to calculate the steel and concrete strains and these were compared with the strain limits to determine whether the steel or concrete strain governed. For this example, the steel strain limit governed and was used to calculate the limit state curvature by dividing it by the distance of the extreme bar from the neutral axis.

h. Plastic hinge lengths

Plastic hinge lengths were calculated using equations (5–36) and (5–37). Based on typical steel test results for grade 300 reinforcement the f_u/f_y ratio was taken as 1.4.

Because of the different fixity conditions at the top of the pier for the two response directions the heights to the point of contraflexure differ resulting in a small difference between the plastic hinge lengths for each direction.

i. Ductility factor capacities

Both the limit state displacement capacities and ductility factors for the piers were calculated using conventional expressions.

j. Damping

To calculate the damping a ductility demand is estimated and then iterated until it agrees with the ductility calculated from the ductile displacement demand which is calaculated from the damping reduced spectrum. The ductile displacement demand depends on the secant period and the equivalent viscous damping which are unknown at this point of the analysis.

Damping from inelastic action in the piers was calculated using equation (5–31) and the assumed ductility demand. The damping modifier was calculated from the damping and equation (5–17).

k. Effective period

The effective period was calculated from the elastic period and the assumed ductility demand. Recalling that $T_e = 2\pi \sqrt{\frac{m_e}{k_e}}$ the ratio between the secant and elastic period is proportional to the square root of the assumed ductility since ductility is inversely proportional to the effective stiffness.

I. Ductile displacement demand

The elastic spectrum displacement was calculated from the elastic spectrum corner period displacement using the ratio of the 3 second corner period and the secant period. The ductile displacement demand was then calculated by reducing the elastic spectrum demand by the damping modifier.

The ductility demand was then calculated from the ductile displacement demand by dividing by the yield displacement. A comparison was then made between the assumed ductility and the calculated ductility. Iteration was continued until close agreement was obtained.

C5A.9.1 continued

m. Check P- Δ moment

The P- Δ moment at the base of the piers was calculated using conventional procedures. There are two components to the moment; a component from the superstructure displacement and dynamic weight force, and a component from the displacement of the lower two-thirds of the columns and the gravity force from this lower section. The component from the lower column section is small and can be neglected. The ratio of the P- Δ moment to the pier moment capacity was checked. If this ratio is less than 0.1 no increase is required to the design moment capacity. In this example, the ratio was between 0.1 and 0.25. In this range the design capacity should be increased by 50% of the P- Δ moment. (P- Δ moment ratios greater than 0.25 are unacceptable. Refer to clause 5.3.7.) n. Required moment capacity The analysis showed that the required moment demand on the columns, including the P- Δ increase, was approximately equal to the capacity calculated for the assumed reinforcement details. C5A.9.2 Analysis a. Structural inputs case 2: flexible The weights and height dimensions were based on the bridge drawings. The foundations and calculation of the weights is summarised on the separate spreadsheet titled bearings: subsoil Geometric and weight input parameters (page C5-55). category C and D: It was necessary to calculate the centre of gravities (CoG's) of both the transverse direction superstructure and the piers as these points define the location for the application of (see page C5-71) the inertia forces. A single span was considered (tributary mass assumption) with the total dynamic mass taken as the sum of the mass of a superstructure span plus the mass of the pier cap and one-third of the pier column. The mass of the column was assumed to act at the bottom of the pile cap as proposed in C5. For the purpose of the example the column diameter for soil category C was taken as 1.2m instead of the 1.4m as-built diameter. The reinforcement details were modified from the as-built structure for both soil categories (see C5A.2). b. Foundation stiffness inputs These were calculated on a separate spreadsheet titled: Analysis case 2 (flexible foundation & elastomeric bearings): pier pile stiffness: transverse analysis (page C5-69). The stiffness parameters for the tops of the cylinder (translation and rotation) were calculated using the elastic continuum method given in Aseismic pile foundation design analysis⁽¹²⁾. A linear increase of soil stiffness with depth was assumed and the cylinders were assumed to be long although some are marginally shorter than the minimum length required for this assumption. The increase in the soil modulus with depth (parameter m) was based on the results from the cylinder testing carried out during construction (see C5A.1). c. Inputs for elastomeric bearings on piers The overall dimensions of the bearings are shown on the drawings (see C5A.1). For the purpose of the example these were adjusted to give a more satisfactory strain level in the bearings. The rubber thickness, side covers and shear modulus were based on typical values used in bridge bearings.

```
C5A.9.2 continued
```

d. Earthquake inputs

Earthquake inputs were from the *Bridge manual* (same as NZS 1170.5⁽⁷⁾) for a 2,500 year return period event. The bridge would have been designed to the earthquake load requirements of the *Highway bridge design brief*⁽⁸⁾ which was based on NZS 4203⁽⁹⁾. Neither the *Highway bridge design brief*⁽⁸⁾ nor NZS 4203⁽⁹⁾ used return period factors. They used a force based design approach with coefficients based on assumed ductility factor reductions. It is therefore difficult to make a direct comparison between the design loads and the current force based provisions of the *Bridge manual* but the current 2,500 year loads would be approximately 50% greater than the design loads.

e. Calculated structural parameters

The steel areas and volumetric ratio are required for the column strength and ductility calculations.

The cracked stiffness of the pier was calculated to provide a comparison and check on the pier yield stiffness used to calculate the elastic period of vibration (see below). The reduction in stiffness from cracking was based on the pier stiffness ratio given in figure 4.12 of *Displacement-based seismic design of structures*⁽¹³⁾.

f. Yield displacements

The yield curvature was calculated using equation (5-8) and the yield strain based on the probable yield strength of the reinforcement as given in table 5.7.

To estimate the displacement component from the foundations at the yield capacity of the pier it is necessary to know the moment and shear acting on the foundation. These were estimated from the flexural capacity calculated using $Gen-Col^{(10)}$.

The yield displacement was calculated using equation (5-10) and C_1 =0.333 (as given in C5.7.2). The pier yield displacement was based on the centre of gravity of the pier. This is a convenient reference point as the inertia force from the pier is applied at this location.

g. Elastic period of vibration

The elastic period of vibration was calculated using the two-mass model and equations (C5A-1) to (C5A-6).

It is not essential to calculate the elastic period of vibration but it provides a useful check on the ductility demand calculations and the performance of the elastomeric bearings.

For the elastic period calculations the stiffness of the pier was estimated using the yield displacement and an approximation to the yield shear force obtained by dividing the flexural capacity by the height to the centre of gravity of the total mass. Using an iterative process the pier stiffness was adjusted until the moment at the base of the pier from the first mode response of the model was equal to the flexural capacity of the column.

h. Displacement in bearings at pier yield capacity

The displacement of the superstructure when the pier reaches its flexural capacity was calculated from the yield displacement and the first mode shape of the twomass model. A correction was made to the superstructure for the column base rotation (see equation (C5A-9)).

C5A.9.2 continuedThe displacement in the bearings can be calculated using equation (C5A-8) or
(C5A-12). Both are used on the spreadsheet to check the analysis.

The first mode shear in the pier was calculated by summing the shear in the bearings and the inertia force acting at the pier centre of gravity. The shear in the bearings was calculated from the bearing displacement and stiffness.

A check was made on the shear strain in the bearing by dividing the displacement by the thickness of rubber in the bearing. For this example the bearing dimensions were adjusted to give a shear strain of less than 1.0 which is considered an acceptable limit for earthquake loading.

i. Elastic displacement

The displacement based on assumed elastic response was calculated from the displacement spectrum 3 second corner period displacement. To get the correct superstructure displacement this single-degree-of-freedom response needs to be adjusted using the participation factor (equation (C5A-17)).

The pier centre of gravity displacement was calculated from the superstructure displacement using the mode shape corrected for base rotation (equation (C5A-9)). After subtracting the foundation displacement component the pier centre of gravity displacement was divided by the pier yield displacement to give an approximate ductility demand based on the equal displacement assumption for elastic and inelastic response.

j. Strain limits for plastic rotation and curvatures

Strain limits were calculated using equations (5–11) and (5–12). The confined compressive strength of the concrete was calculated using empirical equations given in *Seismic design and retrofit of bridges*⁽¹¹⁾. (Alternatively this parameter can be selected from charts given in *Seismic design and retrofit of bridges*⁽¹¹⁾.)

The neutral axis depth from the strength analysis was used to calculate the steel and concrete strains and these were compared with the limits to determine whether the steel of concrete strain governed. The steel strain governed for the soil category C example and the concrete strain for soil category D. The limit state curvatures were calculated by dividing the steel strain by the distance of the extreme bar from the neutral axis for the soil category C example and the concrete strain by the distance of the extreme bar from the neutral axis distance for the soil category D case.

Plastic hinge lengths and ductility factor capacity

The plastic hinge lengths were calculated using equations (5–36) and (5–37). Based on typical steel test results the f_u/f_y ratio was taken as 1.4 for grade 300 reinforcement and 1.2 for grade 500.

For calculating the plastic hinge length the distance to the point of contraflexure was assumed to be the height of the CoG of the total mass. Both the limit state displacement capacities and ductility factors for the piers were calculated using conventional expressions.

I. Ductility iteration for superstructure response

The stiffness of the piers was estimated from trial values for the ductility demand and the shear force in the pier. Initial trials can be estimated from the previous calculations for elastic displacement response.

C5A.9.2 continued

Using the trial pier stiffness, the two-mass model was used to calculate an effective period of vibration and an estimate of the design elastic spectrum displacement (unreduced by damping) for the superstructure mass. The iteration of the ductility is carried out until the moment at the base of the pier is equal to the flexural capacity minus any P- Δ correction. The moment is calculated using equation (C5A-11). The moment is dependent on the damping reduced displacement demands on the two masses which in turn are dependent on the overall system damping. These parameters are not accurately known at this point. The method used on the spreadsheet was to estimate a displacement demand for the superstructure mass and to iterate both the ductility demand and the displacement demand simultaneously until the base moment and the displacement demand to the trial demand displacement). The iteration function in Excel was found to be helpful for this process.

m. Damping and ductility demand

The shear force in the bearings and piers (required for the damping calculation) was estimated from the trial displacement demand on the superstructure mass. Equations (C5A-10) and (C5A-12) were used to estimate the displacement in the bearings. The shear force in the bearings was then estimated from the displacement and bearing stiffness. The shear in the pier was calculated by adding the inertia force acting on the pier mass and the shear force in the bearings.

Damping from the piers was estimated using equation (5–31) for pile/columns assuming that the cylinder/column structure has similar damping to a pile/column. Damping in the pier bearings was taken as the 0.05 default value given in clause 5.4.4.

The system damping was calculated using equation (5-22). Damping in the superstructure was neglected as it is small in comparison to the damping from the other components.

The ductility demand was then calculated from the ductile displacement demand on the pier (total displacement of the pier mass minus the foundation component) dividing by the yield displacement. A comparison was then made between the assumed ductility and the calculated ductility. Iteration was continued until close agreement was obtained between the assumed and calculated values for both the pier ductility and the displacement demand on the superstructure mass.

n. Check P-Δ moment

The P- Δ moment at the base of the piers was calculated using conventional procedures. There are two components to the moment; a component from the superstructure displacement and weight, and a component from the pier displacement and weight (assumed to act at the centres of gravity of the pier). The gravity force from the lower two-thirds of the column was neglected as it was not included in the pier weight. The cylinder top displacement of approximately 7 mm was also neglected and could be subtracted from the total displacements to make a small reduction in the P- Δ moment.

The ratio of the P- Δ moment to the pier moment capacity was checked. If this ratio is less than 0.1 no increase is required to the design moment capacity. When the ratio is between 0.1 and 0.25 the design capacity should be increased by 50% of the P- Δ moment. (P- Δ moment ratios greater than 0.25 are unacceptable. Refer to clause 5.3.7.)

C5A.9.2 continued

For both the soil category C and D examples the ratio of the $P-\Delta$ moment to the design capacity moment exceeded 0.1 and an increase in capacity was therefore required.

o. Required moment capacity

The analysis showed that the required moment demand on the columns, including the $P-\Delta$ increase, was marginally lower than capacities calculated for the assumed reinforcement details.

C5A.10 References

- (1) Thomson WT (1965) *Vibration theory and applications*. Prentice-Hall Inc, Upper Saddle River, NJ, USA.
- (2) Clough RW and Penzien J (1993) *Dynamics of structures*. McGraw-Hill Education, New York, NY, USA.
- (3) Austroads (2012) *Bridge design guidelines for earthquakes*, AP-T200-12. Sydney, NSW, Australia.
- (4) Priestley MJN (2000) *Performance based seismic design*. Proceedings of the Twelfth World Conference on Earthquake Engineering, Auckland.
- (5) Chen WF and Duan L (2014) *Bridge engineering handbook: Seismic design*, 2nd edition. CRC Press, Boca Raton, FL, USA.
- (6) Buckle IG (2013) *Introduction to seismic isolation*. Appendix E of *Base isolation* 101, seminar TR54, New Zealand Concrete Society.
- Standards New Zealand NZS 1170.5:2004 Structural design actions. Part 5
 Earthquake actions New Zealand. (Incorporating Amendment No. 1: 2016)
- (8) Ministry of Works and Development (1978) Highway bridge design brief, CDP 701/D. Superseded.
- (9) Standards New Zealand NZS 4203: 1984 General structural design and design loads for buildings. Superseded.
- Society of Structural Engineers *Gen-Col*. Last accessed 28 September 2018.
 <www.sesoc.org.nz/software/>. (Available to members only.)
- (11) Priestley MJN, Sieble F and Calvi GM (1996) Seismic design and retrofit of bridges. John Wiley and Sons, New York, NY, USA.
- (12) Pender MJ (1993) *Aseismic pile foundation design analysis*. Bulletin of the New Zealand Society for Earthquake Engineering, vol. 26 no. 1, pp 49-161.
- (13) Priestley MJN, Calvi GM and Kowalsky MJ (2007) *Displacement-based seismic design of structures*. IUSS Press, Pavia, Italy.

C5A.11 Spreadsheets

Table C5A.3: Spreadsheet index

Spreadsheet title	Page no.
Geometric and weight input parameters	C5-55
Analysis case 1: Rigid foundations and bearings: Soil subsoil category C: Review method Transverse and longitudinal directions	C5-57
Analysis case 1: Rigid foundations and bearings: Soil subsoil category D: Review method: Transverse and longitudinal directions	C5-60
Analysis case 1: Rigid foundations and bearings: Soil subsoil category C: Design analysis procedure: Transverse and longitudinal directions	C5-63
Analysis case 1: Rigid foundations and bearings: Soil subsoil category D: Design analysis procedure: Transverse and longitudinal direction	C5-66
Analysis case 2 (flexible foundation & elastomeric bearings): Pier pile stiffness Transverse analysis	C5-69
Analysis case 2: Flexible foundations and bearings: Soil C and D: Review method: Transverse direction	C5-71
Analysis case 2 (flexible foundation & elastomeric bearings): Abutment pile stiffness: Longitudinal analysis	C5-76
Analysis case 2: Abutment passive resistance and stiffness: Longitudinal analysis	C5-78
Analysis case 2: Flexible foundations and bearings: Soil C & D: Review method: Longitudinal direction	C5-79
Analysis case 2: Flexible foundations and bearings: Soil C & D: Design analysis procedure: Transverse direction	C5-85
Analysis case 3: Lead rubber bearings: Transverse analysis	C5-89
Analysis case 3: Lead rubber bearings: Longitudinal analysis	C5-92

S

Maitai River Bridge Geometric and Weight Input Parameters

Prepared: J Wood

Edit Date: 21-Aug-17

Print Date: 21-Aug-17

Edit Date. 21-Aug-17			21-Aug-1	
Item	Sym	Value	Units	Comment / Formula
Weight of Superstructure				
Unit weight of concrete	W _{con}	25	kN/m ³	Including reinforcement
Beam length	Ls	18.40	m	
Length of bridge deck	L _d	93.9	m	
Length of centre spans	L _{cs}	18.66	m	
Cross-section area of beams	A _b	0.326	m²	From drawings
Weight of I beams per span	W _b	600	kN	Total of 4 beams per span
Weight of deck per span	W_{de}	895	kN	Including paps - neglecting taper at Abut F
Weight of surfacing per span	W _{su}	154	kN	40 mm thick seal with unit wt = 20 kN/m ³
Wt handrails/guardrail per span	W_{h}	23	kN	Assume = 1.2 kN/m
Weight of services per span	W _{se}	20	kN	Assumed value
Weight of diaphragms per span	W_{di}	210	kN	
Total weight of span	Ws	1,902	kN	
Height CoG Superstructure				
Height CoG deck	H _d	1.63	m	Above bottom of beams
Area of central section of beams	A _{bc}	0.292	m²	From drawing dimensions
Overall CoG of superstructure	${\sf H}_{\sf su}$	1.18	m	Above bottom of beams (ignores cross-fall)
Superstructure O/A height	H _{st}	1.72	m	Bottom of beams to top of deck
Ratio CoG ht over superstructure ht	R _h	0.69		
Height of pier bearings	H _{bea}	0.181	m	
Height CoG super above pier cap	H _{cog}	1.361	m	$H_{cog} = H_{bea} + H_{su}$
Height of pier	H _{cap}	7.621	m	Top of cylinder to top of pier cap
Height CoG super above cylinder	Hs	8.982	m	$H_s = H_{cap} + H_{cog}$
Weight of Pier Cap				
Maximum depth of pier cap	H _{ca}	1.421	m	From drawings
Weight of pier cap	W _c	399	kN	
Weight of Pier Columns			_	
Pier column height	H _{col}	6.200	m	From drawings
Diameter of columns	D _c	1.40	m	Reduced to 1.2 m for some cases
Weight of each column - 1.4 dia	W_{co}	239	kN	
Weight of each column - 1.2 dia	W _{cor}	175	kN	
Total Weights	-			
Axial force at base of column - 1.4 dia	N _{ct}	2,539	kN	$N_{ct} = W_s + W_c + W_{co}$
Axial force at base of column - 1.2 dia	N _{ctr}	2,476	kN	$N_{ctr} = W_s + W_c + W_{cor}$
Dynamic wt of span - 1.4 dia column	W_{d}	2,380	kN	Superstructure + pier cap + 1/3 column
Dynamic wt of span - 1.2 dia column	W _{dr}	2,359	kN	Superstructure + pier cap + 1/3 column

ltem	Symbol	Value	Units	Comment / Formula				
Height of CoG of Pier Cap, Total and Dynamic Mass								
Height CoG of pier cap	H _c	6.967	m	Above pile cylinder top				
Height CoG total mass - 1.4 dia col	н	8.113	m	$H = (H_{col}/2*W_{co}+H_{c}*W_{c}+W_{s}*H_{s})/N_{ct}$				
Height CoG total mass - 1.2 dia col	H _r	8.241	m	$H = (H_{col}/2^*W_{cor} + H_c^*W_c + W_s^*H_s)/N_{ctr}$				
Ht CoG dynamic mass -1.4 dia col	H _e	8.552	m	$H_{e} = (H_{col}^{*}W_{co}/3 + H_{c}^{*}W_{c} + W_{s}^{*}H_{s})/W_{d}$				
				1/3 column mass at underside of pier cap				
Ht CoG dynamic mass -1.2 dia col	H _{er}	8.573	m	$H_{er} = (H_{col} * W_{cor} / 3 + H_c * W_c + W_s * H_s) / W_{dr}$				
Weight of Abutments	•		•					
Weight of each abutment	Wa	930	kN	Calculated from drawings				
				does not include approach slab				

Maitai River Bridge				
Analysis Case 1: Rigid Foundations a		gs: Soil Subsoi	I Catego	ory C: Review Method
Transverse and Longitudinal Direction	ons			
Prepared: J Wood				
Edit Date: 21-Aug-17	Pri	nt Date: 21-Aug	-17	
		Value		
Item	Symbol	Trans Long	Units	Comment / Formula
Structural Inputs		Trans Long		
Dynamic wt of superstructure on pier	Ws	2,359	kN	Includes pier cap + 1/3 column. See p. C5-55
Effective height superstructure	H _e	8.573 7.621		Trans: centre dynamic mass above pile top
	''e	0.010 1.021		Long: top of pier above pile top
Column diameter	Dc	1.2	m	
Diameter longitudinal bars	d _b	32	mm	
Diameter transverse hoops	d _b	16	mm	
Number of longitudinal bars	N _b	20		
Spacing transverse hoop bars	S _t	100	mm	
Cover to hoops	C _v	40	mm	
Specified concrete 28 day strength	f _c	35	MPa	
Specified steel yield stress	f _v	300	MPa	Longitudinal and transverse steel
Earthquake Inputs				
Site Subsoil Category		С		
Zone Factor	z	0.27		Nelson
Return Period Factor	R_{u}	1.8		2,500 year return period
Corner period spectral shape factor	$\Delta_{h}(3)$	985	mm	From BM Table 5.5
Corner period displacement	Δ(3)	479	mm	$\Delta(3) = R_{u}^* Z^* \Delta_h(3)$
Calculated Structural Parameters				
Cover to longitudinal bars	Co	56	mm	From cover to hoops
Gross column section area	Ag	1.13	m²	$A_{\rm g} = \pi^* {\rm D_c}^2 / 4$
Area of longitudinal steel	A _s	16,085	mm²	$A_{\rm s} = N_{\rm b} \ \pi^* d_{\rm b}^2 / 4$
Check longitudinal steel area ratio	ρι	0.0142		$\rho_1 = A_{\rm s}/(10^6 \ ^{\star}A_{\rm g})$
Check minimum required steel area	A _{sm}	15,080	mm ²	$A_{sm} = 4*10^{6} A_{g} / f_{y}$: BM Clause 5.6.4(f)
Check maximum permitted steel area	A _{sma}	67,858	mm ²	$A_{sma} = 18*10^{6} A_{g}/f_{y}$: BM Clause 5.6.4(f)
Area of transverse reinforcement	A _t	201	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρ _s	0.00728		$\rho_s = 4^*A_t / (1000^*(D_c - (2^*c_v + dt)/1000)^*s_t)$
				Depth of core taken on centre-line of hoops
				Adopt Priestley et al 1996 rather than NZS 3101
Yield Displacement		1		Τ
Probable yield strength reinforcement	f _{ye}	330	MPa	$f_{ye} = 1.1*f_y$: BM Table 5.7
Young's modulus reinforcement	Es	200,000	MPa	
Yield strain	εγ	0.00165		$\epsilon_y = f_{ye} / E_s$
Yield curvature	ф _{уу}	2.96E-03	1/m	$\phi_{yy} = 2.15^{*} \varepsilon_{y} / D_{c}$: Eq (5-8)
Strain penetration length	L _{sp}	0.232	m	$L_{sp} = 0.022^{*}f_{ye}^{*}d_{b}/1000$: See def of terms
				for Eq (5-1

ltem	Symbol	Trans	Long	Units	Comment / Formula
Coefficient for column fixity	C ₁	0.3	333		See Bridge Manual Commentary C5
Yield displacement	Δ_{v}	76		mm	$\Delta_y = C_1 * \phi_{yy} * (H_e + L_{sp})^2 * 1000: Eq (5-10)$
Elastic Period	y y				y
Flexural strength	Mn	3,400		kN m	Flexural strength analysis: $f_v = 330$ MPa
5					Reduced from 3,672 kNm to allow for $P-\Delta$.
					See below
Shear force at flexural capacity	V	397	446	kN	$V = M_n / H_e$
Elastic stiffness	k	5,191	7,341	kN/m	$k = V/(\Delta_v / 1000)$
Elastic period	T _{el}	1.35	1.14	s	$T_{el} = 2^* \pi^* (W_s / (9.81^* k))^{1/2}$
Elastic Displacement				, 	
Elastic spectrum displacement	$\Delta(T_{el})$	216	181	mm	$\Delta(T_{el}) = \Delta(3)^* T_{el} / 3$
Approximate ductility demand	μ	2.82	2.99		$\mu = \Delta(T_{el})/(\Delta_y)$: Equal disp. assumption
Strain Limits for Plastic Rotation	<u> </u>				
Yield strength transverse reinf.	f _{sy}	3	00	MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.	12		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	٤ _{sul}	0.	12		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	4	5.5	MPa	$f_{ce} = 1.3^* f_c$: BM Table 5.7
Average confining stress	f _{ld}	1.	04		$f_{Id} = 0.95 * f_{sy} * \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	52	2.3	MPa	$f_{cc} = f_{ce}^{*}(2.254^{*}(1+7.94^{*}f_{Id}/f_{ce})^{1/2} - 2^{*}f_{Id}/f_{ce}^{-1.254})$
					Priestley et al 1996, Eq (5.6)
Reinforcement limiting strain	€ _{sd}	0.0)29		$\epsilon_{sd} = 0.015 + 6^* (\rho_s - 0.005) \le 0.5 \epsilon_{sul} : Eq (5-11)$
Concrete limiting strain	ε _{cd}	0.0	011		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{sy}^* \epsilon_{sut}) / f_{cc} : Eq (5-12)$
Neutral axis depth	с	2	82	mm	From moment strength analysis
Check using empirical formula	c _c	2	76	mm	$c_c = D_c^* (0.2 + 0.65^* W_s / (1000^* f_{ce}^* A_g))^* 1000$
					Priestley et al 2007. Eq (10.8)
Distance extreme bar to neutral axis	b _{na}	8	46	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b /2$
Concrete strain from steel strain	з	0.0	096		$\varepsilon = \varepsilon_{sd} * c / b_{na}$
					Steel limiting strain governs
Limit state curvature	¢ıs	0.0	339	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (\text{c}/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	φ _p	0.0	310	1/m	$\phi_{p} = \phi_{IS} - \phi_{yy}$
Plastic Hinge Length					
Ratio steel ultimate over yield stress	f_u/f_y	1	.4		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.0	080		$k_{lp} = 0.2^*(f_u / f_y - 1) \le 0.8$: Eq (5-38)
Distance to point of contraflexure	L _c	8.57	7.62	m	$L_{\rm c} = H_{\rm e}$
Plastic hinge length	L _p	0.92	0.84	m	$L_p = k_{1p}^* L_c + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$
Ductility Factor Capacity	1				
Plastic rotation	θ_{p}	0.0284	0.0261	rad	$\theta_{p} = \phi_{p}^{*}L_{p}$
Plastic displacement	Δ_{p}	244	199	mm	$\Delta_{\rm p} = \theta_{\rm p}^{*} L_{\rm c}^{*} 1000$: Eq (5-36)
Limit state displacement capacity	Δ_{ls}	320	260	mm	$\Delta_{\rm Is} = \Delta_{\rm y} + \Delta_{\rm p}$
Ductility capacity	μ _{is}	4.19	4.27		$\mu_{ls} = \Delta_{ls} / \Delta_y$
					Capacity > Approximate demand
					Design probably OK

Item	Symbol	Trans	Long	Units	Comment / Formula
Damping at Displacement Demand	•				•
Assumed ductility demand	μ _{lda}	3.31	3.62		Iterate until μ_{Id} (see below) = μ_{Ida}
					Iteration necessary since demand depends
					on T_e and ξ_e which are unknown at this point
					Approx demand from elast displ (see above)
					can be used as initial estimate of ductility.
Equivalent viscous damping	ξe	0.149	0.152		$\xi_e = 0.05 + 0.444^* (\mu_{Ida} - 1) / (\mu_{Ida}^* \pi) : Eq (5-24)$
Damping modifier	Μ _ξ	0.644	0.637		$M_{\xi} = (0.07/(0.02+\xi_e))^{0.5}$: Eq (5-17)
Effective Period					
Effective period	T _e	2.46	2.16	s	$T_e = T_{el}^{*}(\mu_{lda})^{1/2}$: for elasto-plastic response
					Stiffness at displacement capacity = k/μ_{Ida}
Ductile Displacement Demand					
Elastic spectrum displacement	$\Delta(T_{e})$	393	345	mm	$\Delta(T_{e}) = \Delta(3)^*T_{e}/3$
Ductile displacement demand	$\Delta_{\rm d}({\sf T}_{\rm e})$	253	220	mm	$\Delta_{\rm d}({\rm T_e}) = {\rm M_\xi}^* \Delta({\rm T_e})$
Ductility demand	μ_{ld}	3.31	3.62		$\mu_{Id} = \Delta_d(T_e) / \Delta_y$
Ratio: ductility capacity/demand	R_{cd}	1.27	1.18		$R_{cd} = \mu_{ls}/\mu_{ld}$
Check P-⊿ Moment					
Dynamic weight x disp demand	M _{p-∆s}	597	519	kN m	$M_{p-\Delta s} = W_s^* \Delta_d(T_e) / 1000$
Additional P- Δ from lower 2/3 column	$M_{p-\Delta c}$	11	11	kN m	Minor contribution - could be neglected
Total P-∆	$M_{p-\Delta}$	607	530	kN m	
Ratio: $M_{p-\Delta} / M_n$	M _{rat}	0.179	0.156		> 0.1. Increase in moment capacity required
					BM Clause 5.3.7
Moment Capacity					·
Required moment capacity	M _{bp}	3,704	3,665	kN m	$M_{\rm bp} = M_{\rm p-\Delta}/2 + M_{\rm n}$
Capacity of section with 20/D32 bars	M _{bc}	3,672	3,672	kN m	OK : M_{bc} approximately equal to M_{bp}

Priestley MJN, Calvi GM and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Maitai River Bridge									
Analysis Case 1: Rigid Foundations and Bearings: Soil Subsoil Category D: Review Method									
Transverse and Longitudinal Directio	ns								
Prepared: J Wood									
Edit Date: 21-Aug-17	Pri	nt Date: 21-Aug	-17						
	1								
Item	Symbol	Value	Units	Comment / Formula					
0/		Trans Long							
Structural Inputs									
Dynamic wt of superstructure on pier	Ws	2,380	kN	Includes pier cap + 1/3 column. See p. C5-55					
Effective height superstructure	H _e	8.552 7.621	m	Trans: centre dynamic mass above pile top Long: top of pier above pile top					
				Long. top of pier above pile top					
Column diameter	D _c	1.4	m						
Diameter longitudinal bars	d _b	32	mm						
Diameter transverse hoops	d _t	20	mm						
Number of longitudinal bars	N _b	28							
Spacing transverse hoop bars	s _t	100	mm						
Cover to hoops	Cv	40	mm						
Specified concrete 28 day strength	f _c	35	MPa						
Specified steel yield stress	f _y	500	MPa	Longitudinal and transverse steel					
Earthquake Inputs	1	1							
Site Subsoil Category		D							
Zone Factor	Z	0.27		Nelson					
Return Period Factor	R _u	1.8		2500 year return period					
Corner period spectral shape factor	$\Delta_{h}(3)$	1,585	mm	From BM Table 5.5					
Corner period displacement	Δ(3)	770	mm	$\Delta(3) = R_{u}^*Z^*\Delta_h(3)$					
Calculated Structural Parameters			-						
Cover to longitudinal bars	Co	60	mm	From cover to hoops					
Gross column section area	Ag	1.54	m²	$A_{\rm g} = \pi^* {\rm D_c}^2 / 4$					
Area of longitudinal steel	As	22,519	mm²	$A_{\rm s} = \pi^* d_{\rm b}^{-2}/4^* N_{\rm b}$					
Check longitudinal steel area ratio	ρ	0.0146		$\rho_1 = A_g/(10^{6*}A_g)$					
Check minimum required steel area	A _{sm}	12,315	mm ²	$A_{sm} = 4*10^6 A_g / f_y$: BM 5.6.4(f)					
Check maximum permitted steel area	A _{sma}	55,418	mm²	$A_{sma} = 18*10^6 A_g / f_y$: BM 5.6.4(f)					
Area of transverse reinforcement	At	314	mm²	$A_t = \pi^* d_t^2 / 4$					
Volumetric ratio transverse steel	ρs	0.00967		$\rho_{s} = 4^{*}A_{t} / (1000^{*}(D_{c} - (2^{*}c_{v}+dt)/1000)^{*}s_{t})$					
				Depth of core taken on centre-line of hoops					
				Adopt Priestley et al 1996 rather than NZS 3101					
Yield Displacement									
Probable yield strength reinforcement	f _{ye}	550	MPa	f _{ye} = 1.1*f _y : BM Table 5.7					
Young's modulus reinforcement	Es	200,000	MPa						
Yield strain	εγ	0.00275		$\varepsilon_y = f_{ye} / E_s$					
Yield curvature	φ _{yy}	4.22E-03	1/m	$\phi_{yy} = 2.15^* \epsilon_y / D_c$: Eq (5-8)					
Strain penetration length	L _{sp}	0.387	m	$L_{sp} = 0.022^* f_{ve}^* d_b / 1000$: See def of terms					
-	÷Е			for Eq (5-10					

ltem	Symbol	Trans	Long	Units	Comment / Formula
Coefficient for column fixity	C ₁		333		See Bridge Manual Commentary C5
	-				
Yield displacement	Δ _y	112	90	mm	$\Delta_{y} = C_{1}^{*} \phi_{yy}^{*} (H_{e} + L_{sp})^{2*} 1000: Eq (5-10)$
	N4		754	LAL mo	Flow we attempt
Flexural strength	M _n	7,1	751	kN m	Flexural strength analysis: $f_y = 550 \text{ MPa}$ (P- Δ effects not significant - see below)
Cheer force at flowing expectity	Ň	000	1,017	LAI	
Shear force at flexural capacity	V	906			$V = M_n / H_e$
Elastic stiffness	k T	8,057	,		$k = V/(\Delta_y / 1000)$
Elastic period	T _{el}	1.09	0.92	S	$T_{el} = 2^* \pi^* (W_s / (9.81^*k))^{1/2}$
Elastic Displacement					
Elastic displacement	$\Delta(T_{el})$	280		mm	$\Delta(T_{el}) = \Delta(3)^*T_{el}/3$
Approximate ductility demand	μ	2.49	2.62		$\mu = \Delta(T_{el})/(\Delta_y)$: equal displ assumption
Strain Limits for Plastic Rotation	-				
Yield strength transverse reinf.	f _{sy}		00	MPa	
Strain at max stress lateral reinf.	ε _{sut}		10		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	8 sul	0.	10		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	4	5.5	MPa	$f_{ce} = 1.3^* f_c$: BM Table 5.7
Average confining stress	f _{ld}	2.	30		$f_{Id} = 0.95^* f_{sy}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	59	9.7	MPa	$f_{cc} = f_{ce}^{*} (2.254^{*} (1+7.94^{*} f_{Id}/f_{ce})^{1/2} - 2^{*} f_{Id}/f_{ce}^{-1.254})$
					Priestley et al 1996, Eq 5.6
Reinforcement limiting strain	ε _{sd}	0.0	430		$\epsilon_{sd} = 0.015 + 6^* (\rho_s - 0.005) \le 0.5 \epsilon_{sul} : Eq (5-11)$
Concrete limiting strain	ϵ_{cd}	0.0	153		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{sy}^* \epsilon_{sut}) / f_{cc} : Eq (5-12)$
Neutral axis depth	с	3	64	mm	From moment strength analysis
Check using empirical formula	c _c	3	11	mm	$c_c = D_c^* (0.2+0.65^*W_s/(1000^*f_{ce}^*A_g))^*1000$
					Priestley et al 2007. Eq (10.8)
Distance extreme bar to neutral axis	b _{na}	9	60	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	З	0.0163			$\varepsilon = \varepsilon_{sd} * c / b_{na}$
					Concrete limiting strain governs
Limit state curvature	φls	0.0	421	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (\text{c}/1000), \epsilon_{\text{sd}} / (\text{b}_{\text{na}} / 1000))$
Plastic curvature	φp	0.0	379	1/m	$\phi_{p} = \phi_{IS} - \phi_{yy}$
Plastic Hinge Length					
Ratio steel ultimate over yield stress	f _u /f _y	1	.2		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.0	040		$k_{1p} = 0.2^*(f_u / f_y - 1) \le 0.8$: Eq (5-38)
Distance to point of contraflexure	L _c	8.55	7.62	m	$L_c = H_e$
Plastic hinge length	Lp	0.77	0.77	m	$L_p = k_{1p}^* L_c + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$
Ductility Factor Capacity	•		•		• • • •
Plastic rotation	θ_{p}	0.0293	0.0293	rad	$\theta_{\rm p} = \phi_{\rm p} \star L_{\rm p}$
Plastic displacement	Δ_{p}	251		mm	$\Delta_{\rm p} = \Theta_{\rm p}^{*} {\rm L_c}^{*} 1000 : {\rm Eq} (5-36)$
Limit state displacement capacity	Δ_{ls}	363		mm	$\Delta_{\rm Is} = \Delta_{\rm v} + \Delta_{\rm p}$
Ductility capacity	μ _{ls}	3.23			$\mu_{\rm IS} = \Delta_{\rm IS} / \Delta_{\rm V}$
	115				Capacity > Approximate demand Design probably OK

ltem	Symbol	Trans	Long	Units	Comment / Formula
Damping at Displacement Demand	•				
Assumed ductility demand	μ _{lda}	2.72	2.95		Iterate until μ_{Id} (see below) = μ_{Ida}
					Iteration necessary since demand depends
					on T_e and ξ_e which are unknown at this point.
					Approx demand from elast displ (see above)
					can be used as initial estimate of ductility.
Equivalent viscous damping	ξe	0.139	0.143		$\xi_{e} = 0.05 + 0.444^{*}(\mu_{Ida} - 1)/(\mu_{Ida}^{*}\pi) : Eq (5-24)$
Damping modifier	Μ _ξ	0.663	0.654		$M_{\xi} = (0.07/(0.02+\xi_e))^{0.5}$: Eq (5-17)
Effective Period	ł				
Effective period	T _e	1.80	1.58	s	$T_e = T_{el}^{*}(\mu_{lda})^{1/2}$: for elasto-plastic response
					Stiffness at displacement capacity = k/µtda
Ductile Displacement Demand					
Elastic spectrum displacement	$\Delta(T_{e})$	462	407	mm	$\Delta(T_{\mathrm{e}}) = \Delta(3)^*T_{\mathrm{e}}/3$
Ductile displacement demand	$\Delta_{\rm d}({\sf T}_{\rm e})$	306	266	mm	$\Delta_{d}(T_{e}) = M_{\xi}^{*} \Delta(T_{e})$
Ductility demand	μ_{ld}	2.72	2.95		$\mu_{\rm Id} = \Delta_{\rm d}({\rm T_e~})/\Delta_{\rm y}$
Ratio: ductility capacity/demand	R_{cd}	1.19	1.18		$R_{cd} = \mu_{ls}/\mu_{ld}$
Check P- <u>⊿</u> Moment					
Dynamic weight x disp demand	$M_{p-\Delta s}$	728	633	kN m	$M_{p-\Delta s} = W_s^* \Delta_d(T_e) / 1000$
Additional P- Δ from lower 2/3 column	$M_{p-\Delta c}$	13	13	kN m	Minor contribution - could be neglected
Total P-∆	$M_{p-\Delta}$	741	646	kN m	
Ratio: $M_{p-\Delta} / M_n$	M _{rat}	0.096	0.083		< 0.1. No increase in moment capacity reqd
					See BM Clause 5.3.7
Moment Capacity					
Required moment capacity	M _{bp}	7,751	7,751	kN m	$M_{bp} = M_n$
Capacity of section with 28/D32 bars	M _{bc}	7,751	7,751	kN m	$OK: M_{bc} = M_{bp}$

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Maitai River Bridge										
Analysis Case 1: Rigid Foundations a Transverse and Longitudinal Directio		gs: Soil S	Subsoi	I Catego	ory C: Design Analysis Procedure					
-										
Prepared: J Wood	D.::		04 4	47						
Edit Date: 21-Aug-17 Print Date: 21-Aug-17										
ltem	Symbol	Val	ue	Units	Comment / Formula					
	e jiii.sei	Trans	Long	01110						
Structural Inputs										
Dynamic wt of superstructure on pier	Ws	2,3	59	kN	Includes pier cap + 1/3 column					
Effective height superstructure	H _e	8.573	7.621	m	Trans: centre dynamic mass above pile top					
					Long: top of pier above pile top					
Column diameter	D _c	1.	2	m						
Design ductility limit	μ_{d}	3.	5		Reasonable limit for concrete piers					
					A higher limit results in a significant P- Δ mom					
Diameter longitudinal bars	d _b	32		mm						
Diameter transverse hoops	d _t	16		mm						
Number of longitudinal bars	N _b	20			Adjusted to give required moment capacity					
Spacing transverse hoop bars	s _t	10		mm	Adjusted to give required ductility - see below					
Check maximum permitted spacing	s _c	17	3	mm	$s_c = (3+6^*(f_u/f_y - 1))^*d_b : Eq (5-48)$					
					Where f_{u}/f_{y} taken as 1.4 (see below)					
Cover to hoops	C _v	40		'nт						
Specified concrete 28 day strength	f _c	3		MPa						
Specified steel yield stress	f _y	30	00	MPa	Longitudinal and transverse steel					
Earthquake Inputs										
Site Subsoil Category		C								
Zone Factor	Z	0.2			Nelson					
Return Period Factor	R _u	1.		_	2500 year return period					
Spectrum corner period		3.		s	From BM Fig 5.2					
Corner period spectral shape factor	$\Delta_{\rm h}(3)$	98		mm	From BM Table 5.5					
Corner period displacement	Δ(3)	47	9	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$					
Yield Displacement	L t	33	20	MPa	f 1 1*f · DM Toble 5 7					
Probable yield strength reinforcement	f _{ye}				$f_{ye} = 1.1 * f_{y}$: BM Table 5.7					
Young's modulus reinforcement	Es	200,		MPa						
Yield strain	ε _y	0.00		1/22	$\varepsilon_y = f_{ye} / E_s$					
Yield curvature	φ _{yy}	2.96		1/m	$\phi_{yy} = 2.15^* \varepsilon_y / D_c$: Eq (5-8)					
Strain penetration length	L _{sp}	0.2	32	m	$L_{sp} = 0.022*f_{ye}*d_b/1000$: See def of terms for Eq (5-10					
Coefficient for column fivity		0.000			See Bridge Manual Commentary C5					
Coefficient for column fixity Yield displacement	C ₁	0.3 76	0.333		$\Delta_{\rm y} = C_1^* \phi_{\rm yy}^* (H_{\rm e} + L_{\rm sp})^{2*} 1000: Eq (5-10)$					
Design Base Shear	Δ_y	10	01	mm	$\mu \Delta y = O_1 \psi_{yy} (\mu_e + \mu_{sp})$ 1000. Eq.(5-10)					
Design maximum inelastic disp.	Δ.	267	212	mm	$\Delta_{d} = \mu_{d}^{*} \Delta_{v}$					
Equivalent viscous damping ratio	Δ_{d}	0.1			Δ _d = μ _d Δ _y ξ _e = 0.05+0.444*(μ _d - 1)/(μ _d *π) : Eq (5-24)					
Equivalent viscous damping ratio	ξ _e Μ _ξ	0.1			$\zeta_{e} = 0.05 + 0.444 (\mu_{d} - 1)/(\mu_{d} \pi)$ Eq (5-24) $M_{e} = (0.07/(0.02 + \xi_{e}))^{0.5}$: Eq (5-17)					
Corner disp. of mod spectrum	$\Delta_{\sf cm}$	30		mm	$M_{\xi} = (0.07/(0.02 + \zeta_{e}))^{-1} \cdot Eq (5-17)$ $\Delta_{cm} = \Delta(3)^{*}M_{\xi}: Eq (5-18)$					

ltem	Symbol	Trans	Long	Units	Comment / Formula
Effective structure period	Te	2.62	2.08	s	$T_e = T_c^* \Delta_d / \Delta_{cm}$
Effective secant stiffness	K _e	1,384	2,188	kN/m	$K_{e} = 4^{*}\pi^{2*}W_{s}/(9.81^{*}T_{e}^{2})$
Design base shear	V _b	370	465	kN	$V_{\rm b} = K_{\rm e}^* \Delta_{\rm d} / 1000$
Required design base mom capacity	Mn	3,173	3,546	kN m	$M_n = V_b^* H_e$: does not include P - Δ effects
Calculated Structural Parameters	. <u></u>				
Cover to longitudinal bars	c _o	5	6	mm	From cover to hoops
Gross column section area	Aq	1.	13	m²	$A_{a} = \pi^{*} D_{c}^{2} / 4$
Area of longitudinal steel	As	16,	085	mm²	$A_{\rm s} = N_{\rm b}^{*} \pi^* d_{\rm b}^{2} / 4$
Check longitudinal steel area ratio	ρι	0.0	142		$\rho_1 = A_s / (10^{6*} A_q)$
Check minimum required steel area	A _{sm}	15,0	080	mm²	$A_{sm} = 4*10^6 A_g / f_y$: BM Clause 5.6.4(f)
Check maximum permitted steel area	A _{sma}	67,	358	mm²	$A_{sma} = 18*10^6 A_g / f_v$: BM Clause 5.6.4(f)
Area of transverse reinforcement	At	20	01	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρ _s	0.00	728		$\rho_{s} = 4^{*}A_{t} / (1000^{*}(D_{c} - (2^{*}c_{v} + dt)/1000)^{*}s_{t})$
					Depth of core taken on centre-line of hoops Adopt Priestley et al, 1996 rather than NZS 3101
					OK: min required = 0.005 ; BM Clause 5.6.4(h)(i)
Strain Limits for Plastic Rotation				ļ	
Yield strength transverse reinf.	f _{sv}	30	00	MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.	12		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	٤ _{sul}	0.	12		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	45	5.5	MPa	$f_{ce} = 1.3*f_c$: BM Table 5.7
Average confining stress	f _{ld}	1.0	04		$f_{id} = 0.95^* f_{sv}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	52	3	MPa	$f_{cc} = f_{ce}^{*}(2.254^{*}(1+7.94^{*}f_{ld}/f_{ce})^{1/2} - 2^{*}f_{ld}/f_{ce}^{-}1.254)$ Priestley et al 1996, Eq (5.6)
Reinforcement limiting strain	٤ _{sd}	0.0	29		ε _{sd} = 0.015+6*(ρ _s - 0.005) ≤ 0.5 ε _{sul} : Eq (5-11)
Concrete limiting strain	ε _{cd}	0.0	110		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{sy}^* \epsilon_{sut}) / f_{cc} : Eq (5-12)$
Neutral axis depth	с	28	32	mm	From moment strength analysis
Check using empirical formula	Cc	21	76	mm	$c_c = D_c^* (0.2 + 0.65^* W_s / (1000^* f_{ce}^* A_g))^* 1000$
					Priestley et al 2007. Eq (10.8)
Distance extreme bar to neutral axis	b _{na}	84	16	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	з	0.0	096		$\varepsilon = \varepsilon_{sd}^{*}c / b_{na}$
					Steel limiting strain governs
Limit state curvature	φ _{ls}	0.0339		1/m	$\phi_{Is} = IF(\epsilon > \epsilon_{cd}, \epsilon_{cd} / (c/1000), \epsilon_{sd} / (b_{na} / 1000))$
Plastic curvature	φp	0.0	310	1/m	$\phi_{p} = \phi_{Is} - \phi_{yy}$
Plastic Hinge Length					
Ratio steel ultimate over yield stress	f _u /f _y	1.	4		From Pacific Steel test results
Hinge length parameter	k _{lp}	0.0	80		$k_{lp} = 0.2^{*}(f_u / f_y - 1) \le 0.8$: Eq (5-38)
Distance to point of contraflexure	L _c	8.57	7.62	m	$L_{c} = H_{e}$
Plastic hinge length	L _p	0.92	0.84	m	$L_p = k_{lp}^* L_c^+ L_{sp} \ge 2^* L_{sp} : Eq (5-37)$

ltem	Symbol	Trans	Long	Units	Comment / Formula
Ductility Factor Capacity					
Plastic rotation	θ_{p}	0.0284	0.0261	rad	$\theta_{\rm p} = \phi_{\rm p} \star L_{\rm p}$
Plastic displacement capacity	Δ_{p}	244	199	mm	$\Delta_{\rm p} = \theta_{\rm p}^{*} L_{\rm c}^{*} 1000$: Eq (5-36)
Limit state displacement capacity	Δ_{IS}	320	260	mm	$\Delta_{\rm IS} = \Delta_{\rm y} + \Delta_{\rm p}$
Ductility capacity	μ_{ls}	4.19	4.27		$\mu_{ls} = \Delta_{ls} / \Delta_y$: OK > 3.5
Check P-A Moment					
Dynamic weight x disp. demand	$M_{p\text{-}\Delta}$	631	502	kN m	$M_{p-\Delta} = W_s^* \Delta_d / 1000$
					Ignores minor contribution from lower col.
Ratio: $M_{p-\Delta} / M_n$	M _{rat}	0.20	0.14		> 0.1. Increase in moment capacity required
					< 0.25 so less than maximum limit
					See BM Clause 5.3.7
Moment Capacity	·				
Required moment capacity	M _{bp}	3,489	3,797	kN m	$M_{\rm bp} = M_{\rm n} + M_{\rm p-\Delta}/2$
Capacity of section with 20/D32 bars	M _{bc}	3,6	672	kN m	OK: M_{bc} approximately equal to M_{bp}

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Maitai River Bridge										
Analysis Case 1: Rigid Foundations an	d Bearin	as: Soil Subsoi	l Catego	ory D: Design Analysis Procedure						
Transverse and Longitudinal Directio		J	· · · · · · · · · · · · · · · · ·							
Prepared: J Wood										
Edit Date: 21-Aug-17 Print Date: 21-Aug-17										
	1	-		[
ltem	Symbol	Value Trans Long	Units	Comment / Formula						
Structural Inputs	•	1	1							
Dynamic wt of superstructure on pier	Ws	2,380	kN	Includes pier cap + 1/3 column						
Effective height superstructure	H _e	8.552 7.621	m	Trans: centre dynamic mass above pile top Long: top of pier above pile top						
Column diameter	D _c	1.4	m							
Design ductility limit	μ_{d}	3.0		Reasonable limit for concrete piers A higher limit results in a significant P - Δ mom						
Diameter longitudinal bars	d _b	32	mm							
Diameter transverse hoops	dt	20	mm							
Number of longitudinal bars	N _b	20		Adjusted to give required moment capacity						
Spacing transverse hoop bars	s _t	100	mm	Adjusted to give required ductility - see below						
Check maximum permitted spacing	s _c	134	mm	$s_c = (3+6^*(f_u/f_y - 1))^*d_b : Eq (5-48)$						
				Where f_u/f_y taken as 1.4 (see below)						
Cover to hoops	Cv	40	mm							
Specified concrete 28 day strength	f _c	35	MPa							
Specified steel yield stress	f _y	500	MPa	Longitudinal and transverse steel						
Earthquake Inputs										
Site Subsoil Category		D								
Zone Factor	z	0.27	r	Nelson						
Return Period Factor	Ru	1.8		2500 year return period						
Spectrum corner period	Tc	3.0	s	From BM Fig 5.3						
Corner period spectral shape factor	$\Delta_{h}(3)$	1,585	mm	From BM Table 5.5						
Corner period displacement	Δ(3)	770	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$						
Yield Displacement		1	1	1						
Probable yield strength reinforcement	f _{ye}	550	MPa	$f_{ye} = 1.1*f_y$: BM Table 5.7						
Young's modulus reinforcement	Es	200,000	MPa							
Yield strain	εγ	0.00275		$\varepsilon_y = f_{ye} / E_s$						
Yield curvature	ф _{уу}	4.22E-03	1/m	$\phi_{yy} = 2.15^{*} \varepsilon_{y} / D_{c}$: Eq (5-8)						
Strain penetration length	L _{sp}	0.387	m	$L_{sp} = 0.022*f_{ye}*d_b/1000$: See def of terms						
				for Eq (5-10)						
Coefficient for column fixity	C ₁	0.333		See Bridge Manual Commentary C5						
Yield displacement	Δ_y	112 90	mm	$\Delta_{y} = C_{1}^{*} \phi_{yy}^{*} (H_{e} + L_{sp})^{2*} 1000: Eq (5-10)$						
Design Base Shear										
Design maximum inelastic disp.	Δ_{d}		mm	$\Delta_{d} = \mu_{d}^{*} \Delta_{y}$						
Equivalent viscous damping ratio	ξe	0.144		$\xi_{e} = 0.05 + 0.444^{*} (\mu_{d} - 1) / (\mu_{d}^{*} \pi) : Eq (5-24)$						
Damping modifier	Μ _ξ	0.65		$M_{\xi} = (0.07/(0.02 + \xi_{e}))^{0.5} : Eq (5-17)$						
Corner disp. of mod spectrum	$\Delta_{\rm cm}$	503	mm	$\Delta_{\rm cm} = \Delta(3)^* M_{\xi}$: Eq (5-18)						

Γ	1				
ltem	Symbol	Trans	-		Comment / Formula
Effective structure period	T _e	2.01	1.62		$T_e = T_c^* \Delta_d / \Delta_{cm}$
Effective secant stiffness	K _e	2,363	3,669	kN/m	$K_e = 4^* \pi^{2*} W_s / (9.81^* T_e^2)$
Design base shear	V _b	798	994	kN	$V_{b} = K_{e}^{*} \Delta_{d} / 1000$
Required design base mom capacity	M _n	6,821	7,574	kN m	$M_n = V_b^* H_e$: does not include P - Δ effects
Calculated Structural Parameters	1			1	
Cover to longitudinal bars	co	6	0	mm	From cover to hoops
Gross column section area	Ag	1.	54	m²	$A_{g} = \pi^{*} D_{c}^{2} / 4$
Area of longitudinal steel	As	16,0	085	mm²	$A_{s} = N_{b} * \pi * d_{b}^{2}/4$
Check longitudinal steel area ratio	ρι	0.0	104		$\rho_1 = A_s / (10^{6*} A_g)$
Check minimum required steel area	A _{sm}	12,3	315	mm²	$A_{sm} = 4*10^{6} A_{g} / f_{y}$: BM Clause 5.6.4(f)
Check maximum permitted steel area	A _{sma}	55,4	418	mm²	$A_{sma} = 18*10^6 A_g / f_y$: BM Clause 5.6.4(f)
Area of transverse reinforcement	At	31	4	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρ _s	0.00	967		$\rho_s = 4^*A_t / (1000^*(D_c - 2^*c_v + dt)/1000)^*s_t)$
					Depth of core taken on centre-line of hoops
					Adopt Priestley et al, 1996 rather than NZS 3101
					OK: min required = 0.005 : BM Clause 5.6.4(h)(i)
Strain Limits for Plastic Rotation					
Yield strength transverse reinf.	f _{sy}	50	00	MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.1	10		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	ε _{sul}	0.1	10		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	45	5.5	MPa	$f_{ce} = 1.3^* f_c$: Table 5.7
Average confining stress	f _{ld}	2.3	30		$f_{Id} = 0.95^* f_{sy}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	59).7	MPa	$\begin{split} f_{cc} = f_{ce}^{*}(2.254^{*}(1+7.94^{*}f_{id}/f_{ce})^{1/2} - 2^{*}f_{id}/f_{ce}^{-}1.254) \\ \text{Priestley et al 1996, Eq 5.6} \end{split}$
Reinforcement limiting strain	ε _{sd}	0.0	43		ε _{sd} = 0.015+6*(ρ _s - 0.005) ≤ 0.5 ε _{sul} : Eq (5-11)
Concrete limiting strain	ε _{cd}	0.0	153		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{sv}^* \epsilon_{sut}) / f_{cc}$: Eq (5-12)
Neutral axis depth	С	36	64	mm	From moment strength analysis
Check using empirical formula	Cc	31	1	mm	$c_c = D_c^* (0.2 + 0.65^* W_s / (1000^* f_{ce}^* A_g))^* 1000$
					Priestley et al, 2007 Eq (10.8)
Distance extreme bar to neutral axis	b _{na}	96	60	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b /2$
Concrete strain from steel strain	з	0.0	163		$\varepsilon = \varepsilon_{sd} c / b_{na}$
					Concrete limiting strain governs
Limit state curvature	φ _{ls}	0.0421		1/m	$\phi_{\rm Is} = IF(\varepsilon > \varepsilon_{\rm cd}, \varepsilon_{\rm cd} / (c/1000), \varepsilon_{\rm sd} / (b_{\rm na} / 1000))$
Plastic curvature	φp	0.0	379	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$
Plastic Hinge Length	·				
Ratio steel ultimate over yield stress	f _u /f _y	1.	.2		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.0	40		$k_{ip} = 0.2^*(f_u / f_y - 1) \le 0.8$: Eq (5-38)
Distance to point of contraflexure	L _c	8.55	7.62	m	$L_{c} = H_{e}$
Plastic hinge length	L _p	0.774	0.774	m	$L_p = k_{lp}^* L_c + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$

Item	Symbol	Trans	Long	Units	Comment / Formula
Ductility Factor Capacity	•				
Plastic rotation	θ_{p}	0.0293	0.0293	rad	$\theta_{\rm p} = \phi_{\rm p} {}^{\star} L_{\rm p}$
Plastic displacement capacity	Δ_{p}	251	224	mm	$\Delta_{\rm p} = \theta_{\rm p}^{*} L_{\rm c}^{*} 1000$
Limit state displacement capacity	Δ_{IS}	363	314	mm	$\Delta_{\rm IS} = \Delta_{\rm y} + \Delta_{\rm p}$
Ductility capacity	μ_{ls}	3.23	3.48		$\mu_{\text{Is}} = \Delta_{\text{Is}} / \Delta_{\text{y}} : \text{OK} > 3.0$
Check P-∆ Moment					
Axial load x displacement demand	$M_{p\text{-}\Delta}$	803	645	kN m	$M_{p-\Delta} = W_s^* D_d /1000$ Ignores minor contribution from lower col.
Ratio: $M_{p-\Delta} / M_n$	M _{rat}	0.12	0.09		 > 0.1 in transverse direction Increase in mom cap reqd in trans direction < 0.25 so less than maximum limit See BM clause 5.3.7
Moment Capacity					
Required moment capacity	M _{bp}	7,223	7,574	kN m	$M_{bp} = M_n + M_{p-\Delta}/2$ (Transverse direction)
Capacity of section with 20/D32 bars	M _{bc}	7,7	751	kN m	$OK: M_{bc} > M_{bp}$

References:

Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges. John Wiley & Sons Inc Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Maitai River Bridge										
Analysis Case 2 (Flexible Foundation & Elastomeric Bearings): Pier Pile Stiffness										
Transverse Analysis	Transverse Analysis									
Analyses for longitudinal and other analysis cases are similar with M_a , H_e , and H_c adjusted to appropriate values										
Prepared: J Wood										
Edit Date 21-Aug-17 Print Date: 21-Aug-17										
ltem	Symbol	Value	Units	Formula / Comments						
Input Parameters										
Cylinder pile diameter inside shell	Di	1.800	m							
Thickness of steel shell	t _s	10	mm	Design value. 12 mm used in construction						
Cylinder pile length	L	11.980	m	Length at Pier C						
Specified concrete strength	f _c	35	MPa							
Moment applied to pile top	Ma	7,750	kN m	Flexural capacity of 1.4 m dia pier column						
Effective height of superstructure	H _e	8.552	m	Height of CoG of dynamic mass						
Shear applied to pile top	V	906	kN	$V = M_a / H_e$: approximate, see Page C5-73						
				For Soil D more exact shear is 868 kN						
Height CoG of Column/3 + Pier Cap	H _c	6.967	m	See Page C5-56						
Assumed inc of soil E with depth	m	10	MPa/m	Based on pile test results. Linear variation						
Calculated Parameters										
Cylinder pile outside diameter	D	1.820		$D = D_i + 2^* t_s / 1000$						
I for concrete core	l _c	0.515	m ⁴	$l_{c} = \pi^{*} D_{i}^{4}/64$						
I for shell	I _s	0.023	m ⁴	$l_s = \pi^* (D^4 - D_i^4)/64$						
Young's modulus for concrete	Ec	36,147	MPa	$E_{c} = 4700^{*}Sqrt(f_{c})^{*}1.3$						
				Priestley et al, 1996 Eq (5.2)						
				Factor of 1.3 allows for E_c being typically						
				20% - 50% greater than given by specified $f_{\rm c}$						
Combined shell + concrete core El	EI	23,284	MN m ²	$EI = I_c^*E_c + I_s^*200,000$						
Modified E _p to allow for shell	Ep	43,232	MPa	$E_p = EI/(\pi^*D^4/64)$: Pender Eq 3.17						
E value of soil at depth D	Es	18.2	MPa	E _s = m*D: Pender Eq 3.23						
Modulus ratio	к	2,375		$K = E_p / E_s$: Pender Eq 3.23						
Pile Length / Diameter	L _{Dr}	6.58		$L_{Dr} = L / D$						
Short pile length limit	L _r	6.21	m	$L_r = 0.07*D*(E_p / E_s)^{0.5}$: L > L_r : Pender Eq 3.35						
Long pile length limit	La	13.29	m	$L_a = 1.3*D*(E_p / E_s)^{0.222}$: L < L _a : Pender Eq 3.27						
				Pile is intermediate: assume long pile action						
Depth of maximum moment	L _{Mmax}	5.45	m	L _{Mmax} = 0.41 L _a : Pender Eq 3.29						
Moment / Shear Ratio	е	8.552	m	$e = M_a / V$						
	f	4.699		$f = M_a / (D^*V)$: Pender Eq 3.18						
Parameter a	а	2.819		a = 0.6*e/D: Pender Eq 3.30						
Parameter b	b	0.107		b = 0.17*f ^{-0.3} : Pender Eq 3.30						
Parameter for maximum moment	l _{mh}	6.47		$I_{mh} = a^* K^b$: Pender Eq 3.30						
Maximum moment in pile	M _{max}	10,671	kN m	M _{max} =I _{mh} *D*V: Pender Eq 3.30						

Item	Symbol	Value	Units	Formula / Comments						
Flexibility and Stiffness: Long Pile	Flexibility and Stiffness: Long Pile: Linear Increase in E_s With Depth									
Flexibility coefficients:	f _{uHL}	0.00726	m/MN	$f_{uHL} = 3.2*K^{-0.333}/(E_s*D)$						
(Pender Eq 3.28)	f _{uML}	0.00110	MN⁻¹	$f_{uML} = 5.0^{*}K^{-0.556} / (E_{s}^{*}D^{2})$						
	$f_{\Theta ML}$	0.00029	(m MN) ⁻¹	$f_{\theta ML} = 13.6^{*}K^{-0.778} / (E_{s}^{*}D^{3})$						
Stiffness coefficients:	K _{HHL}	320	MN/m	$K_{HHL} = f_{\theta ML} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$						
(Pender Eq 3.40)	K _{HML}	-1,204	MN	$K_{HML} = -f_{uML} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$						
	K _{MML}	7,936	MN m	$K_{MML} = f_{uHL} / (f_{uHL} * f_{\theta ML} - f_{uML}^2)$						
Pile head horizontal stiffness	K _{HtL}	60.0	MN/m	$K_{HtL} = (K_{HHL} * K_{MML} - K_{HML}^2) / (K_{MML} - e^* K_{HML})$ Pender Eq 3.41						
Pile head rotational stiffness	$K_{ ext{ heta}tL}$	2,371	MN m/rad	$K_{\text{H}L} = (K_{\text{H}HL} * K_{\text{M}ML} - K_{\text{H}ML}^2) / (K_{\text{H}HL} - K_{\text{H}ML} / e)$ Pender Eq 3.42						
Pile and Pier CoG Deflections fro	m Foundation	Flexibility	,							
Deflection at ground level	Δ_{g}	15	mm	$\Delta_{g} = V/(K_{HtL})$						
Rotation at ground level	θ_{g}	3.3	mili rad	$\theta_{g} = M_{a}/K_{\theta tL}$						
Deflection at pier CoG	Δ_{t}	38	mm	$\Delta_{\rm t} = {\sf V}/({\sf K}_{\rm htL}) + {\sf M}_{\rm a}{}^{\star}{\sf H}_{\rm c}/{\sf K}_{\rm \theta tL}$						
References:										
Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges. John Wiley & Sons Inc										

Pender M J, 1993. Aseismic Pile Foundation Design Analysis, NZSEE, Vol 26 No 1 pp 49 - 161

Analysis Case 2: Flexible Foundations and Bearings: Soil C and D: Review Method Transverse Direction

Prepared: J Wood

Edit Date: 21/Aug/17

Print Date: 21-Aug-17

		Val			
Item	Symbol	L	Value Soil C Soil D		Comment / Formula
Structural Inputs		3011 C			
Weight of superstructure on pier	Ws	1,9	02	kN	Excludes pier cap and column
Height of superstructure mass	H _s	8.9		m	Above pile cylinder top: see anal on p. C5-55
	_				
Height of CoG total mass	Н	8.1	-	m	Above pile cylinder top: see anal on p. C5-56
Height of column	H _{col}	6.2 39		m kN	From drawings See previous analysis on p. C5-55
Weight of pier cap	W _c				From drawings
Maximum depth of pier cap	H _{ca}	1.4		m	
Height of top of pier cap	H _{cap}	7.6		m	Above pile cylinder top
Height CoG of pier cap	H _c	6.9		m	Above pile cylinder top: see anal on p. C5-56
Column diameter	D _c	1.2	1.4		
Weight of pier column	W _{co}	175	239		
Weight of pier cap + column/3	W _{cc}	457	478		$W_{cc} = W_c + W_{co}/3$
Height CoG of pier	H _{cogc}	6.869	6.839	m	$H_{cogc} = (W_c * H_c + W_{co} * H_{col} / 3) / W_{cc}$
					1/3 column mass at underside cap. See BM C5
Total dynamic weight of span	W _d	2,359			$W_d = W_s + W_c + W_{co} / 3$: not including abutments
Diameter longitudinal bars	d _b	32		mm	
Number of longitudinal bars	N _b	20	28		
Diameter of transverse hoop bars	dt	16	20	mm	
Spacing transverse hoop bars	St	120	100	mm	
Cover to hoops	Cv	4	D	mm	
Specified concrete strength	f _c	3	5	MPa	
Specified steel yield stress	f _y	300	500	MPa	Longitudinal and transverse
Foundation Stiffness Inputs		-		1	
Horizontal stiffness at ground level	K _h	6	0	MN/m	See previous analysis on Page C5-70
Rotational stiffness at ground level	K_{θ}	2,3	70	MN m/ra	See previous analysis on Page C5-70
Inputs for Elastomeric Bearings on F	Piers				
Shear modulus	G _b	0.7	73	MPa	53 IRHD - Skellerup brochure
Width of bearing	B _b	350	380	mm	Size greater than on drawings Trans direction
Length of bearing	L _b	280	380	mm	Size greater than on drawings Long direction
Total thickness of bearing	t _t	13	81	mm	= (90 rubber + 24 plates + top and btm cover)
Thickness of rubber	t _r	9	D	mm	9 inner layers at 10 mm
					Bearings are dowelled. Ignore cover rubber.
Side cover	Sc	7	•	mm	Skellerup brochure
Number bearings on each pier	N _{be}	8	3		
Bonded area of rubber	A _{bl}	0.0894	0.1340	m²	$ A_{bl} = (B_b - 2^* s_c)^* (L_b - 2^* s_c) / 10^6 $ Cover rubber ignored. Some guidelines include it.
Shear stiffness	K _d	0.72	1.09	MN/m	$K_{d} = G_{b} * A_{bl} / (t_{r} / 1000)$
Total stiffness of bearings on pier	K _{dt}	5,800	8,692		$K_{dt} = 1000^{\circ}K_{d}^{\circ}N_{be}$

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Earthquake Inputs	e yn ser		00.12	onno	
		с	D		
Site Subsoil Category	7				Nelson
Zone Factor	Z	_	27		
Return Period Factor	R _u		.8		2,500 year return period
Corner period spectral shape factor	$\Delta_{\rm h}(3)$	985	,		From BM Table 5.5
Corner period displacement	∆(3)	479	770	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
Calculated Structural Parameters					-
Cover to longitudinal bars	C _o	56		mm	From cover to hoops
Young's modulus concrete	Ec	29,	580	MPa	$E_c = 5000^*$ Sqrt(f _c): Priestley et al, 2007, Eq (4.43)
					Equation used to drive stiffness ratio curves.
Area of longitudinal steel	A _s		22,519		$A_{\rm s} = N_{\rm b}^* \pi^* d_{\rm b}^2 / 4$
Area of transverse reinforcement	A _t	201	314	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρs	0.00607	0.00967		$\rho_s = 4^*A_t / (1000^*(D_c - (2^*c_v + d_t)/1000)^*s_t)$
					Depth of core taken on centre-line of hoops Adopt Priestley et al 1996 rather than NZS 3101
Area of pier column	Ag	1.131	1.539	m²	$A_{g} = \pi^{*} D_{c}^{2} / 4$
Longitudinal reinforcement ratio	ρι	0.0142			$\rho_{\rm I} = A_{\rm s}/(A_{\rm a}^*10^6)$
Axial force ratio in column	R _{af}	0.063			$R_{af} = (W_s + W_c + W_{co})/(A_g + f_c + 1000)$
Pier stiffness ratio	R _{st}	0.38			From Priestley et al, 2007. Fig 4.12
Cracked stiffness of pier column	K _p		10,910		$K_{p} = \Delta_{y} / \Delta_{yc}^{*} (3^{*} \pi^{*} D_{c}^{4} R_{s}^{*} E_{c}^{*} 1000) /$
(displacements at CoG of pier)	·ъ		10,010		$(64^{*}(H_{coac} + L_{so})^{3})$
					For comparison with yield stiffness based on pier
					yield disp & shear. Δ_y , Δ_{yc} and K_y calculated below
Yield Displacement at Top of Pier and	Floyural	Strengt			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Probable yield stress for reinf.	f _{ye}	330		MPa	$f_{ve} = 1.1^* f_v$: BM Table 5.7
Steel elastic modulus	Es		,000	MPa	
Yield strain			,000 0.00275		$\varepsilon_v = f_{ve} / E_s$
Yield curvature	ε _y		0.00275		$\phi_{yy} = \frac{1}{2} 1$
Strain penetration length	фуу				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	L _{sp}	0.232	0.387		$L_{sp} = 0.022*f_{ye}*d_b/1000$: See def of terms for Eq (5-10)
		0.500	7 500	1.51	
Flexural strength of column - used to calculate shear in column	M _n	3,500			Flexural strength anal: $f_y = 330 \& 550 MPa$
				I	3,672 kNm & 7,751 kNm to allow for P- Δ mom
Shear in pier at flexural capacity	Vy	431	924	κN	$V_y = M_n / H$
					Approximate. See 1st mode shear below.
Coefficient for column fixity	C ₁	0.33	0.33		See Bridge Manual Commentary C5
Pier CoG disp. due to found $\Delta \& \theta$	Δ_{f}	17	37	mm	$\Delta_{\rm f} = V_{\rm y}/K_{\rm h} + M_{\rm h}^*H_{\rm cogc}/K_{\rm \theta}$
Pier CoG disp. due to col. at yield	Δ_{y}	50	74	mm	$\Delta_{y} = C_{1}^{*} \phi_{yy}^{*} (H_{cogc} + L_{sp})^{2*} 1000 : Eq (5-10)$
Total displacement at CoG pier	$\Delta_{\rm yc}$	67		mm	$\Delta_{yc} = \Delta_{y} + \Delta_{f}$
Elastic Period of Vibration: See Equat	ions (C5A	1-1) to (C5A-6)		
Calculate period of vibration assuming ele Use two-degree of freedom vibration theo	•			to calcu	late period and mode shape
	1	1		1	
Pier stiffness modifier	S _{ma}	0.93	0.93		Used to adjust pier stiffness: iterate until $M_b = M_n$
					M_b calculated below
Pier stiffness at yield	K _y	5,986			$K_{y} = S_{ma} * V_{y} / (\Delta_{yc} / 1000)$
Height modifier for mass disps	aa	0.31	0.31		$aa = (H_s/H_{cogc} - 1)$
					Rotation of pier increases disp of W_s by (1+aa)

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment O Effective from October 2018

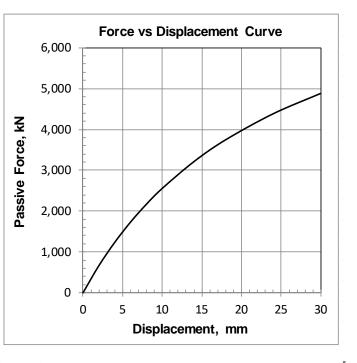
Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Quadratic equation coefficient B	B _e	-321	-438	(rad/s) ²	$B_e = -9.81^{*}(K_{dt}/W_s + (K_v + K_{dt}^{*}(1+aa))/W_{cc})$
Quadratic equation coefficient C	Ce	3,844	7,151	(rad/s) ⁴	$C_{e} = 9.81^{2*} (K_v * K_{dt}) / (W_s * W_{cc})$
Angular frequency first mode	ω _e	3.5	4.1	rad/s	$ω_e = Sqrt((-B_e - Sqrt(B_e^2 - 4^*C_e))/2)$
First mode period - elastic response	T _v	1.78	1.53	s	$T_v = 2^* \pi / \omega_e$
Mode shape	A _{rae}	1.93	1.80		$A_{rae} = (K_{y} + K_{dt} - W_{cc} * \omega_{e}^{2} / 9.81) / K_{dt}$
Displacement in Bearings at Pier Yield		/			
Disp of superstructure at pier yield	$\Delta_{\rm sa}$	150	234	mm	$\Delta_{sa} = \Delta_{yc} * (A_{rae} + aa): Eq (C5A-9)$
Displacement in bearings	$\Delta_{\sf bb}$	62.5	88	mm	$\Delta_{bb} = \Delta_{yc} * (A_{rae} - 1): Eq (C5A-8)$
Check disp in bearings	$\Delta_{\rm bbc}$	62.5	88	mm	$\Delta_{\rm bbc} = W_{\rm s}^* \Delta_{\rm sa}^* \omega_{\rm e}^2 / (9.81^* K_{\rm dt})$: Eq (C5A-12)
Check base moment	M _b	3,522	7,526	kN m	$M_{b} = (W_{s}^{*}\Delta_{sa}^{*}H_{s} + W_{cc}^{*}\Delta_{yc}^{*}H_{cogc})^{*}\omega_{\theta}^{2}/(1000^{*}9.81)$
					Eq (C5A-11)
Shear force in bearings	V _b	362	768	kN	$V_{\rm b} = \Delta_{\rm bb} {}^{*} {\rm K}_{\rm dt} / 1000$
Shear from inertia force on pier	V _{cs}	39	91	kN	$V_{cs} = (W_{cc}^* \Delta_{yc}^* \omega_e^2) / (9.81^* 1000))$
Base shear in 1st mode response	V _{ba}	401	860	kN	$V_{ba} = V_b + V_{cs}$
Shear strain in bearing rubber	ε _{by}	0.69	0.98		$\varepsilon_{by} = \Delta_{bb} / t_r$: acceptable if $\varepsilon_{by} < 1.0$.
Elastic Displacement					
Modal participitation factor	Pe	1.06	1.06		$P_{e} = (W_{s} + W_{cc} / A_{rae}) / (W_{s} + W_{cc} / (A_{rae})^2)$
					From Eq (C5A-17)
Elastic displacement superstruct	$\Delta(T_{el})$	300	414	mm	$\Delta(T_{el}) = P_{e}^* \Delta(3)^* T_{y}/3$
Elastic displacement at CoG pier	Δ_{coe}	176	238		$\Delta_{coe} = \Delta(T_{el})/(A_{ra}+aa)$: Eq (C5A-9)
Approx ductility demand on column	μ	3.20	2.74		$\mu = (\Delta_{coe} - \Delta_{f})/(\Delta_{y})$: equal disp. assumption
Strain Limits for Plastic Rotation & Cu	rvatures				
Yield strength transverse reinf.	f _{sy}	300	500	MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.12	0.10		BM Clause 5.3.5(b)
Strain at max stress longitud. reinf.	€ _{sul}	0.12	0.10		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	45.5	45.5	MPa	$f_{ce} = 1.3^* f_c$: Table 5.7
Average confining stress	f _{ld}	0.87	2.30		$f_{Id} = 0.95^* f_{sy}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	51.2	59.7	MPa	$f_{cc} = f_{ce}^{*} (2.254^{*} (1+7.94^{*} f_{Id}/f_{ce})^{1/2} - 2^{*} f_{Id}/f_{ce} - 1.254)$
					Priestley et al, 1996. Eq (5.6)
Reinforcement limiting strain	٤ _{sd}	0.021	0.043		$\epsilon_{sd} = 0.015+6^{*}(\rho_{s}-0.005) \le 0.5 \epsilon_{sul}$: Eq (5-11)
Concrete limiting strain	ε _{cd}	0.0100	0.0153		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{sy}^* \epsilon_{sut}) / f_{cc}$: Eq (5-12)
Neutral axis depth	с	282	364	mm	From moment strength analysis
Check using empirical formula	C _{ce}	278	313	mm	$c_{ce} = D_c^{*}10^{3*}(0.2{+}0.65^{*}(W_{co}{+}W_c{+}W_s)/(10^{3*}f_{ce}^{*}A_g))$
	Ť				Priestley et al 2007. Eq (10.8)
					OK: reasonable agreement
Distance extreme bar to neutral axis	b _{na}	846	960	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b /2$
Concrete strain from steel strain	З	0.0071	0.0163		$\varepsilon = \varepsilon_{sd}^* c / b_{na}$
					Soil C: Steel limiting strain governs
					Soil D: Concrete limiting strain governs
Limit state curvature	φ _{ls}	0.0253	0.0421	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (c/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	φ _p	0.0224	0.0379	1/m	$\phi_{p} = \phi_{IS} - \phi_{yy}$

ltem	Symbol	Soil C	Soil D	Units	Comment / Formula
Plastic Hinge Length and Ductility Fac	-				
Ratio steel ultimate over yield stress	f _u /f _v	1.4	1.2		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.08	0.04		$k_{I_D} = 0.2^*(f_u / f_v - 1) \le 0.08$: Eq (5-38)
Distance to point of contraflexure	L _c	8.11	8.11	m	$L_c = H$
Plastic hinge length	Lp	0.88	0.77	m	$L_{p} = k_{lp}^{*}L_{c} + L_{so} \ge 2^{*}L_{so}$: Eq (5-37)
Plastic rotation	θρ	0.0197	0.0293	rad	$\theta_{\rm p} = \phi_{\rm p}^* L_{\rm p}$
Plastic displacement	Δ _p	135	201	mm	$\Delta_{\rm p} = \theta_{\rm p}^{*} H_{\rm coac}^{*} 1000 : {\rm Eq} (5-36)$
Limit state displacement capacity	Δ_{ls}	185	274	mm	$\Delta_{\rm Is} = \Delta_{\rm V} + \Delta_{\rm p}$
Ductility capacity	μ _{ls}	3.73	3.73		$\mu_{IS} = \Delta_{IS} / \Delta_y$
			For So	il C & D:	Capacity > Approximate demand Design probably OK
Ductility Iteration for Superstructure R	esponse				
Iterate assumed ductility in pier to give ca	alculated b	ase mo	ment =	yield bas	se moment - (P- Δ moment/2)
Assumed ductility demand on pier	μ_{ap}	2.76	2.28		Used to modify pier stiffness
Pier stiffness - modified for ductility	к	2,613	4,240	kN/m	$K = V_p / ((\mu_{ap} * \Delta_y + \Delta_f) / 1000): V_p \text{ calculated below}$
					For initial trial can use V_{ba} from above (pier yield)
Calculated base moment	M _{bc}	3,520	7,559	kN m	$M_{bc} = (W_{s}^* \Delta_{de}^* H_{s} + W_{cc}^* \Delta_{cogc}^* H_{cogc})^* \omega^2 / (9.81^*1000)$
					From Eq (C5A-11)
					$\Delta_{\text{de}}, \Delta_{\text{cog}}$ and ω are calculated below
					OK: $M_{pc} = M_n$
Calculate period of vibration assuming ed	uivalent e	lastic re	sponse	of pier.	See Equations (C5A-1) to (C5A-6)
Use two-degree of freedom vibration theo	ry from Ti	hompso	n, 1965	to calcu	late period and mode shape
Quadratic equation coefficient B	B _c	-249	-366	(rad/s) ²	$B_{c} = -9.81^{*}(K_{dt}/W_{s}+(K+K_{dt}^{*}(1+aa))/W_{cc})$
Quadratic equation coefficient C	C _c	1,678	3,899	(rad/s) ⁴	$C_{c} = 9.81^{2*} (K^{*}K_{dt}) / (W_{s}^{*}W_{cc})$
Angular frequency	ω	2.6	3.3	rad/s	$\omega = \text{Sqrt}((-B_c-\text{Sqrt}(B_c^2-4^*C_c))/2)$
First mode effective period	Т	2.39	1.90	s	$T = 2^* \pi / \omega : T > T y$
Mode shape	A _{ra}	1.39	1.43		$A_{ra} = (K + K_{dt} - W_{cc}^* \omega^2 / 9.81) / K_{dt}$
Participitation factor	P	1.04	1.05		$P = (W_s + W_{cc} / A_{ra}) / (W_s + W_{cc} / {A_{ra}}^2)$
					From Eq (C5A-17)
Design disp. elastic spectrum	Δ (T)	397	510	mm	$\Delta(T) = P^* \Delta(3)^* T/3$
Iterate displacement demand until $\Delta_d(T)$	= 4 _{de}			1	
Estimated displacement demand	Δ_{de}	263	356	mm	Displacement of superstructure mass
Calculated displacement demand	$\Delta_{d}(T)$	263	356	mm	$\Delta_d(T) = \Delta(T)^* M_{\xi}: M_{\xi} \text{ calculated below}$
Damping and Ductility Demand	1			1	
Displacement in bearings	Δ_{i}	61	87	mm	$\Delta_i = W_s^* \Delta_{de}^* \omega^2 / (9.81^* K_{dt}): Eq (C5A-12)$
Check displacement in bearings	$\Delta_{\rm ic}$	61	87	mm	$\Delta_{ic} = \Delta_{de}^{*}(1 - (1+aa)/(A_{ra}+aa)): Eq (C5A-10)$
Shear strain in bearing rubber	ε _b	0.68	0.97		$\epsilon_{b} = \Delta_{i} / t_{r}$: $\epsilon_{b} <$ 1.0: bearings OK
Disp at CoG of pier	$\Delta_{ m cog}$	154	205	mm	$\Delta_{cog} = \Delta_{de} / (A_{ra} + aa)$: Eq (C5A-9)
Shear force in bearings	V_{pb}	354	758	kN	$V_{pb} = W_s^* \Delta_{de}^* \omega^2 / 9.81$
Inertia force from pier cap + column	F_{ci}	50	110	kN	$F_{ci} = \Delta_{cog}^{*} \omega^{2*} W_{cc} / (1000^{*}9.81)$
Shear force in pier	Vp	404	868	kN	$V_{p} = V_{pb} + F_{ci}$

Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Viscous damping ratio for bearings	بح	0.05	0.05		From BM Clause 5.4.3(g)(vi)
Damping from pier	ξe	0.17	0.15		$\label{eq:eq:epsilon} \begin{split} \xi_e &= 0.10 \text{+} 0.04^* (\mu_{ap} \text{-} 1) \leq 0.18: \mbox{ Eq (5-32)} \\ \mbox{ Assume cylinder/column equivalent to pile/column} \end{split}$
Combined damping bearings + pier	ξc	0.14	0.12		$\xi_{c} = (V_{p}^{*}\Delta_{cog}^{*}\xi_{e} + V_{pb}^{*}\Delta_{i}^{*}\xi)/(V_{p}^{*}\Delta_{cog} + V_{pb}^{*}\Delta_{i}):$
					Eq (5-23)
Damping reduction factor	Mξ	0.66	0.70		$M_{\xi} = (0.07/(0.02+\xi_c))^{0.5}$: Eq (5-17)
Ductility demand on pier column	μ_{ld}	2.76	2.28		$\mu_{\text{Id}} = (\Delta_{\text{cog}} - \Delta_{\text{f}}) / \Delta_{\text{y}}$
Ratio: ductility capacity/demand	R_{cd}	1.35	1.64		R_{cd} = μ_{ls}/μ_{ld} : R_{cd} > 1.0 : Design OK
					Could increase hoop spacing for Soil D
Check P-⊿ Moment					
Dynamic weight x disp demand	$M_{p\text{-}\Delta}$	571	775	kN m	$M_{p-\Delta} = (W_s^* \Delta_{de} + W_{cc}^* \Delta_{cog})/1000$
					Small contribution from lower col. ignored
Ratio: $M_{p-\Delta} / M_{bc}$	M _{rat}	0.16	0.10		> 0.1. Increase in moment capacity required
					< 0.25 maximum limit. See BM clause 5.3.7
Moment Capacity					
Required moment capacity	M _{bp}	3,805	7,947	kN m	$M_{bp} = M_{h} + M_{p-\Delta}/2$
Capacities with 20 & 28 /D32 bars	M _{bca}	3,672	7,751	kN m	OK: capacities slightly less than demands

Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges. John Wiley & Sons Inc Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Thompson W T, 1965. Vibration Theory and Applications. Prentice-Hall Inc


Maitai River Bridge										
Analysis Case 2 (Flexible Foundation a	& Elastom	eric Bear	ings): Abu	utment Pile Stiffness						
Longitudinal Analysis	Longitudinal Analysis									
Prepared: J Wood										
Edit Date: 21-Aug-17 Print Date: 21-Aug-17										
ltem	Symbol	Value	Units	Formula / Comments						
Input Parameters										
Cylinder pile diameter inside shell	Di	1.00	m							
Thickness of steel shell	t _s	6	mm	Design value. 12 mm used in construction						
Cylinder pile length	L	12.0	m							
Specified concrete strength	f _c	35	MPa							
Shear applied to pile top	V	1,000	kN	Nominal value for stiffness calculation						
Height of brg seating above pile top	H _c	1.50	m							
Moment applied to pile top	Ma	1,500	kN m	$M_a = H_c^*V$ (nominal value)						
Assumed inc of soil E with depth	m	10	MPa/m	Based on pile test results. Linear variation						
Calculated Parameters										
Cylinder pile outside diameter	D	1.012	m	$D = D_i + 2^* t_s / 1000$						
I for concrete core	l _c	0.049	m⁴	$l_{c} = \pi^{*} D_{i}^{4} / 64$						
l for shell	I _s	0.002	m⁴	$l_s = \pi^* (D^4 - D_i^4) / 64$						
Young's modulus for concrete	Ec	36,147	MPa	$E_c = 4700^*$ Sqrt(f _c)*1.3: Priestley et al,						
				1996 Eq (5.2)						
				Factor of 1.3 allows for E_c being typically						
				20% - 50% greater than given by 28 day $\rm f_c$						
Combined shell + concrete core El	EI	2,254	MN m ²	$EI = I_c * E_c + I_s * 200,000$						
Modified E_p to allow for shell	Ep	43,782	MPa	$E_p = EI/(\pi^*D^4/64)$: Pender Eq 3.17						
E value of soil at depth D	Es	10.1	MPa	E _s = m*D						
Modulus ratio	К	4,326		$K = E_p / E_s$						
Pile Length / Diameter	L _{Dr}	11.86		$L_{Dr} = L / D$						
Short pile length limit	L,	4.66	m	$L_r = 0.07*D*(E_p / E_s)^{0.5}$: L > L_r						
Long pile length limit	La	8.44	m	$L_a = 1.3*D*(E_p / E_s)^{0.222}$: L < L _a						
				$L > L_a$: pile is long						
Depth of maximum moment	L _{Mmax}	3.46	m	$L_{Mmax} = 0.41 L_a$: Pender Eq 3.29						
Moment / Shear Ratio	е	1.500	m	$e = M_a / V$						
	f	1.482		$f = M_a / (D^*V)$: Pender Eq 3.18						
Parameter a	а	0.889		a = 0.6*e/D: Pender Eq 3.30						
Parameter b	b	0.151		$b = 0.17*f^{-0.3}$: Pender Eq 3.30						
Parameter for maximum moment	I _{mh}	3.15		l _{mh} = a*K ^b : Pender Eq 3.30						
Maximum moment in pile	M _{max}	3,188	kN m	$M_{max} = I_{mh}^*D^*V$: Pender Eq 3.30						

Item	Symbol	Value	Units	Formula / Comments					
Flexibility and Stiffness: Long Pile: Linear Increase in E_s With Depth									
Flexibility coefficients:	f_{uHL}	0.01923	m/MN	$f_{uHL} = 3.2^{*}K^{-0.333}/(E_{s}^{*}D)$					
(Pender Eq 3.28)	f _{uML}	0.00459	MN⁻¹	$f_{uML} = 5.0^{*}K^{-0.556} / (E_{s}^{*}D^{2})$					
	$f_{\theta ML}$	0.00192	(m MN)⁻¹	$f_{\theta ML} = 13.6^{*}K^{-0.778} / (E_{s}^{*}D^{3})$					
Stiffness coefficients:	${\sf K}_{\sf HHL}$	121	MN/m	$K_{HHL} = f_{\theta ML} / (f_{uHL} * f_{\theta ML} - f_{uML}^2)$					
(Pender Eq 3.40)	K _{HML}	-288	MN	$K_{HML} = -f_{uML} / (f_{uHL}*f_{\theta ML} - f_{uML}^{2})$					
	K_{MML}	1209	MN m	$K_{MML} = f_{uHL} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$					
Pile head horizontal stiffness	K _{HtL}	38.3	MN/m	$K_{HtL} = (K_{HHL}^{*}K_{MML}^{*} - K_{HML}^{2}) / (K_{MML}^{*} - e^{*}K_{HML})$					
Pile head rotational stiffness	$K_{\theta tL}$	201	MN m/rad	$K_{\mathrm{\theta tL}} = (K_{\mathrm{HHL}} * K_{\mathrm{MML}} - K_{\mathrm{HML}}^{2}) / (K_{\mathrm{HHL}} - K_{\mathrm{HML}} / e)$					
Pile and Pier Seating Deflections and	Seating S	tiffness							
Deflection at ground level	Δ_{g}	26.1	mm	$\Delta_{g} = V/(K_{HtL})$					
Rotation at ground level	θ_{g}	7.5	milli rad	$\theta_{g} = M_{a} / K_{\theta tL}$					
Deflection at abutment seating level	$\Delta_{\sf p}$	37	mm	$\Delta_{\rm p} = V/(K_{\rm HtL}) + M_{\rm a}*H_{\rm c}/K_{\rm \theta tL}$					
Stiffness at seating level	K _a	27	MN/m	$K_a = V/\Delta_p$					
References:									

Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges. John Wiley & Sons Inc Pender M J, 1993. Aseismic Pile Foundation Design Analysis, NZSEE, Vol 26 No 1 pp 49 - 161

Maitai River Bridge										
Analysis Case 2: Abutment Passive Resistance and Stiffness										
Longitudinal Analysis										
Method:										
Kahalili-Tehrani P, Taciroglu E, and Shamsadadi A, 2010.										
Backbone curves for passive r	Backbone curves for passive response of walls with homogenous backfills									
Soil-Foundation-Structure Intera	action,Taylo	or & Franci	is Group	, London.						
Prepared: J Wood										
Edit Date: 21-Aug-17 Print Date: 21-Aug-17										
ltem	Symbol	Value	Units	Comment						
Input Parameters										
Assumed friction angle	φ	35	deg	Dense gravel backfill						
Assumed cohesion	с	0.0	kPa							
Assumed soil unit weight	γs	19.0	kN/m ²							
Strain at 50% ultimate stress	ε _s	0.0035		Estimated						
Abutment wall height	H _w	3.455	m	From drawings: total height of pile cap and backwall						
Abutment wall width	B _w	10.330	m	From drawings						
Calculated Parameters			_							
Soil friction angle	φr	0.61	rad	$\phi_r = Radians(\phi)$						
Beta parameter	β	4.42		$\beta = (1703-683.4^{*}(\tan(\phi_{r}))^{\Lambda^{1.23}})^{*}\varepsilon_{s}$						
Alpha parameter	α	62		$\alpha = IF(f = 0, 0.5^*\gamma_s + 2.63^*c,$						
				$(5.62^{*}(\tan(\phi_{r}))^{2}+0.53)^{*}\gamma_{s}+(10.58^{*}(\tan(\phi_{r}))^{1.79}+2.86)^{*}c)$						
n parameter	n	2.00		$n = IF(c = 0, 2, (0.9^{*}(tan(\phi_r))^{1.2} + 1.49)/(Sqrt(c))+0.9)$						
η parameter	η	8.1		$\eta = IF(c = 0, 14.36 - 7.49*Sqrt(tan(\phi_r)),$						
		$\boldsymbol{\boldsymbol{\wedge}}$		IF(φ < 5,15.47,18.1 - 9.38*Sqrt(tan(φ _r))))						
a _r value	a _r	100		$a_r = (\eta - 1)^* \alpha / \beta$						
b _r value	br	1.38		$b_r = (\eta - 2) / \beta$						

Abutment Force vs Disp Curve									
Disp mm	Force kN	Dim Force	Force/ Disp						
Δ	F	Fd	kN/mm						
0	0	0.0	0						
2	663	0.6	331						
4	1,234	1.1	308						
6	1,731	1.5	289						
8	2,169	1.9	271						
10	2,556	2.2	256						
14	3,212	2.7	229						
18	3,747	3.2	208						
24	4,384	3.7	183						
30	4,883	4.2	163	ļ					
$F = (a_r^* \Delta / 10^* H_w^{\ n} / (H_w + b_r^* \Delta / 10))^* B_w$									
$F_d = F /(e$	0.5*γ _s *H _w ² *Β	w)							

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

Analysis Case 2: Flexible Foundations and Bearings: Soil C & D: Review Method Longitudinal Direction

Prepared: J Wood

Edit Date: 21-Aug-17

Print Date: 21-Aug-17

		Value			
ltem	Symbol	Soil C			Comment / Formula
Structural Inputs					
Weight of superstructure on piers	Ws	9,5	500	kN	Five spans at 1,900 kN/span
Height of superstructure mass	Hs	8.9	982	m	Above pile cylinder top: see analysis on p. C5-55
Height of CoG total mass	н	8.1	13	m	Above pile cylinder top: see analysis on p. C5-56
Height of column	H _{col}	6.2	200	m	From drawings
Total weight of pier caps	W _c	1,5	596	kN	Four caps at 399 kN/cap: see analysis on p. C5-55
Maximum depth of pier cap	H _{ca}	1.4	21	m	From drawings
Height of top of pier cap	H _{cap}	7.6	621	m	Above pile cylinder top
Height CoG of pier cap	H _c	6.9	67	m	Above pile cylinder top: see analysis on p. C5-56
Weight of pier columns	W _{co}	673	916	kN	
Weight of pier caps + columns/3	W _{cc}	1,820	1,901	kN	$W_{cc} = W_c + W_{co}/3$
Height CoG piers	H _{cogc}	6.872	6.844	m	$H_{cogc} = (W_c * H_c + W_{co} * H_{col} / 3) / W_{cc}$
	-				Column mass at underside cap. BM Comm C5
Total dynamic weight	W _d	11,320	11,401	kN	$W_d = W_s + W_c + W_{co} /3$: not including abuts
Weight of each abutment	Wa	930	930	kN	Does not include approach slab. Approach slab
					and soil above slab included in M-O active wedge.
Column diameter	D _c	1.2	1.4	m	
Diameter longitudinal bars	d _b	32	32	mm	
Number of longitudinal bars	N _b	20	28		
Diameter of transverse hoop bars	dt	16	20	mm	
Spacing transverse hoop bars	s _t	120	100	mm	
Cover to hoops	Cv	4	0	mm	
Specified concrete strength	f _c	3	5	MPa	
Specified steel yield stress	fy	300	500	MPa	Longitudinal and transverse
Foundation Stiffness Inputs				_	
Horizontal stiffness at ground level	K _h	6	0	MN/m	See previous analysis on Page C5-70
Rotational stiffness at ground level	K_{θ}	2,380		MN m/rad	See previous analysis on Page C5-70
Abutment Backfill and Backwall Din	nensions				
Backfill friction angle	фь	35		deg	
Backfill friction angle - radians	ϕ_{br}	0.6	511	rad	
Soil unit weight	γ_{s}	1	9	kN/m ³	
Backwall height	$H_{\rm w}$	3.	46	m	
Backwall width	B _w	10	.33	m	

ltem	Symbol	Soil C	Soil D	Units	Comment / Formula
Inputs for Elastomeric Bearings on					
Shear modulus	G _b	0.	73	MPa	53 IRHD - Skellerup brochure
Width of bearing	B _b	350		mm	Size greater than on drawings Trans direction
Length of bearing	L _b	280		mm	Size greater than on drawings Long direction
Total thickness of bearing	t _t	1:		mm	= (90 rubber + 24 plates + top and bot cover)
Thickness of rubber	t _r	9		mm	9 inner layers at 10 mm
	۲	0	0		Bearings are dowelled. Ignore cover rubber.
Side cover	sc	-	7	mm	Skellerup brochure
Total number bearings on piers	N _{be}		2		8 on each of 4 piers
Bonded area of rubber	A _{bl}	0.0894		m ²	$A_{bl} = (B_b - 2^*s_c)^*(L_b - 2^*s_c)/10^6$
	101	0.0004	0.1040		Cover rubber ignored. Some guidelines include.
Shear stiffness	K _d	0.72	1.09	MN/m	$K_{d} = A_{bl} * G_{b} / (t_{r} / 1000)$
Total stiffness of brgs on 4 piers	K _{dt}	23,198			$K_{dt} = K_d * N_{be} * 1000$
Inputs for Elastomeric Bearings on			,		
Width of bearing	B _{ba}		30	mm	From drawings. Bridge transverse direction
Length of bearing	L _{ba}	30	00	mm	From drawings. Bridge longitudinal direction
Thickness of rubber	t _{ra}	1(00	mm	10 inner layers at 10 mm
Side cover	S _{ca}	1	0	mm	Skellerup brochure
Bonded area of rubber	A _{bra}	0.1	800	m²	7 mm side covers
Shear stiffness	K _{ra}	0.	74	MN/m	$K_{ra} = A_{bra} * G_b / (t_{ra} / 1000)$
Number bearings on each abut	N _{ba}	2	1		
Total stiffness bearings each abut	K _{rat}	2,9	943	kN m	$K_{rat} = K_{ra} * N_{ba} * 1000$
Earthquake Inputs					
Site Subsoil Category		С	D		
Zone Factor	Z	0.:	27		Nelson
Return Period Factor	R _u	1	.8		2500 year return period
Peak ground acceleration	a _p	0.646	0.544	g	Soil C: $a_p = 1.33^*Z^*R_u$ Soil D: $a_p = 1.12^*Z^*R_u$
Corner period spectral shape factor	$\Delta_{h}(3)$	985	1,585	mm	From Table 5.5 in BM
Corner period displacement	Δ(3)	479	770	mm	$\Delta(3) = R_{u}^* Z^* \Delta_h(3)$
Calculated Structural Parameters					
Cover to longitudinal bars	C _o	56	60	mm	From cover to hoops
Young's modulus concrete	Ec	29,	580	MPa	$E_c = 5000^* Sqrt(f_c)$ Priestley et al, 2007 Eq (4.43)
					Equation used to derive stiffness ratio curves
Area longitudinal column steel	A _s	16,085	22,519	mm²	$A_{s} = N_{b} * \pi * d_{b}^2 / 4$
Area transverse column reinf.	At	201	314	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρs	0.00607	0.00967		$\rho_s = 4^*A_t / (1000^*(D - (2^*c_v + d_t)/1000)^*s_t)$
					Depth of core taken on centre-line of hoops Adopt Priestley et al 1996 rather than NZS 3101
Area of pior column	_	1 104	1.539	m ²	
Area of pier column Longitudinal reinforcement ratio	A _{co}	1.131 0.0142	0.0146		$A_{co} = \pi^* D_c^{2} / 4$ $\rho_1 = A_s / (A_{co}^* 10^6)$
Axial force ratio in column	ρ _l				$p_1 = A_s / (A_{co} \ 10^{\circ})$ $R_{af} = (W_s / 5 + W_c / 4 + W_{co} / 4) / (A_{co} * f_c * 1000)$
Pier stiffness ratio	R _{af}	0.062	0.047		
	R _{st} ⊮	0.38		kNI/m	From Priestley et al, 2007, Fig 4.12 $K_p = \Delta_y / \Delta_{yt} * (3^* \pi^* D^{4*} R_{st} * E_c * 1000) / (64^* (H_{coac} + L_{sp})^3)$
Cracked stiffness of pier column	K _p	7,053	10,682	KIWIN	$K_p = \Delta_y / \Delta_y t^* (3^* \pi^2 D^{**} K_s t^* E_c^{-1} 000) / (64^* (H_{cogc} + L_{sp})^*)$ Used for comparison with yield stiffness
(Displacements at CoG of pier)					

Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Yield Displacement at Top of Pier an				•••••	
Probable yield stress for reinf.	f _{ye}	330		MPa	$f_{ye} = 1.1^* f_{y}$: Table 5.7 in BM
Young's modulus steel	E _s	200.		MPa	
Yield strain	⊏s ε _y	0.00165	0.00275		$\varepsilon_{\rm v} = f_{\rm ve} / E_{\rm s}$
Yield curvature	φ _{yy}	0.00296	0.00422		$\phi_{yy} = 2.15^* \varepsilon_y / D_c$: Eq (5-8)
Strain penetration length	Ψyy L _{sp}	0.232	0.387		$L_{sp} = 0.022^{*} f_{ye}^{*} d_{b} / 1000: Eq (5-10)$
Coefficient for column fixity	⊏sp C1	0.333	0.333		See Appendix G in BM
Flexural strength of each column -	M _n	3,500	7,751		Flexural strength analysis: Soil C, $f_y = 330$ MPa
used to calculate shear in column	""n	0,000	7,701		M_n reduced from 3,672 kNm to allow for P- Δ mom
					Soil D, $f_y = 550$ MPa: no P- Δ reduction required
Shear in pier at flexural capacity	Vy	459	1,017	kΝ	$V_y = M_n / H_{cap}$
	vy	-00	1,017		Approximate. See 1st mode shear below.
Displacement from foundation	۸.	18	30	mm	$\Delta_{\rm f} = V_{\rm v}/K_{\rm h} + M_{\rm h}^* H_{\rm coac}/K_{\rm \theta}$
Disp from pier column at CoG pier	Δ_{f}	50		mm	$\Delta_{\rm y} = C_1^* \phi_{\rm yy}^* ({\rm H}_{\rm cogc} + {\rm L}_{\rm so})^{2*} 1000 : {\rm Eq} (5-10)$
Total yield disp at pier CoG	Δ_y	68		mm	
Overall Elastic Stiffness of Abutmer	Δ_{yt}	00	113		$\Delta_{yt} = \Delta_f + \Delta_y$
Stiffness of two abutment piles	K _{api}	54,0	000	kN/m	See separate analysis on Page C5-77
Stiffness of abutment backwall		300,		kN/m	See separate analysis on Page C5-78
	K _{aw}	500,	000		Stiffness at 5 mm displacement
Stiffness of push abutment	Ka	354,	000	kN/m	$K_a = K_{abi} + K_{aw}$
Stiffness push abut include brgs	K _{aa}	2,9		kN/m	$K_{aa} = 1/(1/K_a + 1/K_{rat})$
Abutment inertia force from PGA	F _i	601	506		$F_{i} = W_{a}^{*}a_{p}$
		0.574	0.50		$\alpha = Atan(a_p)$
Inertia angle	α	1.054		rau	$\begin{aligned} \alpha &= \operatorname{Atal}(a_p) \\ K_{AE} = (\operatorname{Cos}(\phi_{br} - \alpha))^2 / \end{aligned}$
M-O active pressure coefficient	K _{AE}	1.054	0.195		
					$((\cos(\alpha))^{2*}(1+\operatorname{Sqrt}(\sin(\phi_{br})^*\sin(\phi_{br}-\alpha)/\cos(\alpha)))^2)$ Assuming zero friction on wall backface.
Active pressure force on abutment	FAE	1,235	929	kN	$F_{AE} = 0.5^* K_{AE}^* H_w^{2*} B_w^* \gamma_s$
Abutment inertia + active MO force	F _{ip}	1,836	1,435	kN	Reduces effective stiffness.
Assumed shear carried by pull abut	V _{ap}	522	786		Iteration is required to determine V _{ap}
					See calculated value for V _{bu} below for ductile resp.
					Only approximate for yield response
Stiffness pull abut including brgs	К _{арр}	2,362	2,551	kN/m	$K_{app} = K_{rat}^* K_{api} / (K_{api} + K_{rat}^* (1 + F_{ip} / V_{ap}))$
	upp				From Eq (C5A-21)
Combined stiffness both abuts	K _{ab}	5,281	5,470	kN/m	$K_{ab} = K_{aa} + K_{app}$
Elastic Period of Vibration: See Equ		5A-1) to ((C5A-6)		
Calculate period of vibration assuming	elastic re	sponse of	pier		
Use two-degree of freedom vibration th	eory from	Thompso	on, 1965	to calcula	te period and mode shape
Pier stiffness modifier	S _{ma}	1.01	1.01		Used to adjust pier stiffness
					Iterate S_{ma} until $M_{be} = M_n$: M_{be} calculated below
Pier stiffness - elastic	K _y	27,486	36,411	kN/m	$K_y = S_{ma}^* 4^* V_y / (\Delta_{yt} / 1000)$: for all 4 piers
Quadratic equation coefficient B	B _e	-303	-409	(rad/s) ²	$B_{e} = -9.81^{*}((K_{dt} + K_{ab})/W_{s} + (K_{y} + K_{dt})/W_{cc})$
Quadratic equation coefficient C	C _e	5,038		(rad/s) ⁴	$C_{e} = 9.81^{2*}((K_{ab}*K_{v})+(K_{ab}+K_{v})*K_{dt})/(W_{s}*W_{cc})$
Angular frequency	ω _e	4.21		rad/s	$\omega_{e} = \text{Sqrt}((-B_{e}\text{-Sqrt}(B_{e}^{2}\text{-}4^{*}C_{e}))/2)$
First mode period - elast response	T _v	1.49	1.31		$T_v = 2^* \pi / \omega$
Mode shape	A _{rae}	2.04	1.92		$A_{rae} = (K_y + K_{dt} - W_{cc}^* \omega_e^2 / 9.81) / K_{dt}$

Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Displacement in Bearings at Pier Yi	eld Capad	city			
Disp superstructure at pier yield	Δ_{sa}	138	217	mm	$\Delta_{sa} = A_{rae}^* \Delta_{yt}$: From Eq (C5A-9)
Displacement in bearings	Δ_{bb}	70	104	mm	$\Delta_{bb} = \Delta_{sa} - \Delta_{sa}/A_{rae}$: From Eq (C5A-10)
Shear strain in bearing rubber	ε _{by}	0.78	1.15		$\varepsilon_{bv} = \Delta_{bb} / t_r : \varepsilon_{bv} < 1.0$ Soil C: > 0.1 Soil D
					For Soil D exceeding the limit may be acceptable
Disp at CoG pier cap + column	Δ_{cog}	68	113	mm	$\Delta_{cog} = \Delta_{sa} - \Delta_{bb}$: OK, $\Delta_{cog} = \Delta_{yt}$
Shear carried on push abutment	V _{ah}	403	632	kN	$V_{ah} = K_{aa}^* \Delta_{sa} / 1000$
Shear carried on pull abutment	V _{al}	326	553	kN	V _{al} = K _{app} *∆ _{sa} /1000
Total shear force in pier bearings	V _b	1,634	3,609	kN	$V_{b} = \Delta_{bb} * K_{dt} / 1000$
Shear in piers from cap/col inertia	V _{cs}	222	500	kN	V_{cs} = (W_{cc}*\Delta_{cog}*\omega_{e}^{2})/(9.81*1000): total from 4 piers
Total shear in piers - 1 st mode resp	V _{ba}	1,855	4,109	kN	$V_{ba} = V_b + V_{cs}$
Total base shear on piers + abuts	V _{tt}	2,584	5,294	kN	$V_{tt} = V_{ba} + V_{ah} + V_{al}$
Check total inertia force	Fin	2,584	5,294	kN	$F_{in} = (W_s^* \Delta_{sa} + W_{cc}^* \Delta_{cog})^* \omega_e^2 / (1000^* 9.81)$
					From Eq (C5A-14)
Base shear in each pier	V _{ep}	464	1,027	kN	$V_{ep} = V_{ba}/4$
Check base moment (sum 4 piers)	M _b	13,974	30,962	kN m	$M_{b} = ((W_{s}^{*}\Delta_{sa})^{*}\omega_{e}^{2}/(1000^{*}9.81) - V_{ah} - V_{al})^{*}H_{cap}$
					+W _{cc} *Δ _{cog} *H _{cogc} *ω _e ²/(1000*9.81)
					From Eq (C5A-11)
Base moment on each pier	M _{be}	3,494	7,731	kN m	$M_{be} = M_b /4$: OK approximately = M_n
Modal participitation factor	Pe	1.05	1.05		$P_{e} = (W_{s} + W_{cc} / A_{rae}) / (W_{s} + W_{cc} / (A_{rae})^2)$
					From Eq (C5A-17)
Elastic displacement	$\Delta(T_{el})$	249	353	mm	$\Delta(T_{el}) = P_e^* \Delta(3)^* T_y / 3$: at CoG of superst. mass
Elastic displacement at CoG pier	$\Delta_{\rm coe}$	120	184		$\Delta_{coe} = \Delta(T_{el})/A_{rae}$: Equation (C5A-9)
Approx ductility demand on cols	μ	2.06	1.97		$\mu = (\Delta_{\rm coe} - \Delta_{\rm f})/\Delta_{\rm y}$
					Based on equal displacement approximation
Strain Limits for Plastic Rotation				1	
Yield strength transverse reinf.	f _{sy}	300		MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.12	0.10		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	ε _{sul}	0.12			BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	45.5		MPa	$f_{ce} = 1.3*f_{c}$: BM Table 5.7
Average confining stress	f _{ld}	0.865	2.296		$f_{ld} = 0.95^* f_{sy}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength of concrete	f _{cc}	51.2	59.7	MPa	$ f_{cc} = f_{ce}^{*} (2.254^{*}(1+7.94^{*}f_{Id}/f_{ce})^{1/2} - 2^{*}f_{Id}/f_{ce} - 1.254) $
Reinforcement limiting strain	ε _{sd}	0.021	0.043		$\epsilon_{sd} = 0.015+6^*(\rho_s-0.005) \le 0.5 \epsilon_{sul} : Eq (5-11)$
Concrete limiting strain	ε _{cd}	0.0100	0.0153		$\varepsilon_{cd} = 0.004 + (1.4^* \rho_s * f_{syf} * \varepsilon_{sut}) / f_{cc}$: Eq (5-12)
Neutral axis depth	с	282	364	mm	From moment strength analysis
Check using empirical formula	C _{ce}	277	313	mm	$c_c = D_c^* 10^{3*} (0.2+0.65^* (W_{co}/4+W_c/4+W_s/5)/$
					(10 ³ *f _{ce} *A _{co}))
					Priestley et al, 2007. Eq (10.8)
					OK: reasonable agreement
Distance extreme bar to neutral axis	b _{na}	846	960	mm	$b_{na} = D^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	з	0.0071	0.0163		$\varepsilon = \varepsilon_{sd}^* c / b_{na}$
					Soil C: Steel limiting strain governs
					Soil D: Concrete limiting strain governs
Limit state curvature	φ _{ls}	0.0253	0.0421	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (\text{c}/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	φp	0.0224	0.0379	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$

ltem	Symbol	Soil C	Soil D	Units	Comment / Formula
Plastic Hinge Length					
Ratio steel ultimate over yield stress	f _u /f _y	1.4	1.2		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.08	0.04		$k_{lp} = 0.2^*(f_u / f_v - 1) \le 0.08 : Eq (5-38)$
Distance to point of contraflexure		7.6		m	$L_{c} = H_{cap}$
Plastic hinge length		0.84	0.77	1	$L_{c} = H_{cap}$ $L_{p} = K_{lp}^{*}L_{c}^{*} + L_{sp}^{*} \ge 2^{*}L_{sp}^{*} : Eq (5-37)$
Ductility Factor Capacity	L _p	0.04	0.11		$L_p = N_p L_c + L_{sp} = 2 L_{sp} \cdot Lq (5.57)$
Plastic rotation	Δ	0.0188	0.0293	rad	$\theta_{p} = \phi_{p}^{*} L_{p}$
Plastic displacement	θ _p	144		mm	$\Delta_{p} = \theta_{p}^{*}L_{c}^{*}1000 : Eq (5-36)$
Limit state displacement capacity	Δ_{p}	193		mm	
	Δ _{ls}	3.89	4.04		$\Delta_{ls} = \Delta_y + \Delta_p$
Ductility capacity	μ_{ls}	3.09	4.04		$\mu_{\rm IS} = \Delta_{\rm IS} / \Delta_{\rm y}$
					Capacity > Approximate demand Design probably OK
Ductility Iteration for Superstructur	e Respon	se			
Iterate assumed ductility in pier to give	the calcu	lated base	e momen	t in piers	= flexural capacity
Assumed ductility demand on pier	μ_{ap}	2.77	2.30		
Pier stiffness - modified	к	12,090	19,925	kN/m	K_y = 4*V_{ebu}/(($\mu_{ap}*\Delta_y + \Delta_f)/1000$): V_{ebu} calc below
					For initial trial can use V_{ep} from above (at pier yield)
Calc base moment - total 4 piers	M _{bu}	14,061	31,125	kN m	$M_b = ((W_s^* \Delta_{se})^* \omega^2 / (1000^* 9.81) - V_{au} - V_{bu})^* H_{cap}$
					+W _{cc} *Δ _{cou} *H _{cogc} *ω ² /(1000*9.81)
Calc base moment single pier	M _{bue}	3,515	7,781	kN m	$M_{bue} = M_{bu} / 4$
Calculate period of vibration assuming	equivaler	nt elastic re	esponse	of pier	
Use two-degree of freedom vibration the	neory from	Thompso	on, 1965	to calcula	ate period and mode shape
See Equations (C5A-1) to (C5A-7)	1				
Quadratic equation coefficient B	B _c	-220	-324	(rad/s) ²	$B_{c} = -9.81^{*}((K_{dt} + K_{ab})/W_{s} + (K + K_{dt})/W_{cc})$
Quadratic equation coefficient C	C _c	2,598	5,285	(rad/s) ⁴	$C_{c} = 9.81^{2*}((K_{ab}*K)+(K_{ab}+K)*K_{dt})/(W_{s}*W_{cc})$
Angular frequency	ω	3.54	4.15	rad/s	$\omega_{\rm e} = {\rm Sqrt}((-{\rm B_c}-{\rm Sqrt}({\rm B_c}^2-4^*{\rm C_c}))/2)$
First mode period	Т	1.77	1.51	s	$T_y = 2^* \pi / \omega$
Mode shape	A _{ra}	1.42	1.48		$A_{ra} = (K + K_{dt} - W_{cc}^* \omega^2 / 9.81) / K_{dt}$
Modal participitation factor	Р	1.04	1.04		$P_{e} = (W_{s}+W_{cc}/A_{ra})/(W_{s}+W_{cc}/(A_{ra})^{2})$
					From Eq (C5A-17)
Elastic design displacement	Δ(T)	293	404	mm	$\Delta(T) = P^* \Delta(3)^* T/3$
Iterate displacement demand until Δ_d	$(T) = \Delta_{se}$			1	
Estimated superstructure demand	Δ_{se}	221	308	mm	
Calculated displacement demand	$\Delta_{d}(T)$	220	307	mm	$\Delta_d(T) = \Delta(T)^* M_{\xi_{ij}}: M_{\xi_{ji}} \text{ calculated below}$
Ductility Demand and Damping	1				
Disp at CoG of pier cap	$\Delta_{\rm cou}$	156	209	mm	$\Delta_{cou} = \Delta_{se} / A_{ra}$: From Eq (C5A-9)
Displacement in bearings	$\Delta_{\rm bu}$	65	99	mm	$\Delta_{bu} = \Delta_{se} - \Delta_{se} / A_{ra}$: From Eq (C5A-10)
Shear strain in bearing rubber	ϵ_{bu}	0.73	1.11		ϵ_{by} = Δ_{bu} / t _r : ϵ_{by} < 1.0 Soil C: > 0.1 Soil D
					Overstrain of 11% acceptable
Shear carried on push abutment	V _{au}	645	899	kN	$V_{au} = K_{aa}^* \Delta_{se} / 1000$
Shear carried on pull abutment	V _{bu}	522	786	kN	$V_{bu} = K_{app}^{*} \Delta_{se} / 1000$
Total shear force in pier bearings	V _{bpu}	1,518	3,458	kN	$V_{bpu} = \Delta_{bu}{}^{*}K_{dt}/1000$
Shear in piers from cap/col inertia	V _{cu}	362	697	kN	$V_{cu} = (W_{cc}^* \Delta_{cou}^* \omega^2) / (9.81^*1000))$
Total shear in piers - 1 st mode resp	V _{pu}	1,881	4,155	kN	$V_{pu} = V_{bpu} + V_{cu}$
Total shear on base of piers + abuts	V _{tu}	3,048	5,840	kN	$V_{tu} = V_{pu} + V_{au} + V_{bu}$
Check total inertia force	F _{inu}	3,048	5,840	kN	$F_{inu} = (W_s^* \Delta_{se} + W_{cc}^* \Delta_{cou})^* \omega^2 / (1000^* 9.81)$

Item	Symbol	Soil C	Soil D	Units	Comment / Formula
Base shear in each pier	V _{ebu}	470	1,039	kN	V _{epu} = V _{pu} /4
Ductility demand on piers	μ _{id}	2.77	2.30		$\mu_{\rm Id} = (\Delta_{\rm cou} - \Delta_{\rm f}) / \Delta_{\rm y}$
Viscous damping ratio - bearings	ξ	0.0	05		From BM clause 5.4.3(g)(vi)
Damping from piers	ξ _{eu}	0.17	0.15		$\xi_{eu} = 0.10+0.04^{*}(\mu_{ld}-1) \le 0.18$: Eq (5-32)
					Assume cylinder/column equivalent to pile/column
Combined damping brgs + piers	ξ _{cu}	0.104	0.101		$\xi_{cu} = (V_{pu}^* \Delta_{cou}^* \xi_{eu} + V_{bpu}^* \Delta_{bu}^* \xi + (V_{au} + V_{bu})^* \Delta_{se}^* \xi) /$
					(V _{pu} *Δ _{cou} + V _{pbu} *Δ _{bu} +(V _{au} +V _{bu})*Δ _{se}): Eq (5-23)
Damping reduction factor	M _{ξu}	0.75	0.76		$M_{\xi_u} = (0.07/(0.02+\xi_{cu}))^{0.5}$: Eq (5-17)
Ratio: ductility capacity/demand	R _{cd}	1.40	1.76		$R_{cd} = \mu_{ls}/\mu_{ld}$: $R_{cd} > 1.0$: Designs OK
Check P-⊿ Moment					
Axial load x displacement demand	$M_{p-\Delta}$	491	684	kN m	$M_{p-\Delta} = (W_s^* \Delta_{se} / 5 + W_{cc}^* \Delta_{cou} / 4) / 1000$
					Ignores contribution from lower column sections
Ratio: M _{p-Δ} / M _{bu}	M _{rat}	0.14	0.09		> 0.1 Soil C. Increase in mom cap required
					< 0.25 maximum limit. See BM clause 5.3.7
Moment Capacity	·	• • •		•	
Reqd mom capacity each column	M _{bp}	3,761	7,781	kN m	$IF(M_{rat} > 0.1, M_{bp} = (M_{p-\Delta}/2 + M_{bue}), M_{bue})$
Capacity section with 20/D32 bars	M _{bca}	3,6	572	kN m	Soil C design: OK
Capacity section with 28/D32 bars	M _{bca}	7,7	'51	kN m	Soil D design: OK
References:					
Drightlay M IN Shible F and Calvi C	M 1006 C	oiomio Do	aign and	Dotrofit	of Dridron John Wiley & Cono Inc

Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges . John Wiley & Sons Inc

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Thompson W T, 1965. Vibration Theory and Applications. Prentice-Hall Inc

Maitai River Bridge				
Analysis Case 2: Flexible Foundatio	ons and Bo	earings: Soil C	& D: Desigi	n Analysis Procedure
Transverse Direction				
Prepared: J Wood				
Edit Date: 21-Aug-17	Р	rint Date: 21-Au	ug-17	
			5	
ltem	Sym	Value	Units	Comment / Formula
	o y	Soil C Soil	D	
Structural Inputs				r
Weight of superstructure on pier	Ws	1,900	kN	Excludes pier cap and column
Height of superstructure mass	H _s	8.982	m	Above pile cylinder top: see previous analysis
Height of CoG total mass	н	8.113	m	Check value. Not used in analysis
Height of column	H _{col}	6.200	m	From drawings
Weight of pier cap	W _c	399	kN	See calculations on Page C5-55
Maximum depth of pier cap	H _{ca}	1.421	m	From drawings
Height of top of pier cap	H_{cap}	7.621	m	Above pile cylinder top
Height CoG of pier cap	H _c	6.967	m	Calculated value. Ht above pile cylinder top
Column diameter	D _c	1.2	1.4 m	As designed = 1.4
Weight of pier column	W _{co}	175 2	239 kN	$W_{co} = 25^* H_{col}^* \pi^* D_c^2 / 4$
Weight of pier cap + column/3	W _{cc}	457 4	478 kN	$W_{cc} = W_c + W_{co}/3$
Height CoG column/3 + pier cap	H _{cogc}	6.869 6.8	839 m	$H_{cogc} = (W_{c} H_{c} + W_{co} H_{col}/3)/W_{cc}$
	-			Column mass at underside cap. See BM C5
Ductility limit adopted for analysis	μ _c	3.5	3.0	Adopting these values gives design disp
				< damping reduced spectrum corner disp
				Iteration requd if design disp > corner disp
Diameter longitudinal bars	d _b	32	32 mm	
Diameter transverse hoops	dt	16	20 mm	
Number of longitudinal bars	N _b	20	28	As designed = 34 bars
Spacing transverse hoop bars	St	120	100 mm	As designed = 125 mm
Check maximum permitted spacing	S _{cc}		134 mm	$s_{cc} = (3+6^*(f_u/f_v - 1))^*d_b : Eq (5-48)$
Cover to hoops	C _v	40	mm	
Specified concrete 28 day strength	f _c	35	MPa	
Specified steel yield stress	f.		500 MPa	Longitudinal and transverse steel
Foundation Stiffness Inputs	y -			
Horizontal stiffness at ground level	K _h	60	MN/m	From analysis on Page C5-70
Rotational stiffness at ground level	Κ _θ	2,370		From analysis on Page C5-70
Inputs for Elastomeric Bearings on		_,010	lintintiad	
Shear modulus	G _b	0.73	MPa	53 IRHD - Skellerup brochure
Width of bearing	B _b		380 mm	Size greater than on drawings Trans direction
Length of bearing	L _b		380 mm	Size greater than on drawings Long direction
Total thickness of bearing	t _t	131	mm	=(90 rubber + 24 plates + top & bottom cover)
Thickness of rubber	t _r	90	mm	9 inner layers at 10 mm
	۲r	50		
Side cover	e	7	mm	Bearings are dowelled. Ignore cover rubber Skellerup brochure
Number bearings on each pier	S _C	8		
Bonded area of rubber	N _{be} A _{bl}		340 m ²	$A_{bl} = (B_b - 2^*s_c)^*(L_b - 2^*s_c)/10^6$
Shear stiffness			.09 MN/m	$A_{bl} = (B_b - 2 S_c) (L_b - 2 S_c) / 10$ $K_d = A_{bl} * G_b / (t_r / 1000)$
onedi sunness	K _d	0.72		$\mathbf{n}_{d} = \mathbf{n}_{b} \mathbf{U}_{b} / (\mathbf{u}_{r} / 1000)$

ltem	Sym	Soil C	Soil D	Units	Comment / Formula
Earthquake Inputs	- Jiii			•••••	
Site Subsoil Category		С	D		
Zone Factor	Z	0.:			Nelson
Return Period Factor	R _u		.8		2500 year return period
Spectrum corner period	T _c	3	.0	s	See BM Fig 5.2
Corner period spectral shape factor	$\Delta_{\rm h}(3)$	985	1,585	mm	From Table 5.5 in BM
Corner period displacement	Δ(3)	479		mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
Yield Displacement				ļ	
Probable yield stress of reinf.	f _{ye}	330	550	MPa	$f_{ve} = 1.1^* f_{v}$: BM Table 5.7
Youngs modulus for steel	E _s	200		MPa	,,
Yield strain	ε _v	0.00165	0.00275		$\varepsilon_v = f_{ve} / E_s$
Yield curvature	φ _{yy}	3.0E-03	4.2E-03	1/m	$\phi_{yy} = 2.15^{*} \epsilon_{y} / D_{c}$: Eq (5-8)
Strain penetration length	L _{sp}	0.232			$L_{sp} = 0.022 f_{ve}^* d_b / 1000$: Eq (5-10)
Coefficient for column fixity	C ₁	0.3	333		See BM Commentary C5
Disp from pier column at CoG pier	Δ_{y}	50	74	mm	$\Delta_{y} = C_{1}^{*} \phi_{yy}^{*} (H_{cogc} + L_{sp})^{2*} 1000: Eq (5-10)$
Design Base Shear	,,				
Assumed mode shape	A _{ra}	1.27	1.26		Defined as ratio:
					(disp CoG pier + disp in bearing)/(disp CoG pier)
					The adopted value can be checked - see
					below and iteration used.
Disp at CoG pier from foundation	$\Delta_{\rm f}$	14	28	mm	$\Delta_{\rm f} = M_{\rm b} * H_{\rm coac} / K_{\rm \theta} + V_{\rm b} / K_{\rm h}$
					Iteration is required to calculate Δ_{f} since
					it depends on the base moment and shear
Design max inelastic disp at CoG pier	$\Delta_{\sf dp}$	188	248	mm	$\Delta_{dp} = \mu_c^* \Delta_v + \Delta_f$
Mass height correction factor	aa	0.31	0.31		$aa = (H_s/H_{cogc}-1)$
Design max inelastic disp superstruct	$\Delta_{\sf ds}$	296	390	mm	$\Delta_{ds} = \Delta_{dp}^{*}(A_{ra} + aa)$: Equation (C5A-7)
Displacement in bearings	Δ_{i}	51	64	mm	$\Delta_i = \Delta_{ds} - \Delta_{dp}^*$ (1+aa): Equation (C5A-10)
Design disp equiv single mass system	Δ_{d}	282	371	mm	$\Delta_{d} = (W_{s}^{*}\Delta_{ds}^{2} + W_{cc}^{*}\Delta_{dp}^{2})/(W_{s}^{*}\Delta_{ds} + W_{cc}^{*}\Delta_{dp})$
					Eq (5-20)
Shear force in bearings	V _{pb}	294	561	kN	$V_{pb} = \Delta_i^* K_{dt} / 1000$
Viscous damping ratio for bearings	بح	0.	05		From BM clause 5.4.3(g)(vi)
Damping from pier	ξe	0.18	0.18		$\xi_{e} = 0.10 + 0.04^{*}(\mu_{c} - 1) \le 0.18$: Eq (5-32)
Combined damping brgs + pier	ξο	0.16	0.16		$\xi_{\rm c} = (V_{\rm b}^* \Delta_{\rm dp}^* \xi_{\rm e} + V_{\rm pb}^* \Delta_{\rm i}^* \xi) / (V_{\rm b}^* \Delta_{\rm dp} + V_{\rm pb}^* \Delta_{\rm i})$
					Eq (5-23)
					Iteration is required since depends on V_b
	-				Alternatively an assumed value can be
					estimated from V _{pb}
Damping reduction factor	Μ _ξ	0.63	0.63		$M_{\xi} = (0.07/(0.02 + \xi_c))^{0.5}$: Eq (5-17)
Corner period disp modified spectrum	$\Delta_{\sf cm}$	303	485	mm	$\Delta_{\rm c} = \Delta(3)^* {\rm M}_{\rm S}$
Frame effective weight	W _e	2,301	2,321	kN	$W_{e} = (W_{s}^{*}\Delta_{ds} + W_{cc}^{*}\Delta_{dp})/\Delta_{d}$: Eq (5-21)
Effective structural period	T _e	2.80	2.29	s	$T_{e} = T_{c}^{*} \Delta_{d} / \Delta_{cm}$
Angular frequency	ω _{eq}	2.25	2.74	rad/s	$\omega_{eq} = 2\pi / T_e$
Effective secant stiffness	K _e	1,185	1,778	kN/m	$K_e = 4^* \pi^{2*} W_e / (9.81^* T_e^2)$: Eq (5-21)
Design base shear	V _b	334	659	kN	$V_{\rm b} = K_{\rm e}^* \Delta_{\rm d} / 1000$: Eq (5-19)

ltem	Sym	Soil C	Soil D	Units	Comment / Formula
Inertia force at superstructure level	Fs	290	568	kN	$F_{s} = V_{b}^{*}(W_{s}^{*}\Delta_{ds})/(W_{s}^{*}\Delta_{ds}+W_{cc}^{*}\Delta_{dp}): Eq (5-39)$
Inertia force at pier CoG level	F _{pi}	44	91	kN	$F_{p} = V_{b}^{*}(W_{cc}^{*}\Delta_{dp})/(W_{s}^{*}\Delta_{ds} + W_{cc}^{*}\Delta_{dp})$
Design base moment	M _b	2,909	5,724	kN m	$M_b = F_s^*H_s + F_{pi}^*H_{cogc}$: excluding P - Δ increase
Effective stiffness of pier	Kp	1,779	2,657	kN/m	$K_p = V_b / \Delta_{dp} * 1000$
Check mode shape	A _c	1.27	1.26		$A_{c} = (K_{p} + K_{dt} - W_{cc}^{*}\omega_{eq}^{2}/9.81)/K_{dt}$
					From Eq (C5A-6)
Calculated Structural Parameters					•
Cover to longitudinal bars	c _o	56	60	mm	From cover to hoops
Gross column section area	Ag	1.13	1.54	m²	$A_{g} = \pi^{*} D_{c}^{2} / 4$
Area of longitudinal steel	As	16,085	22,519	mm²	$A_{\rm s} = N_{\rm b} \ ^{*}\pi^{*}d_{\rm b}^{-2}/4$
Check longitudinal steel area ratio	ρι	0.0142	0.0146		$\rho_1 = A_s / (10^{6*} A_g)$
Check min required steel area	A _{sm}	15,080	12,315	mm²	$A_{sm} = 4*10^6 * A_g / f_y$: BM clause 5.6.4(f)
Check max permitted steel area	A _{sma}	67,858	55,418	mm²	$A_{sma} = 18*10^6 * A_g / f_y$: BM clause 5.6.4(f)
Area of transverse reinforcement	At	201	314	mm²	$A_t = \pi^* d_t^2 / 4$
Volumetric ratio transverse steel	ρ _s	0.00607	0.00967		$\rho_{s} = 4^{*}A_{t} / (1000^{*}(D_{c} - (2^{*}c_{v} + dt)/1000)^{*}s_{t})$
					Depth of core taken on centre-line of hoops
					Adopt Priestley et al 1996 rather than NZS 3101
					OK: min required = 0.005: BM Clause 5.6.4(h)(i)
Strain Limits for Plastic Rotation					
Yield strength trans reinforcement	f _{sy}	300	500	MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.12	0.10		BM Clause 5.3.5(b)
Strain at max stress long reinf.	٤ _{sul}	0.12	0.10		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	45.5	45.5	MPa	$f_{ce} = 1.3^* f_c$: Table 5.7
Average confining stress	f _{ld}	0.865	2.296		$f_{Id} = 0.95* f_{sy}* \rho_s/2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	51.2	59.7	MPa	$f_{cc} = f_{ce}^{*} (2.254^{*} (1+7.94^{*} f_{Id}/f_{ce})^{1/2} - 2^{*} f_{Id}/f_{ce} - 1.254)$
					Priestley et al, 1996, Eq (5.6)
Reinforcement limiting strain	ε _{sd}	0.021	0.043		$\epsilon_{sd} = 0.015 + 6^*(\rho_s - 0.005) \le 0.5 \epsilon_{sul}$: Eq (5-11)
Concrete limiting strain	ε _{cd}	0.0100	0.0153		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s * f_{sy} * \epsilon_{sut}) / f_{cc}$: Eq (5-12)
Neutral axis depth	с	282	364	mm	From moment strength analysis
Check using empirical formula	C _c	277	313	mm	$c_c = D_c^* 1000^* (0.2 + 0.65^* (W_{co} + W_c + W_s))$
					(1000*f _{ce} *A _g))
					Priestley et al, 2007, Eq (10.8)
					OK: reasonable agreement
Distance extreme bar to neutral axis	b _{na}	846	960	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	3	0.0071	0.0163		$\varepsilon = \varepsilon_{sd} * c / b_{na}$
				Soil C	Steel limiting strain governs
				Soil D	Concrete limiting strain governs
Limit state curvature	φıs	0.0253	0.0421	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (\text{c}/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	φ _p	0.0224	0.0379	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$
Plastic Hinge Length					
Ratio steel ultimate / yield stress	f _u /f _y	1.4	1.2		From Pacific Steel's test results
Hinge length parameter	k _{lp}	0.08	0.04		$k_{lp} = 0.2^*(f_u / f_y - 1) \le 0.8$: Eq (5-38)
Distance to point of contraflexure	L _c	8.	11	m	$L_c = H$
Plastic hinge length	Lp	0.88	0.77	m	$L_p = k_{lp}^* L_c + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$

Item	Sym	Soil C	Soil D	Units	Comment / Formula
Ductility Factor Capacity					
Plastic rotation	θ_{p}	0.0197	0.0293	rad	$\theta_{p} = \phi_{p}^{*}L_{p}$
Plastic disp. capacity of pier	Δ_{p}	135	201	mm	$\Delta_{p} = \theta_{p}^{*} H_{cogc}^{*} 1000 : Eq (5-36)$
Limit state disp. capacity pier	$\Delta_{\rm Is}$	185	274	mm	$\Delta_{ls} = \Delta_{y} + \Delta_{p}$: excludes foundation disp.
Ductility capacity	μ_{ls}	3.7	3.7		$\mu_{ls} = \Delta_{ls} / \Delta_y$: OK > 3.5 & 3.0 Soil C & D respect.
Max inelastic disp capacity at CoG pier	$\Delta_{\rm dpc}$	199	302	mm	$\Delta_{dpc} = \mu_{ls}^* \Delta_y + \Delta_f$
Design disp capacity for superstruct	$\Delta_{\rm cs}$	253	380	mm	$\Delta_{cs} = \Delta_{dpc} * A_{ra}$: at CoG superstructure mass
Design disp capacity at equiv mass	$\Delta_{\rm ce}$	241	361	mm	$\Delta_{\rm ce} = {\Delta_{\rm cs}}^* \Delta_{\rm d} / \Delta_{\rm ds}$
Check P-∆ Moment					
Axial load x displacement demand	$M_{p-\Delta}$	649	860	kN m	$M_{p-\Delta} = (W_s * \Delta_{ds} + W_{cc} * \Delta_{dp})/1000$
					Ignores small component from lower 2/3
					section of colum
Capacities 20/D32 and 28/D32 bars	M _{bc}	3,672	7,751	kN m	
Ratio: $M_{p-\Delta} / M_{bc}$	M _{rat}	0.18	0.11		> 0.1. Increase in moment capacity required
					< 0.25 so less than maximum limit
					See BM Clause 5.3.7
Moment Capacity					
Required moment capacity	M _{bp}	3,234	6,154	kN m	$M_{\rm bp} = M_{\rm b} + M_{\rm p-\Delta}/2$
					$OK: M_{bc} > M_{bp}$

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

3

Analysis Case 3: Lead Rubber Bearings: Transverse Analysis

Prepared: J Wood

Edit Date: 21-Aug-17

Print Date: 21-Aug-17

Item	Symbol	Value	Units	Comment / Formula				
Structural Inputs	-		-	-				
Weight of superstructure on pier	Ws	1,900	kN	Excludes pier. See analysis on Page C5-55				
Height of superstructure mass	Hs	8.982	m	Above pile cylinder top. See analysis on Page C5-55				
Height of CoG Total mass	н	8.113	m	See analysis on Page C5-56				
Height of column	H _{col}	6.200	m	From drawings				
Weight of pier cap	W _c	399	kN	See analysis on Page C5-55				
Maximum depth of pier cap	H _{ca}	1.421	m	From drawings				
Height of top of pier cap	H_{cap}	7.621	m	Above pile cylinder top				
Height CoG of pier cap	H _c	6.967	m	Above pile cylinder top				
Weight of pier column	W_{co}	239	kN	See analysis on Page C5-55				
Weight of pier cap + column/3	W_{cc}	478	kN	$W_{cc} = W_c + W_{co}/3$				
Height CoG column/3 + pier cap	H _{cogc}	6.839	m	$H_{cogc} = (W_c * H_c + W_{co} * H_{col}/3)/W_{cc}$ Column mass at underside cap. BM Comm C5				
Total dynamic weight	W _d	2,378	kN	$W_d = W_s + W_c + W_{co} / 3$: not including abutments				
Column diameter	D	1.4	m					
Diameter longitudinal bars	d _b	32	mm					
Number of longitudinal bars	N _b	34						
Adopted concrete strength	f _c	40	MPa	Design value was 35 MPa				
Adopted steel yield stress	f _y	500	MPa	Design value was 275 MPa				
Inputs for Lead Rubber Bearings on F	liers							
Shear modulus	G _b	0.73	MPa	53 IRHD - Skellerup brochure				
Width of bearing	Bb	280	mm	From drawings. Transverse direction				
Length of bearing	L _b	230	mm	From drawings. Longitudinal direction				
Total thickness of bearing	t _t	131	mm	= (70 rubber + 51 plates + 10 top & bot cover)				
Thickness of rubber	t,	70	mm	From drawings: 10 inner layers at 7 mm				
				Bearings are dowelled. Ignore cover rubber				
Side cover	s _c	7	mm	From drawings				
Number bearings on each pier	N _{be}	8						
Diameter of lead core	D _{cl}	75	mm	From drawings				
Area of lead core	A _c	0.0044	m²	$A_{\rm c} = \pi^* (D_{\rm cl} / 1000)^2 / 4$				
Bonded area of rubber	A _{bl}	0.0530	m²	$A_{bl} = (B_b - 2^*s_c)^*(L_b - 2^*s_c)/10^6 - A_c$				
				Cover rubber ignored. Some guidelines include it.				
Post yield shear stiffness	K _d	553	kN/m	$K_{d} = A_{bl} * G_{b} * 1000/(t_{r}/1000)$				
Total stiffness of bearings	K _{dt}	4,425	kN/m	$K_{dt} = K_d * N_{be}$				
Yield strength of lead core	Q _d	35	kN	$Q_d = 6.23^* D_{cl}^2 / 1000$: From Buckle, 2013.				
Total yield strength of cores	Q _{dt}	280	kN	$Q_{dt} = N_{be}^* Q_d$				

Item	Symbol	Value	Units	Comment / Formula
Foundation Stiffness Inputs				
Horizontal stiffness at ground level	K _h	60	MN/m	See analysis on Page C5-70
Rotational stiffness at ground level	Κ _θ		MN m/rad	
Earthquake Inputs	Νθ	2,500	NIN III/I au	dee analysis of thage 05-70
Site Subsoil Category		С		Assumed for Case 3 analysis
Zone Factor	z	0.27		Nelson
Return Period Factor	R _u	1.8		2,500 year return period
Corner period spectral shape factor	$\Delta_{\rm h}(3)$		mm	From BM Table 5.5
Corner period displacement	∆n(3)		mm	$\Delta(3) = R_u^* Z^* \Delta_h(3)$
Calculated Structural Parameters	(-)			
Young's modulus concrete	Ec	31,623	MPa	$E_{c} = 5000^{*}$ Sqrt(f _c): Priestley et al, 2007, Eq (4.43)
	L_c	01,020		Eqn was used to derive stiffness ratio curves
Area of longitudinal steel	As	27,344	mm ²	$A_{s} = N_{b}^{*} \pi^{*} d_{b}^{2} / 4$
Area of pier column	A _{co}	1.539		$A_{\rm co} = \pi^* D^2 / 4$
Longitudinal reinforcement ratio		0.0178		$\rho_{\rm co} = \Lambda_{\rm co} / 4$ $\rho_{\rm l} = A_{\rm s} / (A_{\rm co}^* 10^6)$
Axial force ratio in column	ρ _ι R _{af}	0.0170		$R_{af} = (W_s + W_c + W_{co})/(A_{co} * f_c * 1000)$
Pier stiffness ratio	R _{st}	0.041		From Priestley et al, 2007, Fig 4.12
Cracked stiffness of pier column	K _{st} K _p	12,888		$K_{p} = (3^{*}R_{st} * E_{c} * 1000^{*} \pi * D^{4}) / (64^{*}(H_{cap} + L_{sp})^{3})$
	ι τ _p	12,000		
				Based on top of pier ht. Used for period calc L_{so} calculated below.
Yield Displacement at Top of Pier and	Eloyural	Strongth		
Probable yield stress for reinf.			MPa	f _{ve} = 1.1*f _v : BM Table 5.7
Young's modulus steel	f _{ye} ⊏	200,000		$T_{ye} = 1.1 T_y$. Bivi rable 5.7
Yield strain	Es	0.00275		s f /E
Yield curvature	ε _y	0.00273		$\varepsilon_{y} = f_{ye} / E_{s}$
Strain penetration length	φ _{yy}	0.00422		$\phi_{yy} = 2.15^* \varepsilon_y / D: Eq (5-8)$
Coefficient for column fixity	L _{sp} C ₁	0.333		$L_{sp} = 0.022*f_{ye}*d_b / 1000: Eq (5-10)$ See Bridge Manual Commentary C5
Pier CoG disp. due to found $\Delta \& \theta$				
	Δ_{f}	25	mm	$\Delta_{\rm f} = V_{\rm p} / K_{\rm h} + M_{\rm bc}^* H_{\rm cogc} / K_{\rm \theta}$
		74		Iteration reqd: V_p and M_{bc} unknown at this point
Pier CoG disp. due to col. at yield	Δ_{y}		mm	$\Delta_{y} = C_{1} * \phi_{yy} * (H_{cogc} + L_{sp})^{2} * 1000 : Eq (5-10)$
Total displacement at CoG pier	Δ_{yt}		mm	$\Delta_{yt} = \Delta_f + \Delta_y$
Flexural strength of pier	M _n	8,200	kNm	Flexural strength analysis: $f_y = 550 \text{ MPa}$
Displacement Iteration for Superstruc				
Iteration to find displacement in bearing a	nd supers T		Ľ.	
Pier rotation modifier for super disps	aa	0.31		$aa = (H_s/H_{cogc} - 1)$
				Rotation of pier increases disp. of $\rm W_s$
Assumed displacement in bearing	Δ_{ia}		mm	Iterate until $\Delta_{ia} = \Delta_i$
Calculated bearing displacement	Δ_{i}	57.2	mm	$\Delta_{i} = \Delta_{d}(T)^{*}(1 - (1 + aa)/(A_{ra} + aa))$
				See demand disp. and mode shape below
				Eq (C5A-10)
Shear strain in bearing rubber	ε _b	0.82		$\epsilon_{b} = \Delta_{i} / t_{r} : t_{r} < 1.0 \text{ bearings OK}$
Stiffness of columns	К	12,888	kN/m	$K = K_p$: columns do not reach yield but are
				likely to be cracked.
Bearing effective stiffness at Δ_{ia}	K _i	9,327	kN/m	$K_i = 1000^*Q_{dt} / \Delta_i + K_{dt}$: Buckle, 2013, Eq (2.25)

Item	Symbol	Value	Units	Comment / Formula
Calculate period of vibration assuming e Use two-degree of freedom vibration the				
Quadratic equation coefficient B	B _c	-564	(rad/s) ²	$B_{c} = -9.81^{*}(K_{i}/W_{s}+(K+K_{i}^{*}(1+aa))/W_{cc})$
Quadratic equation coefficient C	C _c	12,730	(rad/s) ⁴	$C_{c} = 9.81^{2*}(K^{*}K_{i})/(W_{s}^{*}W_{cc})$
Angular frequency	ω	4.9	rad/s	$\omega = \text{Sqrt}((-B_c - \text{Sqrt}(B_c^2 - 4^*C_c))/2)$
First mode period	т	1.29	s	$T = 2^* \pi / \omega$
Mode shape	A _{ra}	2.26		$A_{ra} = (K + K_i - W_{cc}^* \omega^2 / 9.81) / K_i$
Superstructure displacement	Δ_{a}	117	mm	$\Delta_{a} = \Delta_{ia} / (1 - (1 + aa) / (A_{ra} + aa))$
Displacement at CoG of pier mass	Δ_{p}	45	mm	$\Delta_{p} = \Delta_{a} / (A_{ra} + aa) < \Delta_{yt}$: pier remains elastic
Shear force in bearings	V _{pb}	533	kN	$V_{pb} = \Delta_i^* K_i / 1000$
Inertia force from pier cap	F_{ci}	52	kN	$F_{ci} = \Delta_p^* \omega^2 * W_{cc} / (1000^* 9.81)$
Shear force on pier	V _p	586	kN	$V_p = V_{pb} + F_{ci}$
Viscous damping ratio for bearings	ξ	0.33		$\xi = 2^* Q_{dt} / (\pi^* V_{pb})$: Buckle Eq (1.16)
Ductility demand on pier	μ_{ap}	1.00		Required for damping estimate
Damping from pier	ξe	0.10		$\xi_{e} = 0.10 + 0.04^{*}(\mu_{ap} - 1) \le 0.18$: Eq (5-32)
Combined damping bearings+pier	ξc	0.23		$\xi_{\rm c} = (V_{\rm p}^* \Delta_{\rm p}^* \xi_{\rm e} + V_{\rm pb}^* \Delta_{\rm i}^* \xi) / (V_{\rm p}^* \Delta_{\rm p} + V_{\rm pb}^* \Delta_{\rm i})$
				Eq (5-23)
Damping reduction factor	Μ _ξ	0.53		$M_{\xi} = (0.07/(0.02 + \xi_c))^{0.5}$: Eq (5-17)
Participitation factor	Р	1.06		$P = (W_s + W_{cc} / A_{ra}) / (W_s + W_{cc} / A_{ra}^2)$: Eq (C5A-17)
Elastic spectrum design disp.	$\Delta(T)$	219	mm	$\Delta(T) = P^* \Delta(3)^* T/3$
Displacement demand	$\Delta_{d}(T)$	117	mm	$\Delta_{\rm d}({\rm T}) = \Delta({\rm T})^*{\rm M}_{\xi}$
Force Actions on Pier				
Base moment	M _{bc}	5,149	kN m	$M_{bc} = (W_{s}^{*}\Delta_{a}^{*}H_{s} + W_{cc}^{*}\Delta_{p}^{*}H_{cogc})^{*}\omega^{2}/(9.81^{*}1000)$
Ratio pier moment capacity / demand	R _{cd}	1.59		Adequate overstrength to prevent yield at DCLS
Check pier shear / weight	R_{pw}	31	%	$R_{pw} = 100^* V_p / W_s$

Priestley M J N, Calvi G M and Kowalsky, 2007. *Displacement-Based Seismic Design of Structures*. IUSS Press. Thompson W T, 1965. *Vibration Theory and Applications*. Prentice-Hall Inc

Analysis Case 3: Lead Rubber Bearings: Longitudinal Analysis

Prepared: J Wood

Edit Date: 16-Oct-17

Print Date: 15-Nov-17

ltem	Symbol	Value	Units	Comment / Formula
Structural Inputs	•	<u>.</u>		
Number of spans	Ns	5		
Weight of superstructure span	Ws	1,900	kN	Excl pier cap and column. See analysis p. C5-55
Total weight of superstructure	W _{st}	9,500	kN	Five spans
Height of column	H _{col}	6.200	m	From drawings
Weight of pier cap	W _c	399	kN	From analysis on Page C5-55
Total weight of pier caps	W _{ct}	1,594	kN	Four caps
Maximum depth of pier cap	H _{ca}	1.421	m	From drawings
Height of top of pier cap	H _{cap}	7.621	m	$H_{cap} = H_{ca} + H_{col}$
Height CoG of pier cap	H _c	6.967	m	Above pile cylinder top, From analysis on p. C5-56
Weight of pier column	W _{co}	239	kN	From analysis on Page C5-55
Total weight of pier columns	W _{cot}	956	kN	Four columns
Wt of pier cap + column/3	W _{cc}	478	kN	$W_{cc} = W_c + W_{co}/3$
Total wt of pier cap + column/3	W _{cct}	1,913	kN	$W_{cct} = W_{ct} + W_{cot}/3$
Height CoG column/3 + pier cap	H _{cogc}	6.839	m	$H_{cogc} = (W_{ct}^*H_c + W_{cot}^*H_{col}/3)/W_{cct}$
	_			Column mass assumed at underside cap.
				See Bridge Manual commentary C5
Total dynamic weight	W _d	11,413	kN	$W_d = W_{st} + W_{ct} + W_{cot}/3$: (excluding abutments)
Weight of each abutment	Wa	930	kN 🔶	Does not include approach slab. Approach slab
				and soil above included in M-O active wedge.
Column diameter	D	1.4	m	As designed
Diameter longitudinal bars	db	32	mm	As designed
Number of longitudinal bars	N _b	34		As designed
Adopted concrete strength	f _c	40	MPa	Design value was 35 MPa
Adopted steel yield stress	fy	500	MPa	Design value was 275 MPa
Foundation Stiffness Inputs				
Hor stiffness each pile at ground level	K _h	60	MN/m	See analysis on Page C5-70
Rot stiffness each piler at ground level	K _θ	2,380	MN m/rad	See analysis on Page C5-70
Effective stiffness of two abutment piles	K _{api}	54,000	kN/m	At bearing level. See analysis on Page C5-77
Abutment Stiffness Inputs	-			
Backfill friction angle	φ_{b}	35	deg	Dense granular backfill
Backfill friction angle - radians	ϕ_{br}	0.611	rad	
Soil unit weight	γ_{s}	19	kN/m ³	
Backwall height	Hw	3.46	m	From drawings. Total of pile cap and backwall
Backwall width	Bw	10.33	m	From drawings
Passive soil stiffness of abut backwall	K _{aw}	300,000	kN/m	At 5 mm displacement. See analysis on Page C5-78
Stiffness of push abutment	Ka	354,000	kN/m	$K_a = K_{api} + K_{aw}$
Abutment inertia force from PGA	Fi	601	kN	$F_i = a_p^* W_a$: see PGA (a_p) below

ltem	Symbol	Value	Units	Comment / Formula
Inertia angle	α	0.574		α = Atan(a _p): see PGA below
Mononobe active pressure coefficient	K _{AE}	1.054		$K_{AE} = (\cos(\phi_{br} - \alpha))^2 /$
				$((\cos(\alpha))^{2*}(1+\operatorname{Sqrt}(\sin(\phi_{br})^{*}\sin(\phi_{br}-\alpha)/\cos(\alpha)))^{2})$
				Assuming zero friction on wall backface.
Active pressure force on abutment	F _{AE}	1235	kN	$F_{AE} = 0.5^* K_{AE}^* H_w^{2*} B_w^* \gamma_s$
Abutment inertia + active M-O force	F _{ip}	1,836	kN	$F_{ip} = F_i + F_{AE}$: reduces effective stiffness
Effective stiffness of pull abutment	K _{ap}	7,275	kN/m	$K_{ap} = K_{api} / (1 + F_{ip} / V_{ap}):$
				Not including reduction in stiffness from bearings
				From Introduction Eq (H-21) with $k_b = \infty$
				Shear V_{ap} on pull abutment is calculated below
Inputs for Lead Rubber Bearings on F	iers			
Shear modulus (piers and abutments)	G _b	0.73	MPa	53 IRHD - Skellerup brochure
Width of bearing	B _b	280	mm	From drawings. Transverse direction
Length of bearing	L _b	230	mm	From drawings. Longitudinal direction
Total thickness of bearing	t _t	131	mm	= (70 rubber + 51 plates + 10 top and bot cover)
Thickness of rubber	t _r	70	mm	10 inner layers at 7 mm
Side cover	s _c	7	mm	From drawings
Number bearings on all piers	N _{be}	32		
Diameter of lead core	D _{cl}	75	mm	From drawings
Area of lead core	Ac	0.0044	m ²	$A_{\rm c} = \pi^* (D_{\rm cl} / 1000)^2 / 4$
Bonded area of rubber	A _{bl}	0.0530	m ²	$A_{bl} = (B_b - 2^*s_c)^*(L_b - 2^*s_c)/10^6 - A_c$
Post yield shear stiffness	K _d	553	kN/m	$K_{d} = A_{bl} * G_{b} * 1000/(t_{r}/1000)$
Total stiffness bearings on all piers	K _{dt}	17,700	kN/m	$K_{dt} = K_d N_{be}$
Yield strength of lead core	Q _d	35	kN	$Q_d = 6.23^* D_{cl}^2 / 1000$: from Buckle, 2013 notes.
Total yield strength all bearings	Q _{dt}	1,121	kN	$Q_{dt} = N_{be}^* Q_d$
Inputs for Lead Rubber Bearings on E	ach Abut	ment	>	
Width of bearing	B _{ba}	380	mm	From drawings. Transverse direction
Length of bearing	L _{ba}	300	mm	From drawings. Longitudinal direction
Total thickness of bearing	t _{ta}	175	mm	= (117 rubber + 48 plates + 10 top and bot cover)
Thickness of rubber	t _{ra}	117	mm	From drawings: 9 inner layers at 13 mm
Side cover	S _{ca}	10	mm	From drawings
Number bearings on each abutment	N _{bea}	4		
Diameter of lead core	D _{cla}		mm	From drawings
Area of lead core	A _{ca}	0.0044	m²	$A_{ca} = \pi^* (D_{cla}/1000)^2/4$
Bonded area of rubber	A _{bla}	0.0964		$A_{bla} = (B_{ba} - 2^* s_{ca})^* (L_{ba} - 2^* s_{ca}) / 10^6 - A_{ca}$
Post yield shear stiffness	K_{da}	601	kN/m	$K_{da} = A_{bla} * G_b / (t_{ra} / 1000) * 1000$
Total stiffness bearings on abutment	K _{dat}	2,405	kN/m	$K_{dat} = K_{da}^* N_{bea}$
Yield strength of lead core	Q_da	35	kN	$Q_{da} = 6.23^* D_{cla}^2 / 1000$: from Buckle, 2013 notes
Total yield strength all bearings	Q _{dat}	140	kN	$Q_{dat} = N_{bea}^* Q_{da}$

Item	Symbol	Value	Units	Comment / Formula
Earthquake Inputs	-,			
Site Subsoil Category		с		Adopted for Case 3 analysis
Zone Factor	z	0.27		Nelson
Return Period Factor	R _u	1.8		2,500 year return period
Peak ground acceleration	-	0.646		$a_p = 1.33 * Z^* R_u$: required for M-O active pressure
	a _p	0.040	9	$a_p = 1.00 \ge R_u$. required for W O derive pressure on abutments.
Corner period spectral shape factor	$\Delta_{\rm h}$ (3)	085	mm	From Table 5.5 in BM
	Δ _h (3) Δ(3)			
Corner period displacement Calculated Structural Parameters	∆(5)	479	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
		31,623		$\Gamma = 5000$ Cart(f): Drigotlay at al. 2007. $\Gamma = (4.42)$
Youngs modulus concrete	Ec	31,623	iviPa	$E_c = 5000^*$ Sqrt(f _c): Priestley et al, 2007, Eq (4.43)
		07.044	2	Equation was used to derive stiffness ratio curves.
Area of longitudinal steel	As	27,344		$A_{\rm s} = N_{\rm b} \star \pi^* d_{\rm b}^2 / 4$
Area of pier column	A _{co}	1.539		$A_{co} = \pi^* D^2 / 4$
Longitudinal reinforcement ratio	ρι	0.0178		$\rho_1 = A_s / (A_{co}^* 10^6)$
Axial force ratio in column	R _{af}	0.041		$R_{af} = (W_s + W_c + W_{co})/(A_{co} * f_c * 1000)$
Pier stiffness reduction factor	R _{st}	0.37		From Priestley et al, 2007, Fig 4.12
Cracked stiffness of pier column	K _p	17,542	kN/m	$K_{p} = (3^{*}R_{st}^{*}E_{c}^{*}1000^{*}\pi^{*}D^{4})/(64^{*}(H_{cogc}+L_{sp})^{3})$
				Based on pier CoG ht. Used for period calculation.
				L _{sp} calculated below.
Yield Displacement at Top of Pier and	Flexural	Strength		
Probable yield stress for reinf.	f _{ye}	550	MPa	$f_{ye} = 1.1^* f_y$: BM Table 5.7
Young's modulus steel	Es	200,000	MPa	
Yield strain	εγ	0.00275		$\varepsilon_y = f_{ye} / E_s$
Yield curvature	фуу	0.00422	1/m	$\phi_{yy} = 2.15^* \epsilon_y / D: Eq (5-8)$
Strain penetration length	L _{sp}	0.387	m	L _{sp} = 0.022*f _{ye} *d _b /1000: Eq (5-10)
Coefficient for column fixity	C ₁	0.333		See Bridge Manual Commentary C5
Displacement pier CoG from foundation	Δ_{f}	24	mm	$\Delta_{\rm f} = V_{\rm p} / (4^* \text{ K}_{\rm h}) + M_{\rm bc}^* H_{\rm c} / \text{ K}_{\theta}$
				Iteration required: V_p and M_{bc} unknown at this point
Disp at pier CoG from pier column	Δ_{yc}	76	mm	$\Delta_{yc} = C_1 * \phi_{yy} * (H_c + L_{sp})^2 * 1000: Eq (5-10)$
				At CoG of pier mass
Total yield displacement at CoG of pier	Δ_{v}	100	mm	$\Delta_{\rm v} = \Delta_{\rm vc} + \Delta_{\rm f}$
Flexural strength	Mn	8,200		Flexural strength analysis: $f_v = 500 \text{ MPa}$
Superstructure Response		-,		з , , , , , , , , , , , , ,
It is necessary to make assumptions for	hoth the s	unerstruct	ure and nie	pr hearing displacements then iterate
until calculated values = assumed values			-	
Assume disp of superstructure	Δ_{sa}		mm	Iterate until $\Delta_{sc} = \Delta_{sa}$
Calculated disp superstructure	Δ_{sc}		mm	$\Delta_{sc} = \Delta_{d}(T)$
Assume disp in pier bearings			mm	$\Delta_{sc} = \Delta_{d}(1)$ Iterate until $\Delta_{ba} = \Delta_{bc}$
Calculated disp in pier bearings	$\Delta_{ extsf{ba}}$ $\Delta_{ extsf{bc}}$		mm	$\Delta_{bc} = \Delta_{sa}^{*}(1 - 1/A_{ra}): using mode shape from below$
Calculated disp in pier bealings	bc	04.0		
Creaked atiffness of 4 actions		70.400	I/NI/m	From Eq (C5A-10) $K = 4^{*}K$: (based on pier CaC beight)
Cracked stiffness of 4 columns	K	70,166		$K = 4^{*}K_{p}$:(based on pier CoG height)
		0.0400		Colmnns do not reach yield but likely to be cracked
Stiffness ratio for push abutment	γ _a	0.0108		$\gamma_a = (K_{dat}^* \Delta_{sa} / 1000 + Q_{dat}) / (K_a^* \Delta_{sa} / 1000 - Q_{dat})$
				Buckle, 2013, Eq 2.32

Item Stiffness ratio for pull abutment Effectiveness stiffness push abut	Symbol	Value	Units						
·			Units	Comment / Formula					
Effectiveness stiffness nuch abut	Ŷap	0.649		$\gamma_{ap} = (K_{dat}^* \Delta_{sa} / 1000 + Q_{dat}) / (K_{ap}^* \Delta_{sa} / 1000 - Q_{dat})$					
	K _{ea}	3,784		$K_{ea} = \gamma_a * K_a / (1 + \gamma_a)$: Buckle, Eq 2.31					
Effective stiffness pull abutment	K _{eap}	2,863		$K_{eap} = \gamma_{ap} K_{ap} / (1 + \gamma_{ap})$					
Effective stiffness of pier bearings	K _{eb}	35,086		$K_{eb} = Q_{dt} / (\Delta_{ba} / 1000) + K_{dt}$: Buckle, 2013, Eq 2.25					
Calculate period of vibration and displace	Calculate period of vibration and displacement of pier top assuming elastic response.								
Use two-degree of freedom vibration theory	ry from Th	nompson, i	1965 to cal	culate period and mode shape					
See Equations (C5A-1) to (C5A-6)									
Quadratic equation coefficient B	B _c		(rad/s) ²	$B_{c} = -9.81^*((K_{ea} + K_{eap} + K_{eb})/W_{st} + (K + K_{eb})/W_{cct})$					
Quadratic equation coefficient C	C _c	16,740	(rad/s) ⁴	$C_{c} = 9.81^{2*}((K_{ea}+K_{eap})*K+(K_{ea}+K_{eap}+K)*K_{eb})/$					
				(W _{st} *W _{cct})					
Angular frequency	ω	5.5	rad/s	ω = Sqrt((-B _c - Sqrt(B _c ² - 4*C _c))/2)					
Period two mass model	Т	1.14	s	$T = 2^* \pi / w$					
Mode shape	A _{ra}	2.83		$A_{ra} = (K + K_{eb} - W_{cct} * \omega^2 / 9.81) / (K_{eb})$					
Displacement at pier mass CoG	Δ_{p}	35.3	mm	$\Delta_{\rm p} = \Delta_{\rm sa} / A_{\rm ra}$					
Displacement in push abut bearings	Δ_{bau}	98.8	mm	$\Delta_{\text{bau}} = \Delta_{\text{sa}} / (1 + \gamma_{\text{a}})$: Buckle, Eq 2.35					
Shear strain in push abut bearings	З	0.84		$\epsilon = \Delta_{\text{bau}} / t_{\text{ra}}$: $\epsilon < 1.0$: bearings OK					
Displacement in pull abut bearings	$\Delta_{ t bap}$	60.6	mm	$\Delta_{\text{bap}} = \Delta_{\text{sa}} / (1 + \gamma_{\text{ap}})$					
Displacement of push abutment	Δ_{a}	1.1	mm	$\Delta_{a} = \Delta_{sa} - \Delta_{bau}$					
Displacement of pull abutment	Δ_{ap}	39.3	mm	$\Delta_{ap} = \Delta_{sa} - \Delta_{bap}$					
Effective stiffness push abut bearings	K _{eba}	3,825	kN/m	$K_{eba} = Q_{dat} / (\Delta_{bau} / 1000) + K_{dat}$					
Effective stiffness pull abut bearings	K _{ebb}	4,720	kN/m	$K_{ebb} = Q_{dat} / (\Delta_{bap} / 1000) + K_{dat}$					
Total of pier shears from pier CoG disp	Vp	2,474	kN	$V_{\rm p} = \Delta_{\rm p}^{*} {\rm K} / 1000$					
Shear force in pier bearings	V _{be}	2,263	kN	$V_{be} = \Delta_{ba} * K_{eb} / 1000$					
Check: bearing shear + cap inertia	V _{pc}	2,471	kN	$V_{pc} = V_{be} + W_{cct}^* \Delta_p^* \omega^2 / (9.81^*1000)$					
Shear force on push abutment	Va	378	kN	$V_a = \Delta_a^* K_a / 1000$					
Check shear on push abutment	V _{ac}	378	kN	$V_{ac} = \Delta_{bau} K_{eba} / 1000$					
Shear force on pull abutment	Vap	286	kN	$V_{ap} = \Delta_{ap} K_{ap} / 1000$					
Check shear on pull abutment	Vapc	286	kN	$V_{ac} = \Delta_{bap} K_{ebb} / 1000$					
Total shear force on foundations	V _t	3,138	kN	$V_{t} = V_{p} + V_{a} + V_{ap}$					
Check Bridge Inertia Forces				· · · · ·					
Shear force from inertia of superstruct	V _{is}	2,929	kN	$V_{is} = W_{st}^* \Delta_{sa}^* \omega^2 / (9.81^*1000)$					
Shear force from inertia of piers	V _{ip}	208	kN	$V_{ip} = W_{cct}^* \Delta_p^* \omega^2 / (9.81^*1000)$					
Sum of inertia forces	V _{it}	3,138	kN	$V_{it} = V_{is} + V_{ip}$: OK $V_{it} = V_t$					
Damping and Computed Response									
Damping from pier bearings	ξ	0.315		$\xi = 2^*Q_{dt}/(\pi^*V_{be})$: Buckle, 2013 Eq 1.16					
Damping from push abut bearings	ξa	0.236		$\xi_{a} = 2^{*}Q_{dat} / (\pi^{*}V_{a})$					
Damping from pull abut bearings	ξap	0.312		$\xi_{ap} = 2^* Q_{dat} / (\pi^* V_{ap})$					
Ductility demand on piers	μ _a	1.00		See base moment below - elastic response					
Damping from pier foundations	ξe	0.10		ξ _e = 0.10+0.04*(μ _a -1) ≤ 0.18: Eq (5-32)					
Combined damping	چو	0.240		$\xi_{c} = (V_{p}^{*}\Delta_{p}^{*}\xi_{e} + V_{be}^{*}\Delta_{ba}^{*}\xi_{e} + V_{a}^{*}\Delta_{bau}^{*}\xi_{a} + V_{ap}^{*}\Delta_{bap}^{*}\xi_{ap})$					
(Ignores soil damping at abutments)				$/(V_p^* \Delta_p + V_{be}^* \Delta_{ba} + V_a^* \Delta_{bau} + V_{ap}^* \Delta_{bap})$: Eq (5-23)					
Damping reduction factor	Μ _ξ	0.52		$M_{\epsilon} = (0.07/(0.02 + \xi_{c}))^{0.5} : Eq (5-17)$					
Participitation factor	P	1.06		$P = (W_s + W_{cc} / A_{ra}) / (W_s + W_{cc} / A_{ra}^2): Eq (C5A-17)$					

ltem	Symbol	Value	Units	Comment / Formula
Elastic spectrum design displacement	Δ(T)	192	mm	$\Delta(T) = P^* \Delta(3)^* T/3$
Displacement demand	$\Delta_{\sf d}({\sf T})$	100	mm	$\Delta_{d}(T) = \Delta(T)^{*}M_{\xi}$
Check base moment in each pier	M _{bc}	4,714	kN m	$M_{bc} = V_p * H_{cap} / 4$: $M_{bc} < M_n$
Ratio pier moment capacity/demand	R_{cd}	1.74		$R_{cd} = M_n / M_{bc}$
				Overstrength more than adequate to prevent pier yield at DCLS
Check pier shear / weight on pier	R_{pw}	22	%	$R_{pw} = 100^* V_p / W_d$

References:

Buckle I G, 2013. *Introduction to Seismic Isolation*. Base Isolation 101, Seminar Notes TR54. NZ Concrete Soc. Priestley M J N, Calvi G M and Kowalsky, 2007. *Displacement-Based Seismic Design of Structures*. IUSS Press. Thompson W T, 1965. *Vibration Theory and Applications*. Prentice-Hall Inc

Appendix C5B Displacement based design worked example 2 – Mangatewai-iti River Bridge

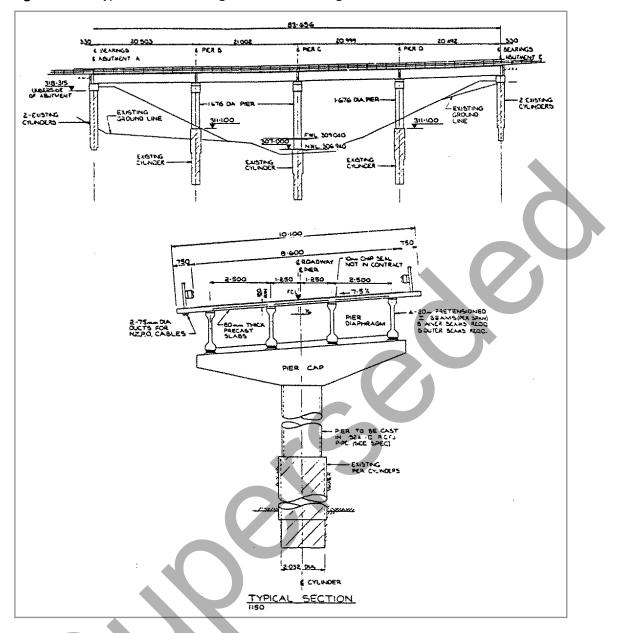
Section		Page
C5B.1	Bridge description	5-98
C5B.2	Example cases analysed	5-100
C5B.3	Longitudinal analysis	5-101
C5B.4	Transverse analysis: Sliding bearings at abutments	5-105
C5B.5	Transverse analysis: Restraint at abutments	5-106
C5B.6	Shear ratio in piers	5-111
C5B.7	References	5-112
C5B.8	Spreadsheets	5-113

In this section

C5B.1 Bridge description

Constructed in 1983 the Mangatewai-iti River Bridge is located on State Highway 2 approximately 13km north of Dannevirke. The bridge has four simply supported precast prestressed concrete I beam spans with a cast insitu reinforced concrete deck continuous over the piers. The piers have single 1.52m diameter reinforced concrete columns with hammerhead type caps. Each pier has a 2.03m diameter cylinder foundation that consists of a reinforced concrete core cast in a 10mm thick steel liner. The central pier has a height of 13.2m measured from the top of the cylinder to the top of the hammerhead and the two outer piers have nearly equal heights of approximately 9.2m. Typical details of the structure are shown in figure C5B.1 to figure C5B.3.

On the piers the beams are seated on 380x300x119mm thick elastomeric bearings. At the abutments the beams sit on PTFE bearings which allow both unrestrained longitudinal and transverse displacements. The abutments are supported on twin 1.37m diameter cylinders.


The bottom section of the pier columns (all piers) are reinforced with 40 D32 longitudinal bars. Confinement over a 1.8m length at the base of the columns is provided by D16 hoops at 80mm spacing. The top of pier cylinders are reinforced with 54 D32 longitudinal bars. All the reinforcement had a specified minimum yield stress of 275MPa.

Bore logs included with the drawings show that the foundation cylinders are embedded in dense sand and gravels overlying siltstone at a depth varying between 15 to 20m.

In 1985 the bridge was subjected to snap-back lateral displacement testing as part of a research project undertaken by the University of Nevada-Reno, the University of Auckland and Computech Engineering Services Inc. System identification techniques were used to determine some of the important structural and soil stiffness parameters (*Large amplitude field response studies of two highway bridges subjected to simulated earthquake loads*⁽¹⁾).

Figure C5B.1: Mangatewai-iti River Bridge looking to north

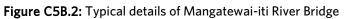


Figure C5B.3: Abutment seating showing sliding bearings (note lack of transverse restraint)

C5B.2 Example cases analysed

Only a single configuration of the bridge was considered for this example. Two minor changes were made to the as-designed bridge. The characteristic yield stress of the reinforcement in the piers was taken as 300MPa instead of the specified minimum of 275MPa. The columns at piers B and D were assumed to have equal heights of 7.7m instead of the actual heights of 7.2 and 7.9m respectively. Using equal heights for piers B and D makes the bridge symmetrical about the centre simplifying the analysis. The column of pier C was assumed to have its actual height of 11.7 m. Having a height difference between the central and outer piers adds analysis complexity and makes the analysis procedure different in a number of respects to that used in example 1 (see appendix C5A) where the piers were assumed to have uniform height.

(Note that the example calculations were undertaken using an annual probability of exceedance of 1/2500 for this bridge having been written prior to the change of annual probabilities of exceedance introduced in amendment 3 to the *Bridge manual*.)

Flexibility introduced by the cylinder pile foundations and the elastomeric bearings was considered in the analysis. The pier caps have significant mass and the appropriate inertia forces at both the centre of gravity of the superstructure and piers were applied. A worked example of a continuous bridge with differing height monolithic piers, a rigid foundation and inertia forces applied only at the centre of gravity of the superstructure is given in chapter 6 (by Priestley, Kowalsky and Calvi) of *Bridge engineering handbook: Seismic design*⁽²⁾. Reference to this simpler example is a useful starting point for the present more complex example.

For the longitudinal loading direction a single case was considered with the bridge assumed to slide on the abutment bearings with no influence of the abutments on the response except for the damping introduced by the abutment bearings. In the transverse direction two cases were considered. Firstly, the bridge was assumed to slide on the abutment bearings with a very rigid continuous superstructure spanning between the abutments to give uniform transverse displacement of the superstructure. (The analysis for this case is very similar to the longitudinal case.) In the second case the bridge was assumed to be restrained transversely by shear keys at the abutments. The flexibility introduced by the abutment cylinder foundations was included in the analysis but essentially the abutments are very rigid resulting in a very different response to that of the first case as the diaphragm action of the continuous and restrained deck reduces the displacements of the piers. This second case is more typical of New Zealand highway bridges and comparison of the results from the two cases illustrates the advantages of restraint at the abutments. (Restraint increases abutment costs but for this bridge the cost increase would have been minor because the abutments were supported on twin large diameter cylinders.)

The analysis procedure generally follows the method given in chapter 6 of *Bridge engineering handbook: Seismic design*⁽²⁾. Where appropriate the DBD provisions of section 5 of the *Bridge manual* (amendment 3) were applied. Essentially the *Bridge manual* provisions follow the basic analysis equations used in chapter 6 of *Bridge engineering handbook: Seismic design*⁽²⁾. For several of the cases considered in example 1, two types of analyses were undertaken with a design method used to determine the pier reinforcement details directly and a review method based on assuming the reinforcement details were known (or trial details chosen prior to the analysis). For example 2, it is necessary to know or select trial reinforcement details for the piers at the outset and there is no simple direct method of calculating the required capacity, confining reinforcement or ductility requirements.

C5B.3 Longitudinal analysis

The main steps in the spreadsheet analysis procedure are summarised as follows:

a. Structural inputs

The weights and height dimensions were based on the bridge drawings. The calculation of the weights is summarised on the separate spreadsheet titled *Geometric and weight input parameters* (page C5-114). It is necessary to calculate the centres of gravity of both the superstructure and the piers as these points define the location for the application of the inertia forces.

The transverse moment of inertia of the deck is required in the transverse analysis of the bridge for the case when the superstructure is restrained at the abutments. It is based on the moment of inertia of the deck section which is continuous across the piers. It would be increased by the beams that are simply supported but the increase from the beams is reasonably small and has been neglected for the example.

b. Elastomeric bearing Inputs

The overall dimensions of the bearings are shown on the drawings. The rubber thickness, side covers and shear modulus were based on typical values used in bridge bearings.

c. Pier cylinder stiffness inputs

These were calculated on a separate spreadsheet titled *Longitudinal analysis: Pier pile stiffness* (page C5-116). The stiffness of the tops of the cylinder (translation and rotation) has been calculated using the elastic continuum method of *Aseismic pile foundation design analysis*⁽³⁾. A linear increase of soil stiffness with depth was assumed and the cylinders were assumed to be long although some are marginally shorter than the minimum length required for this assumption. Insufficient information was available to derive a more exact soil model. (If SPT values are available for the foundation soils and show very variable layered properties a Winkler spring model could be used instead of the elastic continuum method.)

d. Earthquake inputs

The earthquake inputs were from the *Bridge manual* (same as NZS 1170.5 *Structural design actions* part 5 Earthquake actions – New Zealand ⁽⁴⁾) for a 2,500 year return period event. The bridge would have been designed to the earthquake load requirements of the *Highway bridge design brief*⁽⁵⁾, which was based on NZS 4203 *General structural design and design loads for buildings*⁽⁶⁾. Neither the *Highway bridge design brief*⁽⁵⁾ nor NZS 4203⁽⁶⁾ used return period factors. They used a force based design approach with coefficients based on assumed ductility factor reductions. It is therefore difficult to make a direct comparison between the design loads and the current force based provisions of the *Bridge manual* but the current 2,500 year loads would be approximately 50% greater than the design loads.

e. Calculated structural parameters

The steel areas and volumetric ratio are required for the column strength and ductility calculations. *Gen-Col*⁽⁷⁾ was used to calculate the moment capacity of the columns and the depth of the neutral axis. (Moment curvature analysis software can be used for these calculations.)

f. Strain limits for plastic rotation

Strain limits were calculated using equations (5–11) and (5–12). The confined compressive strength of the concrete was calculated using empirical equations given in *Seismic design and retrofit of bridges*⁽⁸⁾. (Alternatively this parameter can be selected from charts in *Seismic design and retrofit of bridges*⁽⁸⁾.)

g. Plastic hinge lengths

Plastic hinge lengths were calculated using equations (5–36) and (5–37). Based on typical steel test results for grade 300 reinforcement the f_u/f_y ratio was taken as 1.4. As the piers are pinned at their tops for longitudinal displacements the distance to the point of contraflexure was taken as the distance from the top of the cylinders to the top of the piers.

h. Yield displacements

The yield displacements were calculated using equation (5-10) and C_1 =0.333 (as given in C5.7.2). Displacements were calculated for both the top and the centre of gravity of the piers. The pier top values were used for ductility calculations and the centre of gravity values for calculating the pier inertia forces.

i. Ductility factor capacities

Both the limit state displacement capacities and ductility factors for the piers were calculated using conventional expressions. The pier tops were used as the reference point for these calculations. From the displacement capacities it is clear that the two shorter piers B and D control the design displacement although all three piers have similar ductility factor capacities.

j. Pier shears at limit state displacement

For piers that do not have significant mass and where the moment capacities are the same for each pier, the shears in the piers are inversely proportional to their heights (top of the pier where the pier is pinned at the top or height to the centre of gravity of superstructure for monolithic piers). For the present example, all the piers have the same moment capacity but because the pier inertia forces are not applied at the tops of the piers the shear ratio is only approximately equal to the inverse of the pier heights. A correction can be made to allow for this discrepancy but as indicated on the spreadsheet the correction is small. For this example it would be sufficiently accurate to base the ratio of the shear forces on the ratio of the pier heights.

At this stage of the analysis it is necessary to estimate the shears in the piers and the pier inertia forces and to adjust them by trial and error after calculating the total base shear at a later stage in the analysis. The pier shears and inertia forces are required to estimate the displacement from the foundation and bearing flexibility. In the simpler example given in chapter 6 of *Bridge engineering handbook: Seismic design*⁽²⁾ there are no bearings and the foundation is assumed to be rigid. In this case the system damping can be calculated using the pier shear ratio with the actual pier shears calculated directly from the total base shear without the need for trial and error.

To initiate the trial and error the shear in pier B (and D) can be approximated by dividing the trial moment capacity by the height of the pier. The inertia forces acting on the piers can initially be assumed to be zero as these forces are relatively small in comparison to the shear forces at the base of the piers.

It is convenient to use the iteration function in Excel to calculate the shears and inertia forces. After the first trial, the formulae iteration can be turned on (Tabs: File, Options, Formulas) followed by setting $V_{Bn} = V_B$ (trial value = calculated value) on the spreadsheet.

k. Displacements from foundations and bearings

The displacement components at the tops and centres of gravity of the piers from the foundation deformation were calculated using the shears and moments at the base of the piers and the translational and rotational stiffness of the cylinders.

The displacements in the bearings were calculated from the shears in the bearings (base shear minus inertia force on pier) and the total stiffness of the bearings on each pier.

The plastic displacement in pier C is required so that the ductility demand on pier C can be calculated for the damping calculation. The plastic displacement in pier C is obtained from the design limit state displacement of the superstructure less the contributions from the yield displacement and the displacement from the bearings and foundation. The design limit state displacement of the superstructure is computed by adding the bearing and foundation contributions to the limit state capacities (yield plus plastic displacement) of piers B and D.

I. Displacements at mass locations

The displacements at the centres of gravity of the piers were calculated from the pier yield and plastic displacements and the foundation displacement contribution. The characteristic design displacement was calculated by substituting the displacements at the mass locations into equation (5–3). Because the displacement of the superstructure is uniform along the length of the bridge the superstructure mass can be treated as a single point.

m. Effective mass

The effective mass is calculated using the characteristic design displacement in equation (5-21). Because the pier masses are relatively small compared to the total superstructure mass the effective mass is approximately equal to the total mass. (The effective mass should always be less than the total mass.)

n. Damping

Damping from the piers is calculated using equation (5–31). The damping ratio from the abutment sliding bearings has been taken as 0.25. This is consistent with the 0.25 value given in clause 5.4.4 for friction slabs. (The equivalent viscous damping ratio for a friction sliding device is theoretically $2/\pi$ so the value of 0.25 is conservative. The snap-back testing work on the bridge indicated that sliding at the bearings produced higher damping than indicated by a ratio of 0.25.)

Damping in the pier bearings was taken as the 0.05 default value given in clause 5.4.4. This is probably a conservative value.

The system damping was calculated using equation (5-22). Damping in the superstructure is neglected as it is small in comparison to the damping from the other components.

o. Effective period

The effective period was calculated from the limit state design displacement and the damping reduced displacement spectrum. It is assumed that the displacement spectrum is linear between zero period and the corner period of 3 seconds.

The secant stiffness K_e was calculated from the effective period and effective mass using the standard single degree of freedom expression $T_e = 2\pi \sqrt{\frac{m_e}{k_e}}$ (from equation (5–21)).

The design base shear was obtained from the secant stiffness and the effective design displacement using equation (5-18).

p. Inertia forces

Inertia forces acting on the superstructure were calculated from the base shear and respective weights of the super structure and piers using equation (5-38).

q. Base Shears

The pier base shears were calculated by subtracting the abutment friction forces from the total base shear and using the pier shear ratio factor (approximately inversely proportional to the pier heights). A coefficient of friction of 0.05 was assumed for the PTFE sliding bearings. The shear force acting on the abutment bearings is a reasonably small proportion of the total base shear so the shears acting on the piers are not very sensitive to this assumption. (The *Bridge manual* specifies a coefficient of friction range of 0.02 to 0.15, so a lower value than assumed could be used and would increase the shears in the piers a small amount.)

The moments at the base of the piers were calculated from the shear in the bearings (base shear minus the pier inertia force) and the inertia forces using the appropriate pier heights.

r. Check P-Δ moment

The P- Δ moment at the base of the piers was calculated using conventional procedures. There are two components to the moment: a component from the superstructure displacement and gravity force, and a component from the pier displacement and gravity force (assumed to act at the centres of gravity of the piers). The gravity force from the lower two-thirds of the columns was neglected as it was not included in the pier weight. A correction for the cylinder top displacement has been applied although this is small and could be neglected. (The displacement of the superstructure included the cylinder top displacement.)

The ratio of the P- Δ moment to the pier moment capacity was checked. If this ratio is less than 0.1 no increase is required to the design moment capacity. If the ratio is between 0.1 and 0.25 the design capacity should be increased by 50% of the P- Δ moment. (P- Δ moment ratios greater than 0.25 are unacceptable. Refer to clause 5.3.7.)

Required moment capacity

The analysis shows that the required moment capacity of the piers is about 12% greater than the as-constructed capacity. In a design application the capacity should be increased by adding additional longitudinal bars or increasing the yield stress of the steel. Increasing the ductility capacity of the piers would also be option. By using 20mm diameter hoops at 100mm centres the ductility factors for piers B and D would be increased to approximately 5.3 and this would reduce the moment demand to about the as-built capacity. (With this level of ductility there would be a significant P- Δ moment which needs to be considered.) The as-designed ductility factors of approximately 4.0 are reasonable values to adopt for concrete bridge piers and it would probably be best to increase the pier flexural capacities.

C5B.4 Transverse analysis: Sliding bearings at abutments

The analysis procedure in the transverse analysis for the case when the superstructure is free to slide on PTFE bearings at the abutments is almost identical to the longitudinal analysis procedure, if the superstructure is assumed to form a rigid diaphragm so that the displacement of the superstructure at the tops of the piers is uniform. The deformation of the superstructure diaphragm in the present example was checked using structural analysis and assuming the transverse moment of inertia was the uncracked value for the deck (ignoring the simply supported beams). This showed that the relative displacement between the centre and side piers was approximately 3mm which is small in relation to the total superstructure limit state design displacement of about 430mm. Therefore a rigid deck diaphragm assumption is acceptable for the present example. (A check on the in-plane flexural capacity of the deck indicated that it had sufficient strength to cantilever over the length of the end spans.)

There are minor differences between both the analysis procedures and the results for the longitudinal and transverse sliding abutment bearing cases and these are summarised below.

a. Structural inputs

The effective heights of the piers were taken as the height between the centre of gravity of the superstructure and the tops of the cylinder foundations rather than the height between the tops of the piers and the cylinders.

Because the pier bearings can transfer axial loads they provide overturning fixity rather than a pinned joint between the superstructure and piers. The analysis was based on determining the displacements at these effective pier heights rather than the displacements at the tops of the piers, which in the longitudinal direction define the displacement of the superstructure.

b. Plastic hinge lengths

The distances to the points of contraflexure were taken as the effective pier heights rather than the heights to the tops of the piers. This increases the plastic hinge lengths a small amount.

. Yield displacements

Yield displacements were calculated at the centres of gravity of the superstructure rather than at the tops of the piers. (Displacements were also calculated for the pier centres of gravity in a similar manner to the longitudinal displacement case.)

d. Ductility factor capacities

The ductility capacities of the piers were based on the displacements at the centres of gravity of the piers rather than the tops of the piers. Alternatively they could be based on the displacements at the centre of gravity of the superstructure but it is perhaps more correct to use the centres of gravity of the piers. (The ductility factor capacities are only used in the damping calculations so the reference point is not very critical.)

Using the pier centres of gravity (rather than the pier tops) increases the ductility factors from those calculated for the longitudinal direction by approximately 15%.

e. Displacements at mass locations

The design limit state displacement of the superstructure and the characteristic design displacement for the longitudinal case increase from 365 and 354mm to 431 and 415mm respectively. This is mainly a consequence of the higher effective heights of the piers for the transverse analysis.

f. Effective mass

As expected the effective mass is similar for both displacement directions.

g. Damping

The damping in the transverse direction is a little higher for the transverse case which is mainly a consequence of the higher ductility demand on pier C (2.3 in the transverse direction compared to 2.1 in the longitudinal).

h. Effective period

The period is longer in the transverse direction by approximately 15% because of the greater characteristic design displacement (and the small increase in damping).

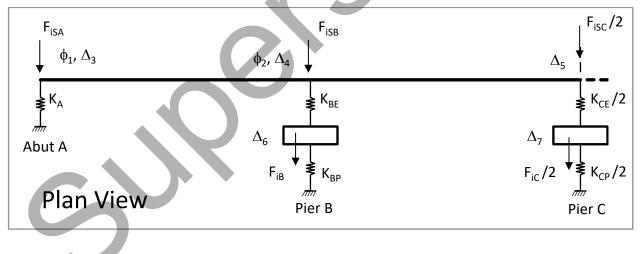
i. Base shears and moments

The longer period reduces the base shears and moments, with the moments reducing by about 9%.

j. Check P- Δ moment and required moment capacity

In the transverse direction the ratio of the P- Δ moment to the design capacity moment exceeds 0.1 and an increase in capacity is therefore required in this direction. However, even with this increase the required capacity is 5% less than for the longitudinal direction.

C5B.5 Transverse analysis: Restraint at abutments


The analysis procedure in the transverse analysis for the case when the superstructure is restrained at the abutments with rigid shear keys between the superstructure and abutment structure (but with flexible cylinder foundations) is similar to the transverse analysis procedure for sliding bearings at the abutments but there is one major difference. For the restrained abutments the displaced shape along the length of the superstructure becomes an important variable.

Following chapter 6 of *Bridge engineering handbook: Seismic design*⁽²⁾, the analysis procedure is to assume a proportion of the total base shear, defined by a ratio = x, is transferred to the abutments and to assume a parabolic shape of the deflection profile along the length of the bridge with a small displacement at the abutments. The design limit state displacement for the critical pier fixes the magnitude of the displaced shape at a point along the length. Using these trial values the inertia forces acting at the mass points and the effective stiffness of the piers (shear force/trial displacements) were calculated. These parameters were then used as inputs to a structural model consisting of a horizontal continuous beam spanning between abutments with horizontal springs having the trial effective pier stiffnesses modelling the piers. The beam has the transverse moment of inertia of the superstructure (cracked if appropriate) to model the diaphragm action. The calculated displacements and x ratio from the structural model were then used for the next iteration with the process repeated until reasonable convergence is obtained. Revised inertia forces and effective stiffnesses were used in the structural model at each iteration.

In the present example, the iteration process is rather complicated because in effect there are four variables that need to be iterated (shear and inertia forces acting on the piers, x ratio and displaced superstructure shape). The process can be simplified by using the Excel formula iteration function to calculate the pier shears and inertia forces as described for the longitudinal direction and the transverse response with sliding abutment bearings. For bridges with three or four spans and symmetrical about their centre point it is practical to carry out the structural analysis on the spreadsheet. To do this it is necessary to prepare a stiffness matrix (displacements and rotations as the unknown variables – a column matrix) for the end and centre beam spans and then to combine these in a total stiffness matrix for the symmetrical structure. The matrix inversion function in Excel can then be used to invert the stiffness matrix to allow the displacements to be calculated for the inertia force inputs. The displacement results can then be used as the next inputs to the iteration process. It appears best to set and adjust the x ratio manually in this iteration process.

Because the piers in the present example have significant mass, it is best to include these masses separately in the structural model. This can be done by calculating effective springs for the calculated displacement components above and below the centres of gravity of the pier masses and applying the pier inertia forces at nodes located at the junction of the two effective springs for each pier. The structural model for the present example is illustrated in figure C5B.4. By using symmetry, the number of degrees of freedom can be reduced to seven. These are the superstructure rotations at abutment A and pier B (ϕ_1 , ϕ_2 , rotation at pier C is zero), superstructure displacements at abutment A (Δ_3), and piers B (Δ_4) and C (Δ_5), and pier centre of gravity displacements at piers B (Δ_6) and C (Δ_7). (Inverting a 7x7 matrix is readily accomplished in Excel.)

Figure C5B.4: Bridge structural model (symmetrical about pier C)

In the present example trial and error results for the deflected shape of the superstructure showed that it was not possible for the limit state displacement at the ductility capacity of piers B and D to develop. The superstructure is sufficiently stiff to transfer a large proportion of the base shear to the abutments so that a viable solution can be obtained for displacements significantly less than the maximum based on the pier ductility capacities. In the example in chapter 6 of *Bridge engineering handbook: Seismic design*⁽²⁾, the limit state displacement (at the central pier) was set as the iteration objective, but in the present example the moment capacity at the base of the piers needs to be used as the target objective. A successful iteration approach was to start with the superstructure displacements at the pier yield displacement limits and then proceed iteratively until the pier base moments are quite sensitive to the x ratio so it was best to iterate the x value manually and the displaced shape automatically using Excel formula iteration with the structural analysis based on the stiffness matrix approach.

The differences between the analysis procedures and the results for the two transverse cases are summarised below.

a. Structural inputs

The inputs are the same as for the transverse sliding case except that the span lengths are included for calculating the superstructure inertia forces at the tops of each pier. (In this example the spans are approximately equal so that a reasonable approximation would be to base the inertia forces on the average span length.)

b. Superstructure displacement profile: Determine by trial and error to agree with structural analysis output

The trial displacements were set to values calculated by the structural analysis model using Excel formula iteration and the structural analysis displacements calculated on the spreadsheet using the stiffness matrix inversion. Alternatively a separate structural analysis model can be set up using structural analysis software.

The x ratio parameter was adjusted manually until the calculated bending moments at the base of the piers agreed with a target capacity value. In the present example the target capacity was taken at the required moment capacity indicated by the longitudinal displacement analysis.

The displacements at the pier centres of gravity calculated by the structural analysis should agree with the displacements calculated from the displacement components (pier yield and plastic components, and the foundation and bearing components) as shown under the *Characteristic design displacement calculation* heading on the spreadsheet.

Ductility demands

The ductility demands on the piers were calculated from the superstructure displacements (both the trial and iteration converged values). The plastic component is obtained by subtracting the yield, foundation and bearing components from the total displacement at the pier centre of gravity locations. The calculated ductility demands of 1.2 and 1.0 are significantly less than the ductility capacity limits of 4.2 and 4.6 for piers C and B respectively.

d. Superstructure inertia weights

These were calculated from the span lengths and the unit weight of the superstructure (101kN/m). They are required to calculate the characteristic design displacement and the effective mass.

e. Effective mass

The effective mass is approximately 25% less than the total mass. This difference occurs because the displacements of the superstructure near the abutments are significantly less than near the centre of the bridge.

f. Damping

The damping for this restrained abutment case is approximately 50% less than for the sliding bearing case. The overall damping is reduced by the lower ductility demands on the piers and the low damping assumed for the abutments. The damping ratio for the abutment structure was taken as 0.05 based on the small displacements calculated for the tops of the abutment piles.

g. Effective period

Because of the much stiffer structure resulting from the deck diaphragm action the period for the restrained abutment case is only 1.0 seconds compared to 2.7 seconds for the sliding bearing case.

h. Check P- Δ moment and required moment capacity

The smaller superstructure displacements result in the ratio of the P- Δ moment to the design capacity moment at the base of the piers being less than 0.1. No increase in moment capacity is therefore required for P- Δ action.

i. Structural analysis

The transverse moment of inertia of the superstructure was assumed to be 0.3 times the gross value for the deck on the basis that cracking was likely in the continuous deck over the piers. In design applications, a detailed analysis should be carried out to determine a more exact value. The correct value is probably higher than assumed but increasing the superstructure moment of inertia to 0.4 times the gross value would result in piers B and D remaining elastic. The value adopted best illustrated a typical analysis procedure for a long bridge (with long spans) when plastic displacement is expected in the piers.

Effective spring stiffness values for the structural model were calculated for the section of the piers below their centres of gravity. An effective spring value based on the displacement of the superstructure relative to the pier centres of gravity is also required for the structural model.

The structural model degrees of freedom are shown in figure C5B.4. Based on these degrees of freedom the stiffness matrices for the two beam sections (symmetrical structure about the pier C location) are listed below.

The total stiffness matrix for the structural model is obtained by adding the values that have the same row and column designations in each of the individual matrices.

Stiffnes	Stiffness matrix beam A-B: (Degree of freedom numbers in first row and column)								
	1	2	3	4	6				
1	$4E_{IA}$	$2E_{IA}$	$\frac{6E_{IA}}{L_{AB}}$	$-\frac{6E_{IA}}{L_{AB}}$	0				
2	$2E_{IA}$	$4E_{IA}$	$\frac{6E_{IA}}{L_{AB}}$	$-\frac{6E_{IA}}{L_{AB}}$	0				
3	$\frac{6E_{IA}}{L_{AB}}$	$\frac{6E_{IA}}{L_{AB}}$	$\frac{12E_{IA}}{L_{AB}^{2}} + K_{A}$	$-\frac{12E_{IA}}{L_{AB}{}^2}$	0				
4	$-\frac{6E_{IA}}{L_{AB}}$	$-\frac{6E_{IA}}{L_{AB}}$	$-\frac{12E_{IA}}{L_{AB}{}^2}$	$\frac{12E_{IA}}{L_{AB}^2} + \frac{K_{BE}}{2}$	$-\frac{K_{BE}}{2}$				
6	0	0	0	$-\frac{K_{BE}}{2}$	$\frac{(K_{BP}+K_{BE})}{2}$				

Stiffness matrix beam B-C: (Degree of freedom numbers in first row and column)

	2	4	5	6	7
2	$4E_{IB}$	$\frac{6E_{IB}}{L_{Bc}}$	$-\frac{6E_{IB}}{L_{Bc}}$	0	0
4	$\frac{6E_{IB}}{L_{Bc}}$	$\frac{12E_{IB}}{L_{BC}^2} + \frac{K_{BE}}{2}$	$-\frac{12E_{IB}}{L_{BC}^{2}}$	$-\frac{K_{BE}}{2}$	0
5	$-\frac{6E_{IB}}{L_{Bc}}$	$-\frac{12E_{IB}}{L_{BC}^2}$	$\frac{12E_{IB}}{L_{BC}^2} + \frac{K_{CE}}{2}$	0	$-\frac{K_{CE}}{2}$
6	0	$-\frac{K_{BE}}{2}$	0	$\frac{(K_{BP}+K_{BE})}{2}$	0
7	0	0	$-\frac{K_{CE}}{2}$	0	$\frac{(K_{CP}+K_{CE})}{2}$

The calculated displacements at the seven degrees of freedom were obtained by postmultiplying the inverted stiffness matrix by the input force vector (inertia forces at the seven nodes).

A check on the displacement results can be made by post-multiplying the total stiffness matrix by the calculated displacement vector. This should return the input force vector. Beam forces can be obtained by post-multiplying the individual beam stiffness matrices by the appropriate displacement vector values. This gives the moment in the superstructure at pier B which can then be used to calculate the shear force transferred to the abutment.

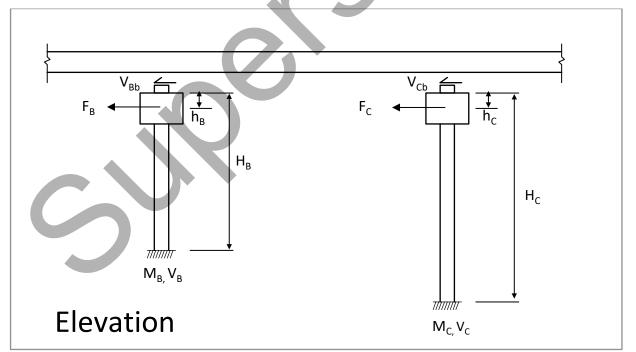
C5B.6 Shear ratio in piers

The derivation of the shear force ratio for unequal piers with significant mass is summarised below for the longitudinal direction. The derivation for the transverse direction is essentially the same except that effective pier heights to the centre of gravity of the superstructure are used instead of the heights to the tops of the piers. (In the longitudinal direction the top of the pier is effectively pinned so the shear force is applied at the top of the pier. In the transverse direction the bearings act in tension and compression and apply an overturning moment as well as a shear to the pier top. Adjustment for this effect is made by applying the superstructure inertia force at the centre of gravity of the superstructure.)

The definition diagram for the following derivation is shown in figure C5B.5.

The moments and shears at the bases of the two different height piers are given by:

$$M_{B} = V_{Bb}H_{B} + F_{B}(H_{B} - h_{B})$$
(C5B-1)


$$M_{C} = V_{Cb}H_{C} + F_{C}(H_{C} - h_{C})$$
(C5B-2)

$$V_{B} = F_{B} + V_{Bb}$$
(C5B-2)

$$V_{C} = F_{C} + V_{Cb}$$
Setting $M_{B} = M_{C}$ and simplifying gives the pier shear ratio as:

$$\frac{V_{C}}{V_{B}} = \frac{H_{B}}{H_{C}} + \frac{(F_{C}h_{C} - F_{B}h_{B})}{V_{B}H_{C}}$$
(C5B-3)

Figure C5B.5: Definition diagram for derivation of pier shear force ratio.

C5B.7 References

- (1) Douglas BM and Buckle IG (1985) Large amplitude field response studies of two highway bridges subjected to simulated earthquake loads. Proceedings 2nd Joint US-NZ Workshop on the Seismic Resistance of Highway Bridges. Report ATC-12-1.
- (2) Chen WF and Duan L (2014) *Bridge engineering handbook: Seismic design*, 2nd edition. CRC Press, Boca Raton, FL, USA.
- (3) Pender MJ (1993) Aseismic pile foundation design analysis. Bulletin of the New Zealand Society for Earthquake Engineering, vol. 26 no. 1, pp 49-161.
- (4) Standards New Zealand NZS 1170.5:2004 *Structural design actions*. Part 5 Earthquake actions - New Zealand. (Incorporating Amendment No. 1: 2016)
- (5) Ministry of Works and Development (1978) *Highway bridge design brief*, CDP 701/D.
- (6) Standards New Zealand NZS 4203: 1984 General structural design and design loads for buildings. Superseded.
- Society of Structural Engineers *Gen-Col*. Last accessed 28 September 2018.
 <www.sesoc.org.nz/software/>. (Available to members only.)
- (8) Priestley MJN, Sieble F and Calvi GM (1996) Seismic design and retrofit of bridges. John Wiley and Sons, New York, NY, USA.

C5B.8 Spreadsheets

Table C5B.1: Spreadsheet index

Spreadsheet title	Page no.
Geometric and weight input parameters	C5-114
Longitudinal analysis: Pier pile stiffness	C5-116
Bridge analysis: Longitudinal direction: Sliding bearings at abutments	C5-118
Bridge analysis: Transverse direction: Sliding bearings at abutments	C5-123
Transverse analysis: Abutment pile stiffness: Fixed head	C5-128
Bridge analysis: Transverse direction: Fixed against translation at abutments	C5-129

Mangatewai-iti River Bridge							
Geometric and Weight Input Parameters							
Prepared: J Wood							
Edit Date: 18-Aug-17 Print Date: 18-Aug-17							
ltem	Symbol	Value	Units	Comment/Formula			
Weight of Superstructure							
Unit weight of concrete	w _c	25	kN/m ³	Including reinforcement			
Beam length	Ls	20.0	m				
Length of bridge deck	L _d	83.7	m				
Length of centre spans	L _{cs}	21.0	m				
Length of end spans	L _{es}	20.5	m				
Weight of standard 20 m span I beam	w	17.0	t	From standard bridge drawings			
Weight of I beams per span	W _b	667	kN	Total of 4 beams per span			
Weight of deck per span	W _d	1,004	kN	Including paps			
Weight of surfacing per span	Ws	170	kN	40 mm thick seal with unit wt = 20 kN/m ³			
Wt handrails/guardrail per span	W _h	25	kN	1.2 kN/m			
Weight of services per span	W _{se}	10	kN	Assumed value			
Weight of diaphragms per span	W_{di}	221	kN				
Total weight of span	W _{st}	2,097	kN				
Weight of Pier Cap							
Maximum depth of pier cap	H _{ca}	1.5	m	From drawings			
Weight of pier cap	W _{pc}	421	kN				
Weight of Pier Columns							
Pier C column height	H _C	11.70	m				
Pier B & D column heights	HD	7.70	m	Average of heights of both columns			
Diameter of columns (structural)	Dc	1.524	m	Neglecting pipe liner			
				(Liner not included in strength calculations.)			
Weight of Pier C columns	W _{cC}	534	kN	Neglecting pipe liner			
Weight of Pier B & D columns	W _{cD}	351	kN	Neglecting pipe liner			
Total Weights				1			
Axial force at base of Pier C column	N _{cC}	3,051	kN				
Axial force at base of Pier B & D cols	N _{cD}	2,869	kN				
Dynamic weight of bridge	W _{dy}	10,061	kN	Superstructure + caps + 1/3 columns			
Height CoG Superstructure			1	1			
Height CoG deck	H _{de}	1.66		Above bottom of beams			
Area of central section of beams	A _{bc}	0.292	m²	From standard beam drawing dimensions			
Height of CoG beams	H _{be}	0.66	m	Above bottom of beams			
Overall CoG of superstructure	H _s	1.25	m	Above bottom of beams (ignores cross-fall)			
Superstructure O/A height	H _{st}	1.75	m	Bottom of beams to top of deck			
Ratio CoG over superstructure height	R _h	0.72	2	Check dimension - OK			
Height of pier bearings	H _{bea}	0.119	m	From drawings			
Ht CoG superstructure above pier cap	H _{cog}	1.37	m				
Height of Pier C	H_{pC}	13.20	m	Top of cylinder to top of pier cap			
Ht CoG superstr above Pier C cylinder	H _{ct}	14.57	m				

Item	Symbol	Value	Units	Comment/Formula
Height of CoG of Total & Dynamic Ma	ss		•	·
Height CoG of Pier C pier cap	H _{coc}	12.63	m	Above top of cylinder
Height CoG total mass	H _{cot}	13.48	m	Above top of Pier C cylinder
Height of CoG dynamic mass	H_{cod}	14.11	m	1/3 column mass at underside of cap
Height of CoG of Pier Masses			-	
Height of CoG of Pier C mass	H _{cogC}	12.36	m	1/3 column at U/S cap: above Pier C cylinder
Height of CoG of Pier B & D mass	H _{cogD}	8.43	m	1/3 column at U/S cap: above Pier D cylinder
Deck Moment of Inertia				
Mol of deck section about vert axis	l _d	15.45	m²	Deck slab only
Mol of beams about vert axis	l _b	9.13	m²	Four beams about bridge CL
Specified concrete strength	f_{cd}	25	MPa	
Youngs modulus	Ec	28,200	MPa	
Flexural rigidity of deck	El _d	436	GPa m ²	
Column Flexural Capacity				
Diameter of main bars	d _b	32	mm	
Number of bars	N _b	40		
Area of column	A _c	1.824	m²	
Area of reinforcement	As	32,170	mm²	
Reinforcement ratio	ρ	0.0176		
Axial force ratio Pier C	R _c	0.0515		$R_{c} = N_{cC}/(f_{ca}*A_{c}*1000)$
Adopted steel yield stress	f _y	300	MPa	275 MPa was the specified value
Steel yield stress for flexural capacity	f _{yc}	330	MPa	$f_{yc} = 1.1^* f_y$
Specified concrete strength	f _c	25	MPa	
Conc strength for flexural capacity	f _{ca}	32.5	MPa	$f_{ca} = 1.3^* f_c$
Cover to hoop steel	с	40	mm	From inside of pipe liner
Moment capacity from Gen-Col	Mu	7,887	kN m	Unreduced: based on 0.003 concrete strain
NA depth empirical formula	Cn	356	mm	$c_n = (0.2 + 0.65 R_c) D_c^* 1000$
				Priestley et al, 2007. Eq (10.8)

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Mangatewai-iti River Bridge							
Longitudinal Analysis: Pier Pile Stiffness							
Prepared: J Wood							
Edit Date: 18-Aug-17 Print Date: 18-Aug-17							
Item	Symbol	Value	Units	Formulae / Comments			
Input Structural Parameters							
Cylinder pile diameter inside shell	Di	2.032	m	Inside of steel shell			
Thickness of steel shell	t _s	10	mm	Design value.			
Cylinder pile length	L	10.0	m	Pier C. Cylinders at other piers are longer			
Specified concrete strength	f _c	25	MPa				
Height of Pier B	Нв	9.2	m	Top of pier above pile top			
Shear applied to pile top at Pier B	V _B	906	kN	From structure longitudinal analysis (p. C5-120)			
Moment applied to pile top	M _B	8,335	kN m	$M_B = H_B^* V_B$			
Input Soil Parameters							
Assumed increase of soil E with depth	m	30	MPa/m	Dense sand and gravels near surface			
Soil poissons ratio	ν	0.35	5				
Soil density	ρο	1.8	t/m ³				
Calculated Parameters							
Cylinder pile outside diameter	D	2.052	m	$D = D_i + 2^* t_s / 1000$			
I for concrete core	l _c	0.837	⁻ m ⁴	$l_{c} = \pi^{*}D_{i}^{4}/64$			
l for shell	I _s	0.033	m ⁴	$l_s = \pi^* (D^4 - D_i^4)/64$			
Youngs modulus for concrete	Ec	30,550	MPa	$E_c = 4700^*$ Sqrt(f _c)*1.3: Priestley et al Eq (5.2)			
				Factor 1.3 for probable strength & strain rate increase			
Combined shell + Concrete Core El	EI	32,254	MN m ²	$EI = E_{c} * I_{c} + 200,000 * I_{s}$			
Modified E_p to allow for shell	Ep	37,060	MPa	$E_p = EI/(\pi^*D^4/64)$: Pender Eq 3.17			
E value of soil at depth D	Es	61.6	MPa	$E_s = m^*D$: Pender Eq 3.23			
Modulus ratio	к	602		$K = E_p / E_s$: Pender Eq 3.23			
Pile Length / Diameter	L _{Dr}	4.87		$L_{Dr} = L / D$			
Short pile length limit	L,	3.52	m	$L_r = 0.07 D (E_p / E_s)^{0.5}$: L < L _r for short pile			
Long pile length limit	La	11.05	m	$L_a = 1.3 D (E_p / E_s)^{0.22}$: L > L _a for long pile			
				Pender Eqs 3.35 and 3.27			
				Assume long piles as clearly not short piles			
Depth of maximum moment	L _{Mmax}	4.53	m	L _{Mmax} = 0.41 L _a : Pender Eq 3.29			
Moment / Shear Ratio	е	9.20	m	$e = M_B / V_B$			
	f	4.483	5	$f = M_B / (D^* V_B)$			
Parameter a	а	2.690)	a = 0.6*e/D: Pender Eq 3.30			
Parameter b	b	0.108		b = 0.17*f ^{-0.3} : Pender Eq 3.30			
Parameter for maximum moment	I _{mh}	5.38		$I_{mh} = a^* K^b$: Pender Eq 3.30			
Maximum moment in pile	M _{max}		kN m	M _{max} = I _{mh} *D*H: Pender Eq 3.30			

Item	Symbol	Value	Units	Formulae / Comments
Flexibility and Stiffness: Long Pile: I	Linear Increa	ase in E _s	With Dept	; h
Flexibility coefficients:	f _{uHL}	0.00301	m/MN	$f_{uHL} = 3.2 \text{ K}^{-0.333} / (E_s D)$
Pender Eq 3.28	f _{uML}	0.00055	MN⁻¹	$f_{uML} = 5.0 \text{ K}^{-0.556} / (E_s^* D^2)$
	$f_{\Theta ML}$	0.00018	(m MN)⁻¹	f _{0ML} = 13.6 K ^{-0.778} / (E _s *D ³)
Stiffness coefficients:	K _{HHL}	775	MN/m	$K_{HHL} = f_{\theta ML} / (f_{uHL} * f_{\theta ML} - f_{uML}^2)$
Pender Eq 3.40	K _{HML}	-2421	MN	$K_{HML} = -f_{uML} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$
	K _{MML}	13248	MN m	$K_{MML} = f_{uHL} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$
Pile head horizontal stiffness	K _{HtL}	124	MN/m	$K_{HtL} = (K_{HHL}^{*} K_{MML}^{*} - K_{HML}^{*}) / (K_{MML}^{*} - e^{*} K_{HML})$
Pile rotational stiffness	K _{etL}	4,245	MN m/rad	Pender Eq 3.41 $K_{\theta tL} = (K_{HHL} * K_{MML} - K_{HML}^2) / (K_{HHL} - K_{HML} / e)$ Pender Eq 3.42
Calculated Deflections				
Deflection at ground level	Δ_{g}	7.3	mm	$\Delta_{g} = V_{B}/(K_{HtL})$
Rotation at ground level	θ_{g}	2.0	mili rad	$\theta_{g} = M_{B}/K_{\theta tL}$
Deflection at top of pier	Δ_{B}	25	mm	$\Delta_{B} = \Delta_{g} + \theta_{g}^{*} H_{BL}$
				Approx as pier shear has inertia component at CoG
Reference			-	

Pender M J, 1993. Aseismic Pile Foundation Design. NZSEE, Vol 26 No 1 pp 49 - 161

2

Prepared: J Wood		Drint Data	10 10 1	7
Edit Date: 18-Aug-17			18-Aug-17	1
tem	Symbol	Value	Units	Comment / Formula
Structural Inputs				1
Veight of superstructure	Ws	8,400	kN	See separate analysis on Page C5-114
Effective weight of Pier C	Wc	599	kN	Cap + 1/3 wt of column, sep analysis, p. C5-114
Effective weight of Pier B	W _B	538	kN	Cap + 1/3 wt of column, sep analysis, p. C5-114
Axial force at base of Column C	N _c	3,051	kN	From analysis on page C5-114
Height of Pier C	H _C	13.2	m	Top of pier above cylinder top
Height of Piers B & D	Η _B	9.2	m	Top of pier above cylinder top
Height CoG Pier C	H _{Cc}	12.36	m	Above Pier C cylinder top
Height CoG Piers B & D	H _{Bc}	8.43	m	Above Pier D cylinder top
Column diameter	D _c	1.524	m	As designed - inside pipe liners
Diameter longitudinal bars	d _b	32	mm	
Diameter transverse hoops	dt	16	mm	As designed
Number of longitudinal bars	N _b	40		As designed
Spacing transverse hoop bars	s _t	80	mm	As designed
Cover to hoops	Cv	40	mm	
Specified concrete 28 day strength	f _c	25	MPa	
Adopted steel yield stress	f _y	300	MPa	Longitudinal & transverse steel (275 Mpa specified)
Elastomeric Bearing Input				(apecilied)
Width of bearings on piers	B _{be}	380	mm	From drawings. Transverse direction
ength of bearings on piers	L _{be}	300	mm	From drawings. Longitudinal direction
Overall thickness of bearing	Ть	119	mm	From drawings.
Thickness of rubber	t		mm	Assume 8 inner layers at 10 mm thickness
				Top & bottom cover of 6 mm thickness
				9 inner plates of 3 mm tickness
				Assume no dowels
Side cover	c	10	mm	Skellerup brochure
Bonded area of rubber	s _{co} A _{br}	0.1008		Based on 10 mm side covers - not inc in area
	∽br	0.1000		Some design guidelines include side cover
Shear modulus		0.72		
	G _b		MPa	53 IRHD - Skellerup brochure
Shear stiffness	K _r		MN/m	$K_r = A_{br}^* G_b / (t_r / 1000)$
Number of bearings on each pier	N _{be}	8		
Total shear stiffness per pier	K _t	6.4	MN/m	

ltem	Sum.	Value	Units	Commont / Formula
	Sym	Value	Units	Comment / Formula
Earthquake Inputs				
Site Subsoil Category		С		
Zone Factor	Z	0.42		Danneverke
Return Period Factor	R_{u}	1.8		2,500 year return period
Spectrum corner period	T _c	3.0		From BM Fig 5.2
Corner period spectral shape factor	$\Delta_{h}(3)$		mm	From BM Table 5.5
Design corner period displacement	∆(3)	745	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
Calculated Structural Parameters				
Cover to longitudinal bars	Co		mm	From cover to hoops
Gross column section area	Ag	1.82		$A_{g} = \pi^{*} D_{c}^{2} / 4$
Area of longitudinal steel	As	32,170	mm²	$A_{\rm s} = N_{\rm b}^* \pi^* d_{\rm b}^2 / 4$
Longitudinal steel area ratio	ρι	0.0176		$\rho_1 = A_g / (10^6 * A_g)$
Check minimum required steel area	A_{sm}	24,322	mm²	$A_{sm} = 4*10^6 A_g / f_y$: BM Clause 5.6.4(f)
Check maximum permitted steel area	A _{sma}	109,449	mm²	$A_{sma} = 18*10^6 A_g / f_y$: BM Clause 5.6.4(f)
Area of transverse reinforcement	A _t	201	mm²	$A_t = \pi^* d_t^2 / 4$
Column concrete core diameter	D'	1.428	m	$D' = D_c - (2^*c_o + d_t)/1000$
				Using Priestley el, 1996 & 2007 who define
				D' as measured on centre-line of hoops. NZS 3101 uses outside of hoops.
Volumetric ratio transverse steel	ρ _s	0.00704		$\rho_{s} = 4^{*}A_{t} / (1000^{*}D'^{*}s_{t})$
				OK: minimum required = 0.005: BM Clause
				<u>5.6.4(h)(i)</u>
Strain Limits for Plastic Rotation				
Yield strength transverse reinf.	f _{sy}		MPa	
Strain at max stress lateral reinf.	ε _{sut}	0.12		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	E _{sul}	0.12		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}		MPa	$f_{ce} = 1.3^* f_c$: BM Table 5.7
Average confining stress	f _{ld}		MPa	$f_{Id} = 0.95^* f_{sy}^* \rho_s / 2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	39.0	MPa	$f_{cc} = f_{ce}^{*}(2.254^{*}(1+7.94^{*}f_{ld}/f_{ce})^{1/2} - 2^{*}f_{ld}/f_{ce} - 1.254)$
				Priestley et al 1996, Eq (5.6)
Reinforcement limiting strain	³ sd	0.027		$\epsilon_{sd} = 0.015+6^*(\rho_s-0.005) \le 0.5 \epsilon_{sul} : Eq (5-11)$
Concrete limiting strain	ε _{cd}	0.0131		$\epsilon_{cd} = 0.004 + (1.4^* \rho_s * f_{sy} * \epsilon_{sut}) / f_{cc}$: Eq (5-12)
Neutral axis depth	с	376	mm	From moment strength analysis
Distance extreme bar to neutral axis	b _{na}	1,076	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	3	0.0095		$\varepsilon = \varepsilon_{sd} * c / b_{na}$
				Steel limiting strain governs
Limit state curvature	ϕ_{Is}	0.0253	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (\text{c}/1000), \epsilon_{\text{sd}} / (\text{b}_{\text{na}} / 1000))$
Plastic curvature	φp	0.0230	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$
Plastic Hinge Lengths			1	
Ratio steel ultimate over yield stress	f_u/f_y	1.4		From Pacific Steel test results
Hinge length parameter	k_{Ip}	0.08		$k_{ip} = 0.2^*(f_u / f_y - 1) \le 0.08$: Eq (5-38)
Dist. to point of contraflexure Pier C	L _C	13.20	m	$L_{\rm C} = H_{\rm C}$
Diantia hinga langth Diar C	L_{pC}	1.29	m	$L_{pC} = k_{1p}^{*}L_{C} + L_{sp} \ge 2^{*}L_{sp} : Eq (5-37)$
Plastic hinge length Pier C				
Distance to contraflexure Piers B & D	L _B	9.20	m	$L_B = H_B$

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

Item	Symbol	Value	Units	Comment / Formula
Yield Displacements				
Probable yield strength reinforcement	f _{ye}	330	MPa	$f_{ye} = 1.1^* f_{y}$: BM Table 5.7
Elastic modulus for steel	Es	200,000	MPa	
Yield strain	ε _y	0.00165		$\varepsilon_y = f_{ye} / E_s$
Yield curvature	φ _{yy}	2.33E-03	1/m	$\phi_{yy} = 2.15^* \epsilon_y / D_c$: Eq (5-8)
Strain penetration length	L _{sp}	0.232	m	L _{sp} = 0.022*f _{ye} *d _b /1000: Eq (5-510
Coefficient for column fixity	C ₁	0.333		See Bridge Manual Commentary C5
Yield displacement Pier C at top	Δ_{yC}	140	mm	$\Delta_{yC} = C_1^* \phi_{yy}^* (H_C + L_{sp})^{2*} 1000: Eq (5-10)$
Yield displacement Pier C at CoG	$\Delta_{ m yCc}$	123	mm	$\Delta_{yCc} = C_1^* \phi_{yy}^* (H_{Cc} + L_{sp})^{2*} 1000$
Yield displacement Piers B & D at top	Δ_{yB}	69	mm	$\Delta_{yB} = C_1^* \phi_{yy}^* (H_B + L_{sp})^{2*} 1000: Eq (5-10)$
Yield disp. Piers B & D at CoG	$\Delta_{ m yBc}$	58	mm	$\Delta_{yBc} = C_1 * \phi_{yy} * (H_{Bc} + L_{sp})^2 * 1000$
Ductility Factor Capacities				
Plastic rotation Pier C	θ_{pC}	0.0296	rad	$\theta_{pC} = \phi_p * L_{pC}$
Plastic displacement capacity Pier C	$\Delta_{\rm pC}$	391	mm	$\Delta_{\rm pC} = \theta_{\rm pC}^* H_{\rm c}^* 1000$
Limit state disp. capacity Pier C	Δ_{ISC}	531	mm	Δ_{IsC} = Δ_{yC} + Δ_{pC} : excludes brgs and founds
Ductility capacity Pier C	μ_{lsC}	3.79		$\mu_{ISC} = \Delta_{ISC} / \Delta_{yC}$: based on pier top
Plastic rotation Piers B & D	θ_{pB}	0.0223	rad	$\theta_{pB} = \phi_{p}^{*}L_{pB}$
Plastic disp. capacity Piers B & D	$\Delta_{\sf pB}$	205	mm	$\Delta_{\rm pB} = \theta_{\rm pB}^{} * H_{\rm B}^{} * 1000$
Plast. disp. capacity Piers B&D at CoG	$\Delta_{\rm pBc}$	188	mm	$\Delta_{pBc} = \theta_{pB}^* H_{Bc}^* 1000$
Limit state disp capacity Piers B & D	$\Delta_{\rm ISB}$	274	mm	Δ_{ISB} = Δ_{yB} + Δ_{pB} : excludes brgs and founds
				Critical pier capacity & sets design disp.
Ductility capacity Piers B & D	$\mu_{\rm IsB}$	3.97		$\mu_{\text{ISB}} = \Delta_{\text{ISB}} / \Delta_{\text{yB}}$: based on pier top
Pier Shears at Limit State Displaceme	nt (Iteratio	n reqd as	pier shear	and inertia forces unknown at this stage)
Pier height ratio	R _h	0.697		$R_{h} = H_{B} / H_{C}$
Distance between Pier B Top & CoG	h _{Bco}	0.770	m	$h_{Bco} = H_B - H_{Bc}$
Distance between Pier C Top & CoG	h _{Cco}	0.840	m	$h_{Cco} = H_C - H_{Cc}$
Height correction factor for shear ratio	R _c	0.002		$R_{c} = (F_{iC}^{*}h_{Cco} - F_{iB}^{*}h_{Bco})/(V_{Bn}^{*}H_{C})$
				Assume = 0 for first iteration and then correct
				after $F_{iB},F_{iC}\text{and}V_{B}$ are calculated below
Pier shear ratio	R _v	0.699		$R_V = R_h + R_c$
Approx shear in Piers B & D at mom cap	V _{Ba}	857	kN	$V_{Ba} = M_{ac} / H_B$: M_{ac} = trial mom cap: see below
	*			(Moment capacities are the same for all cols)
Shear in Piers B & D at limit state disp	V_{Bn}	906	kN	Iterate until $V_{Bn} = V_B$ given below
				Can use V_{Ba} to start iteration.
Shear in Pier C at limit state disp	V _{Cn}	634	kN	$V_{Cn} = V_{Bn}^* R_v$

ltem	Symbol	Value	Units	Comment / Formula
Displacements From Foundations & B	earings (Iteration re	equired as p	pier inertia forces unknown at this stage)
Pier B top displacement from foundation	Δ_{fB}	24.9	mm	$\Delta_{\rm fB} = V_{\rm Bn}/K_{\rm h} + ((V_{\rm Bn} - F_{\rm iB})^*H_{\rm B} + F_{\rm iB}^*H_{\rm Bc})^*H_{\rm B}/K_{\rm \theta}$
Pier B CoG displacement from foundation	Δ_{fBc}	23.5	mm	$\Delta_{\rm fBc} = V_{\rm Bn} / K_{\rm h} + ((V_{\rm Bn} - F_{\rm iB})^* H_{\rm B} + F_{\rm iB}^* H_{\rm Bc})^* H_{\rm Bc} / K_{\rm \theta}$
Pier B displacement in bearings	Δ_{bB}	127.4	mm	$\Delta_{bB} = (V_{Bn} - F_{iB}) / K_t$
Shear strain in Pier B bearings	ε _b	1.38		$\varepsilon_{\rm b} = \Delta_{\rm bB} / t_{\rm r} > 1.0$ limit. A modification is reqd
Pier C top displacement from foundation	$\Delta_{\sf fC}$	30.4	mm	$\Delta_{\rm fC} = V_{\rm Cn} / K_{\rm h} + ((V_{\rm Cn} - F_{\rm ic})^* H_{\rm C} + F_{\rm ic}^* H_{\rm Cc})^* H_{\rm C} / K_{\rm \theta}$
Pier C CoG displacement from foundation	$\Delta_{\rm fCc}$	28.8	mm	$\Delta_{fCc} = V_{Cn} / K_h + ((V_{Cn} - F_{iC})^* H_C + F_{iC}^* H_{Cc})^* H_{Cc} / K_\theta$
Pier C displacement in bearings	$\Delta_{\rm bC}$	80.5	mm	$\Delta_{\rm bC} = (V_{\rm Cn} - F_{\rm iC}) / K_{\rm t}$
				In 1st iteration assume $F_{iB} = 0$ in above expressions
Design limit state disp superstructure	Δ_{tB}	426	mm	$\Delta_{tB} = \Delta_{fB} + \Delta_{bB} + \Delta_{yB} + \Delta_{pB}$
Pier C plastic displacement at top	$\Delta_{\rm pCd}$	175	mm	$\Delta_{\rm pCd} = \Delta_{\rm tB} - \Delta_{\rm fC} - \Delta_{\rm bC} - \Delta_{\rm yC}$
Pier C plastic displacement at CoG	$\Delta_{\rm pCc}$	164	mm	$\Delta_{\rm pCc} = \Delta_{\rm pCd} {}^{*}{\rm H}_{\rm Cc} / {\rm H}_{\rm C}$
Ductility demand on Pier C at design disp	μ _{dC}	2.25		$\mu_{dc} = (\Delta_{pCd} + \Delta_{yC})/\Delta_{yC}$: based on pier top
Displacements at Mass Locations				
Design disp. of superstructure	Δ_{S}	426	mm	$\Delta_{\rm S} = \Delta_{\rm tB}$
Displacement at CoG of Pier B & D	$\Delta_{\rm Bd}$	269	mm	$\Delta_{Bd} = \Delta_{yBc} + \Delta_{pBc} + \Delta_{fBc}$
Displacement at CoG of Pier C	$\Delta_{\rm Cd}$	316	mm	$\Delta_{\rm Cd} = \Delta_{\rm yCc} + \Delta_{\rm pCc} + \Delta_{\rm fCc}$
Sum of weights x displacements	S_{wd}	4,059	kN m	$S_{wd} = (W_S^* \Delta_S + 2^* W_B^* \Delta_{Bd} + W_c^* \Delta_{Cd})/1000$
Characteristic design displacement	Δ_{d}	410	mm	$\Delta_{d} = (W_{S}^{*} \Delta_{S}^{2} + 2^{*} W_{B}^{*} \Delta_{Bd}^{2} + W_{c}^{*} \Delta_{Cd}^{2}) / (S_{wd}^{*} 1000):$
				Eq (5-20)
Effective Mass	-			
Total mass	m _t	1027	t	$m_t = (W_S + 2^*W_B + W_c)/9.81$
Effective mass	m _e	1010	t	$m_e = S_{wd} / (\Delta_d * 9.81 / 1000)$: Eq (5-22)
Damping				1
Viscous damping Pier C	ξc	0.15		$\xi_{\rm C} = 0.1 + 0.04^* (\mu_{\rm dC} - 1) \le 0.18$: Eq (5-32)
Viscous damping for Piers B & D	ξ _B	0.18		$\xi_{\rm B} = 0.1 + 0.04^* (\mu_{\rm ISB} - 1)^{\leq} 0.18$
				Ductility demand on Pier B & C approx equal to their
				capacity as disp of these piers is design criterion
Abutment bearing damping ratio	ξa	0.25		Assumed for sliding bearings
Damping in pier bearings	ξ _{be}	0.05		BM Clause 5.4.3(g)(vi)
Shear in Pier B bearings	V _{Bb}	815	kN	$V_{Bb} = V_{Bn} - F_{iB}$
Shear in Pier C bearings	V _{Cb}	515	kN	$V_{Cb} = V_{Cn} - F_{iC}$
				(In 1st iteration assume $F_{iB} = F_{iC} = 0$)
System damping including abutments	ξ _{sy}	0.144		$\xi_{sy} = (\xi_A * V_A * \Delta_S + 2* \xi_B * V_{Bn} * (\Delta_{yB} + \Delta_{pB}) +$
				$\xi_{C}^{*}V_{Cn}^{*}(\Delta_{yC}+\Delta_{pCd})+2^{*}\xi_{be}^{*}V_{Bb}^{*}\Delta_{bB}+\xi_{be}^{*}V_{Cb}^{*}\Delta_{bC})/$
				$(V_A^*\Delta_S+2^*V_{Bn}^*(\Delta_{yB}+\Delta_{pB})+V_{Cn}^*(\Delta_{yC}+\Delta_{pCd})+$
				$2*V_{Bb}*\Delta_{bB}+V_{Cb}*\Delta_{bC}$): Eq (5-23)
				Disp demand on Piers B & D is approxiately
				equal to their capacity
Damping modifier	R_{ξ}	0.653		$R_{\xi} = (0.07/(0.02 + \xi_{sy}))^{0.5}$: Eq (5-17)

ltem	Symbol	Value	Units	Comment / Formula
Effective Period				
Damping reduced spectrum corner disp	Δ_{cr}	486	mm	$\Delta_{\rm cr} = R_{\varepsilon}^* \Delta(3)$
Effective period from design spectrum	Te	2.53	s	$T_e = 3^* \Delta_d / \Delta_{cr}$
Secant stiffness	K _e	6,225	kN/m	$K_e = 4^* \pi^{2*} m_e / T_e^{-2}$: Eq (5-21)
Total base shear	V _T	2,551	kN	$V_{T} = K_{e}^{*} \Delta_{d} / 1000$: Eq (5-19)
Inertia forces				·
Inertia force on supestructure	F _{iS}	2,250	kN	$F_{iS} = V_T * W_S * \Delta_S / (S_{wd} * 1000)$: Eq (5-39)
Inertia force on Piers B & D	F _{iB}	91	kN	$F_{iB} = V_T^* W_B^* \Delta_{Bd} / (S_{wd}^* 1000)$
Inertia force on Pier C	F _{iC}	119	kN	$F_{iC} = V_T^* W_C^* \Delta_{Cd} / (S_{wd}^* 1000)$
Base Shears and Moments				
Friction coeff. for abutment bearings	n	0.05		Assumed for sliding teflon bearings BM CI. 5.3.9(b) gives range as 0.02 to 0.15 A value of 0.02 increases req mom cap 3%
Shear carried by both abutments	V _A	105	kN	$V_A = n^* W_S / 4$
Shear in Piers B & D	V _B	906	kN	$V_{BD} = (V_T - V_A) / (2 + R_v)$
Check shear in Piers B & D	V _{Bc}	906	kN	$V_{Bc} = \Delta_{bB}^{*} K_{t} + F_{iB}$
Shear in Pier C	Vc	634	kN	$V_{\rm C} = (V_{\rm T} - V_{\rm A})^* R_{\rm v} / (R_{\rm v} + 2)$
Check shear in Pier C	V _{Cc}	634	kN	$V_{Cc} = \Delta_{bC} {}^{*}K_{t} + F_{iC}$
Check shear ratio	R_{vC}	0.699		$R_{vc} = V_C / V_B$
Moment applied to base of Piers B&D	M _B	8,267	kN m	$M_B = (V_B - F_{iB})^* H_B + F_{iB}^* H_{Bc}$
Check moment applied to base Pier C	M _C	8,267	kN m	$M_{c} = (V_{c} - F_{ic})^{*}H_{c} + F_{ic}^{*}H_{cc}$
Check P-⊿ Moment	_			
Displacement of cylinder top at Pier C	Δ_{Ct}	5	mm	$\Delta_{Ct} = V_C / K_h$
Displacement of cylinder top at Pier B	Δ_{Bt}	7	mm	$\Delta_{Ct} = V_B / K_h$
$P-\Delta$ moment on Pier C	$M_{CP-\Delta}$	1,053	kN m	$M_{CP\text{-}\Delta} = (W_{S}/4^{*}(\Delta_{S} - \Delta_{Ct}) + W_{C}^{*}(\Delta_{pCc} + \Delta_{yCc} - \Delta_{Ct}))/1000$
				Neglects lower 2/3 length of column
$P-\Delta$ moment on Piers B & D	$M_{BP-\Delta}$	1,008	kN m	$M_{BP\text{-}\Delta} = (W_S/4^*(\Delta_S\text{-}\Delta_Bt) + W_B^*(\Delta_pBc+\Delta_yBc\text{-}\Delta_Bt))/1000$
Ratio: $M_{CP-\Delta} / M_C$	M _{rat}	0.13		> 0.1. Increase in moment capacity required
				< 0.25 so less than maximum limit
				See BM Clause 5.3.7
Required Moment Capacity				
Required moment capacity	M _{Cr}	8,793	kN m	$M_{\rm Cr} = M_{\rm C} + M_{\rm cP-D}/2$
Capacity of section with 40/D32 bars	M _{ac}	7,887	kN m	Need to increase capacity: could use
				fy = 500 Mpa and reduce number of bars
Reference:				
Priestley M J N, Seible F and Calvi G M,	1996. Seisi	mic Desigi	n and Ret	rofit of Bridges. John Wiley & Sons Inc
Priestley MJN, Calvi GM and Kowalsky	, 2007. Dis	placement	-Based S	eismic Design of Structures . IUSS Press.

Prepared: J Wood										
Edit Date: 18-Aug-17 Print Date: 18-Aug-17										
ltem	Symbol	Value	Units	Comment / Formula						
Structural Inputs			-	-						
Weight of superstructure	Ws	8,400	kN	From separate analysis on Page C5-114						
Effective weight of Pier C	Wc	599	kN	Cap + 1/3 wt of column, sep analysis, p. C5-11						
Effective weight of Pier B	W _B	538	kN	Cap + 1/3 wt of column, sep analysis, p. C5-11						
Axial force at base of column C	N _c	3,051	kN	See separate analysis, Page C5-114						
Effective height of Pier C	H _c	14.57	m	Superstructure CoG above Pier C cylinder top						
Effective height of Piers B & D	H _B	10.57	m	Superstructure CoG above Pier B cylinder top						
Height CoG Pier C	H _{Cc}	12.36	m	Above Pier C cylinder top						
Height CoG Piers B & D	H_{Bc}	8.43	m	Above Pier D cylinder top						
Column diameter	D _c	1.524	m	As designed. (Ignoring pipe liners.)						
Diameter longitudinal bars	d _b	32	mm	As designed						
Diameter transverse hoops	dt	16	mm	As designed						
Number of longitudinal bars	N _b	40		As designed						
Spacing transverse hoop bars	s _t	80	mm	As designed						
Cover to hoops	Cv	40	mm	From drawings						
Specified concrete 28 day strength	f _c	25	MPa							
Adopted steel yield stress	fy	300	MPa	Longitudinal & transverse steel (275 Mpa specified)						
Elastomeric Bearing Input										
Width of bearings on piers	B _{be}	380	mm	From drawings. Transverse direction						
Length of bearings on piers	L _{be}	300	mm	From drawings. Longitudinal direction						
Overall thickness of bearing	T _b	119	mm	From drawings.						
Thickness of rubber	t _r	92	mm	Assume 8 inner layers at 10 mm thickness						
				Top & bottom cover of 6 mm thickness						
				9 inner plates of 3 mm tickness						
				Assume no dowels						
Side cover	s _{co}	10	mm	Skellerup brochure						
Bonded area of rubber	A _{br}	0.1008	m²	Based on excluding 10 mm side covers						
				Some guidelines include this cover in area						
Shear modulus	G _b	0.73	MPa	53 IRHD - Skellerup brochure						
Shear stiffness	K _r	0.80	MN/m	$K_r = A_{br} * G_b / (t_r / 1000)$						
Number of bearings on each pier	N _{be}	8								
Total shear stiffness per pier	K _t	6.4	MN/m							
Pier Cylinder Stiffness Inputs										
Horizontal stiffness at pile top level	K _h	125	MN/m	From separate analysis on Page C5-117						
Rotational stiffness at pile top level	K_{θ}	4 300	MN m/rad	From separate analysis on Page C5-117						

Item	Symbol	Value	Units	Comment / Formula
Earthquake Inputs				
Site Subsoil Category		С		
Zone Factor	z	0.42		Danneverke
Return Period Factor	R _u	1.8		2,500 year return period
Spectrum corner period	T _c	3.0	s	From BM Fig 5.2
Corner period spectral shape factor	$\Delta_{h}(3)$	985	mm	From BM Table 5.5
Design corner period displacement	∆(3)	745	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
Calculated Structural Parameters				
Cover to longitudinal bars	C _o	56	mm	From cover to hoops
Gross column section area	Ag	1.82	m²	$A_{\rm g} = \pi^* {\rm D_c}^2 / 4$
Area of longitudinal steel	As	32,170	mm²	$A_{\rm s} = N_{\rm b}^* \pi^* d_{\rm b}^2 / 4$
Longitudinal steel area ratio	ρι	0.0176		$\rho_1 = A_{\rm s}/(10^{6*}A_{\rm g})$
Check minimum required steel area	A _{sm}	24,322	mm²	$A_{sm} = 4^{*}10^{6} A_{g} / f_{y}$: BM Clause 5.6.4(f)
Check maximum permitted steel area	A _{sma}	109,449	mm²	$A_{sma} = 18*10^6 A_g / f_y$: BM Clause 5.6.4(f)
Area of transverse reinforcement	At	201	mm²	$A_t = \pi^* d_t^2 / 4$
Column concrete core diameter	D'	1.428	m	$D' = D_c - (2^*c_o + d_t)/1000$
				Using Priestley el, 1996 & 2007 who define
				D' as measured on centre-line of hoops. NZS 3101 uses outside of hoops.
Volumetric ratio transverse steel	ρs	0.00704		$\rho_{\rm s} = 4^* A_t / (1000^* {\rm D'} * {\rm s}_t)$
				OK: minimum required = 0.005: BM Clause
Strain Limits for Plastic Rotation				5.6.4(h)(i)
Yield strength transverse reinf.	<u>د</u>	200	MPa	
Strain at max stress lateral reinf.	f _{syf}	0.12		PM Clause 5.2 5(b)
	[€] sut	0.12		BM Clause 5.3.5(b) BM Clause 5.3.5(a)
Strain at max stress longitudinal reinf. Design comp strength plastic hinge	⁸ súl 4		MPa	
Average confining stress	f _{ce}		MPa	$f_{ce} = 1.3^* f_c$: BM Table 5.7 $f_{Id} = 0.95^* f_{syf}^* \rho_s/2$: From Priestley et al, 1996
Confined comp strength concrete	f _{ld} ≠		MPa	$f_{cc} = f_{ce}^{*}(2.254^{*}(1+7.94^{*}f_{ld}/f_{ce})^{1/2} - 2^{*}f_{ld}/f_{ce}^{-}(1.254)$
Commed comp strength concrete	f _{cc}	39.0	IVIFA	$\Gamma_{cc} = \Gamma_{ce} (2.234 (1+7.34 \Gamma_{ld}/\Gamma_{ce}) - 2 \Gamma_{ld}/\Gamma_{ce} - 1.234)$ Priestley et al 1996, Eq 5.6
Reinforcement limiting strain	ε _{sd}	0.027		$\epsilon_{sd} = 0.015 + 6^* (\rho_s - 0.005) \le 0.5 \epsilon_{sul} : Eq (5-11)$
Concrete limiting strain	ε _{cd}	0.0131		$\varepsilon_{cd} = 0.004 + (1.4^* \rho_s^* f_{svf}^* \varepsilon_{sut}) / f_{cc} : Eq (5-12)$
Neutral axis depth	C	376	mm	From moment strength analysis
Distance extreme bar to neutral axis	b _{na}	1,076		$b_{na} = D_c^* 1000 - c - c_o - d_b /2$
Concrete strain from steel strain	ε	0.0095		$\varepsilon = \varepsilon_{sd} c / b_{na}$
				Steel limiting strain governs
Limit state curvature	φıs	0.0253	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (c/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	ф _р	0.0230	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$

Item	Symbol	Value	Units	Comment / Formula
Plastic Hinge Lengths				
Ratio steel ultimate over yield stress	f _u /f _y	1.4		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.08		$k_{lp} = 0.2^*(f_u / f_y - 1) \le 0.08$: Eq (5-38)
Distance to pt. of contraflexure Pier C	L _C	14.57	m	$L_{\rm C} = H_{\rm C}$
Plastic hinge length Pier C	L _{pC}	1.40	m	$L_{pC} = k_{lp}^* L_C + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$
Distance to contraflexure Piers B & D	L _B	10.57	m	$L_{B} = H_{B}$
Plastic hinge length Piers B & D	L _{pB}	1.08	m	$L_p = k_{lp}^* L_B + L_{sp} \ge 2^* L_{sp} : Eq (5-37)$
Yield Displacements			-	
Probable yield strength of reinf.	f _{ye}	330	MPa	f _{ye} = 1.1*f _y : Table 5.7
Elastic modulus for steel	Es	200,000	MPa	
Yield strain	ε _y	0.00165		$\varepsilon_y = f_{ye} / E_s$
Yield curvature	ф _{уу}	0.0023	1/m	$\phi_{yy} = 2.15^* \epsilon_y / D_c$: Eq (5-8)
Strain penetration length	L _{sp}	0.232	m	L _{sp} = 0.022*f _{ye} *d _b /1000: Eq (5-10)
Coefficient for column fixity	C ₁	0.333		See Bridge Manual Commentary C5
Yield disp. Pier C at super CoG	$\Delta_{ m yC}$	170	mm	$\Delta_{yC} = C_1^* \phi_{yy}^* (H_C + L_{sp})^{2*} 1000; Eq (5-10)$
Yield displacement Pier C at pier CoG	$\Delta_{ m yCc}$	123	mm	$\Delta_{yCc} = C_1^* \phi_{yy}^* (H_{Cc} + L_{sp})^{2*} 1000$
Yield disp Piers B & D at super CoG	Δ_{yB}	91	mm	$\Delta_{yB} = C_1^* \phi_{yy}^* (H_B + L_{sp})^{2*} 1000: Eq (5-10)$
Yield disp Piers B & D at pier CoG	Δ_{yBc}	58	mm	$\Delta_{yBc} = C_1^* \phi_{yy}^* (H_{Bc} + L_{sp})^{2*} 1000$
Ductility Factor Capacities				
Plastic rotation Pier C	θ_{pC}	0.0321	rad	$\theta_{pC} = \phi_{p}^{*} L_{pC}$
Plastic displacement capacity Pier C	$\Delta_{\rm pC}$	397	mm	$\Delta_{pC} = \theta_{pC}^* H_{Cc}^* 1000$: based on ht at CoG of pier
Limit state disp. capacity Pier C	$\Delta_{\rm IsC}$	520	mm	$\Delta_{IsC} = \Delta_{yCc} + \Delta_{pC}$: excludes brgs & foundations
Ductility capacity Pier C	µ _{lsC} ◀	4.23		$\mu_{\rm ISC} = \Delta_{\rm ISC} / \Delta_{\rm yCc}$
Plastic rotation Piers B & D	θ_{pB}	0.0248	rad	$\theta_{pB} = \phi_{p} {}^{*}L_{pB}$
Plast disp capacity super at Piers B&D	Δ _{pB}	262	mm	$\Delta_{pB} = \theta_{pB}^{*}H_{B}^{*}1000$: based on ht of CoG of super
Plast disp cap Piers B & D at pier CoG	Δ_{pBc}	209	mm	$\Delta_{\rm pB} = \theta_{\rm pB}^{*} H_{\rm Bc}^{*} 1000$
Limit state disp capacity Piers B & D	Δ_{ISB}	267	mm	$\Delta_{IsB} = \Delta_{yBc} + \Delta_{pBc}$: excludes brgs & foundations Critical pier capacity & sets design disp.
Ductility capacity Piers B & D	μ _{lsB}	4.59		$\mu_{\rm ISB} = \Delta_{\rm ISB} / \Delta_{\rm VBC}$
Pier Shears at Limit State Displacement	nt (Iteratio	on reqd as	pier shear	and inertia forces unknown at this stage)
Pier height ratio	R _h	0.725		$R_{h} = H_{B} / H_{C}$
Distance between Pier B Top & CoG	h _{Bco}	2.140	m	$h_{Bco} = H_B - H_{Bc}$
Distance between Pier C Top & CoG	h _{Cco}	2.210	m	$h_{Cco} = H_C - H_{Cc}$
Height correction factor for shear ratio	R _c	0.004		$R_{c} = (F_{iC}^{*}h_{Cco} - F_{iB}^{*}h_{Bco})/(V_{Bn}^{*}H_{C})$
				Assume = 0 for first iteration and then correct
				after F_{iB} , F_{iC} and V_B are calculated below
Pier shear ratio	R_v	0.730		$R_{\rm V} = R_{\rm h} + R_{\rm c}$
Approx shear in Piers B & D at mom cap	V_{Ba}	746	kN	$V_{Ba} = M_{ac} / H_{B}$: $M_{ac} = $ trial mom cap: see below
		_		(Moment capacities are the same for all cols)
Shear in Piers B & D at limit state disp	V _{Bn}	751	kN	Iterate until $V_{Bn} = V_B$ given below
				Can use V_{Ba} to start iteration.
Shear in Pier C at limit state disp	V _{Cn}	548	kN	$V_{Cn} = V_{Bn} * R_v$

Item	Symbol	Value	Units	Comment / Formula
Displacements From Foundations & E	Bearings (Iteration re	equired as	pier inertia forces unknown at this stage)
Pier B superstructure disp from foundation	Δ_{fB}	25.1	mm	$\Delta_{fB} = V_{Bn} / K_{h} + ((V_{Bn} - F_{iB})^{*} H_{B} + F_{iB}^{*} H_{Bc})^{*} H_{B} / K_{\theta}$
Pier B CoG displacement from foundation	Δ_{fBc}	21.3	mm	$\Delta_{\rm fBc} = V_{\rm Bc} / K_{\rm b} + ((V_{\rm Bc} - F_{\rm iB})^* H_{\rm B} + F_{\rm iB}^* H_{\rm Bc})^* H_{\rm Bc} / K_{\rm \theta}$
Pier B displacement in bearings	Δ_{bB}	106.0	mm	$\Delta_{\rm bB} = (V_{\rm Bn} - F_{\rm iB})/K_{\rm t}$
Shear strain in Pier B bearings	ε _b	1.15		$\varepsilon_{\rm b} = \Delta_{\rm bB} / t_{\rm r} > 1.0$ limit.
5	5			A modification should be considered
Pier C superstructure disp from foundation	Δ_{fC}	30.8	mm	$\Delta_{\rm fC} = V_{\rm Cn} / K_{\rm h} + ((V_{\rm Cn} - F_{\rm ic})^* H_{\rm C} + F_{\rm ic}^* H_{\rm Cc})^* H_{\rm C} / K_{\rm \theta}$
Pier C CoG displacement from foundation	Δ_{fCc}	26.8	mm	$\Delta_{fCc} = V_{Cn} / K_{h} + ((V_{Cn} - F_{ic})^* H_{C} + F_{ic}^* H_{Cc})^* H_{Cc} / K_{\theta}$
Pier C displacement in bearings	Δ_{bC}	71.2	mm	$\Delta_{\rm bC} = (V_{\rm Cn} - F_{\rm iC})/K_{\rm t}$
				In 1st iteration assume $F_{iB} = 0$ in above
				expressions
Design limit state disp superstructure	Δ_{tB}	484	mm	$\Delta_{tB} = \Delta_{fB} + \Delta_{bB} + \Delta_{yB} + \Delta_{pB}$
Pier C super plastic displacement	$\Delta_{\rm pCd}$	212	mm	$\Delta_{\rm pCd} = \Delta_{\rm tB} - \Delta_{\rm fC} - \Delta_{\rm bC} - \Delta_{\rm yC}$
Pier C CoG plastic displacement	$\Delta_{\sf pCc}$	180	mm	$\Delta_{\rm pCc} = \Delta_{\rm pCd} ^{\star} {\rm H_{\rm Cc}} / {\rm H_{\rm C}}$
Ductility demand on Pier C at design disp	μ_{dC}	2.46		$\mu_{dc} = (\Delta_{pCc} + \Delta_{yCc})/\Delta_{yCc}$: based on pier CoG disp
Displacements at Mass Locations				
Design disp. of superstructure	Δ_{S}	484	mm	$\Delta_{\rm S} = \Delta_{\rm tB}$
Displacement at CoG of Pier B & D	$\Delta_{\rm Bd}$	288	mm	$\Delta_{\rm Bd} = \Delta_{\rm yBc} + \Delta_{\rm pBc} + \Delta_{\rm fBc}$
Displacement at CoG of Pier C	$\Delta_{\rm Cd}$	329	mm	$\Delta_{\rm Cd} = \Delta_{\rm yCc} + \Delta_{\rm pCc} + \Delta_{\rm fCc}$
Sum of weights x displacements	S _{wd}	4,570	kN m	$S_{wd} = (W_S^* \Delta_S + 2^* W_B^* \Delta_{Bd} + W_c^* \Delta_{Cd})/1000$
Characteristic design displacement	Δ_{d}	464	mm	$\Delta_{d} = (W_{S}^{*}\Delta_{S}^{2} + 2^{*}W_{B}^{*}\Delta_{Bd}^{2} + W_{c}^{*}\Delta_{Cd}^{2})/(S_{wd}^{*}1000):$
				Eq (5-20)
Effective Mass				
Total mass	m _t	1,027	t 🖉	$m_t = (W_S + 2^*W_B + W_c)/9.81$
Effective mass	m _e	1,005	t	$m_e = S_{wd} / (\Delta_d * 9.81 / 1000)$: Eq (5-22)
Damping				
Viscous damping Pier C	ξc	0.16		$\xi_{\rm C} = 0.1 + 0.04^* (\mu_{\rm dC} - 1) \le 0.18$: Eq (5-32)
Viscous damping for Piers B & D	ξΒ	0.18		$\xi_{\rm B} = 0.1 + 0.04^* (\mu_{\rm ISB} - 1)^{\leq} 0.18$
				Ductility demand on Pier B & C approx equal to their
				capacity as disp of these piers is design criterion
Abutment bearing damping ratio	ξA	0.25		Assumed for sliding bearings
Damping in pier bearings	ξ _{be}	0.05		BM Clause 5.4.3(g)(vi)
Shear in Pier B bearings	V _{Bb}	678	kN	$V_{Bb} = V_{Bn} - F_{iB}$
Shear in Pier C bearings	V _{Cb}	455	kN	$V_{Cb} = V_{Cn} - F_{iC}$
				(In 1st iteration assume $F_{iB} = F_{iC} = 0$)
System damping including abutments	ξsy	0.151		$\xi_{sv} = (\xi_A^* V_A^* \Delta_S + 2^* \xi_B^* V_{Bn}^* (\Delta_{vBc} + \Delta_{pBc}) +$
	,			$ \begin{array}{c} z_{\rm c}^* V_{\rm Cn}^* (\Delta_{\rm VCc} + \Delta_{\rm DCc}) + 2^* \xi_{\rm be}^* V_{\rm Bb}^* \Delta_{\rm bB} + \xi_{\rm be}^* V_{\rm Cb}^* \Delta_{\rm bC}) / \end{array} $
				$(V_{A}^{*}\Delta_{S}+2^{*}V_{Bn}^{*}(\Delta_{vBc}+\Delta_{pBc})+V_{Cn}^{*}(\Delta_{vCc}+\Delta_{pCc})+$
				$2*V_{Bb}*\Delta_{bB}+V_{Cb}*\Delta_{bC}$): Eq (5-18)
				Disp demand on Piers B & D is approxiately
				equal to their capacity
Damping modifier	Rε	0.640		$R_{\xi} = (0.07/(0.02 + \xi_{sy}))^{0.5} : Eq (5-17)$
	••ζ	0.010	ļ	$1 \cdot \cdot_{\varsigma} (0 \cdot 0 \cdot 1 \cdot (0 \cdot 0 - \cdot \cdot \varsigma_{S})) \cdot = 4 (0 \cdot 1 \cdot 1)$

Item	Symbol	Value	Units	Comment / Formula
Effective Period	, ,			•
Damping reduced spectrum corner disp	$\Delta_{\rm cr}$	476	mm	$\Delta_{\rm cr} = R_{\xi}^* \Delta(3)$
Effective period from design spectrum	T _e	2.92	s	$T_e = 3^* \Delta_d / \Delta_{cr}$
Secant stiffness	K _e	4,650	kN/m	$K_e = 4^* \pi^{2*} m_e / T_e^{-2}$: Eq (5-21)
Total base shear	V _T	2,156	kN	$V_{\rm T} = {\rm K_e}^* \Delta_{\rm d} / 1000$: Eq (5-19)
Inertia forces	<u> </u>		1	
Inertia force on supestructure	F _{iS}	1,916	kN	$F_{iS} = V_T * W_S * \Delta_S / (S_{wd} * 1000)$: Eq (5-39)
Inertia force on Piers B & D	F _{iB}	73	kN	$F_{iB} = V_T * W_B * \Delta_{Bd} / (S_{wd} * 1000)$
Inertia force on Pier C	F _{iC}	93	kN	$F_{iC} = V_T^* W_C^* \Delta_{Cd} / (S_{wd}^* 1000)$
Base Shears and Moments				
Friction coefficient for abutment brgs	n	0.05		Assumed for sliding teflon bearings BM Cl. 5.3.9(b) gives range as 0.02 to 0.15 A value of 0.02 increases reqd mom cap 3%
Shear carried by both abutments	V _A	105	kN	$V_A = n^* W_S / 4$
Shear in Piers B & D	V _B	751	kN	$V_{BD} = (V_T - V_A) / (2 + R_v)$
Check shear in Piers B & D	V _{Bc}	751	kN	$V_{Bc} = \Delta_{bB}^{*}K_{t} + F_{iB}$
Shear in Pier C	V _c	548	kN	$V_{\rm C} = (V_{\rm T} - V_{\rm A})^* R_{\rm v} / (R_{\rm v} + 2)$
Check shear in Pier C	V _{Cc}	548	kN	$V_{Cc} = \Delta_{bC} * K_t + F_{iC}$
Check shear ratio	R_{vC}	0.730		$R_{vc} = V_C / V_B$
Moment applied to base of Piers B&D	MB	7,784	kN m	$M_{\rm B} = (V_{\rm B} - F_{\rm iB})^* H_{\rm B} + F_{\rm iB}^* H_{\rm Bc}$
Check moment applied to base Pier C	M _C	7,784	kN m	$M_{C} = (V_{C} - F_{iC})^{*}H_{C} + F_{iC}^{*}H_{Cc}$
Check P-⊿ Moment				
Displacement of cylinder top at Pier C	Δ_{Ct}	4	mm	$\Delta_{\rm Ct} = V_{\rm C} / K_{\rm h}$
Displacement of cylinder top at Pier B	Δ_{Bt}	6	mm	$\Delta_{Ct} = V_B / K_h$
$P-\Delta$ moment on Pier C	M _{CP-Δ}	1,185	kN m	$M_{CP-\Delta} = (W_S/4^*(\Delta_S - \Delta_{Ct}) + W_C^*(\Delta_{pCc} + \Delta_{yCc} - \Delta_{Ct}))/100$
P-∆ moment on Piers B & D	M _{BP-4}	1,143	kN m	$\begin{split} M_{BP\text{-}\Delta} &= (W_S/4^*(\Delta_S-\Delta_Bt)+W_B^*(\Delta_PBc+\Delta_YBc-\Delta_Bt))/1000\\ \text{The bottom section of the columns are}\\ \text{neglected as they only add a small}\\ \text{contribution to }P\text{-}\Delta \end{split}$
Ratio: $M_{CP-\Delta}/M_C$	M _{rat}	0.15		> 0.1: increase in moment capacity required
Required Moment Capacity				
Required moment capacity	M _{Cr}	8,376	kN m	$M_{Cr} = M_C + M_{CP-\Delta}/2$
Capacity of section with 40/D32 bars	M _{ac}	7,887	kN m	Need to increase capacity a small amount Moment less critical than in longitudinal

Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Transverse Analysis: Abutment Pile S	Stiffness: F	ixed Hea	d							
Prepared: J Wood										
dit Date: 18-Aug-17 Print Date: 18-Aug-17										
Description	Symbol	Value	Units	Formulae & Comments						
Input Structural Parameters										
Cylinder pile diameter inside shell	Di	1.372	m	Inside of steel shell						
Thickness of steel shell	t _s	6	mm	Design value.						
Cylinder pile length	L	11.70	m	At Abutment E						
Specified concrete strength	f _c	25	MPa							
Shear applied to abutment	V	2,000	kN	Nominal value to estimate stiffness						
nput Soil Parameters			•							
Assumed inc of soil E with depth	m	15	MPa/m	Medium dense sand and gravels near surface						
Soil poissons ratio	ν	0.35	į							
Soil density	ρο	1.8	t/m ³							
Calculated Parameters										
Cylinder pile outside diameter	D	1.384	m	$D = D_i + 2^* t_s / 1000$						
for concrete core	I _c	0.174	.m⁴	$l_{c} = \pi^{*} D_{i}^{4} / 64$						
for shell	l _s	0.006	m⁴	$l_s = \pi^* (D^4 - D_i^4)/64$						
Youngs modulus for concrete	Ec	30,550	MPa	$E_c = 4700^*$ Sqrt(f _c)*1.3: Priestley et al Eq (5.2)						
				Factor 1.3 for prob strength & strain rate increase						
Combined shell + Concrete Core El	EI	6,547	MN m ²	$EI = E_c I_c + 200,000 I_s$						
Modified E_p to allow for shell	Ep	36,351	MPa	$E_{p} = EI/(\pi^{*}D^{4}/64)$: Pender Eq 3.17						
E value of soil at depth D	Es	20.8	MPa	E _s = m*D						
Modulus ratio	к	1,751		$K = E_p / E_s$						
Pile Length / Diameter	L _{Dr}	8.45		$L_{Dr} = L / D$						
Short pile length limit	L	4.05	m	$L_r = 0.07 D (E_p / E_s)^{0.5}$: L < L _r For short pile						
Long pile length limit	La	9.44	m	$L_a = 1.3 D (E_p / E_s)^{0.22}$: L > L_a For long pile						
				Long pile analysis OK						
Flexibility and Stiffness: Long Pile: Li	near Increa	ase in E _s	With Dep							
Flexibility coefficients:	f _{uHL}	0.00926	m/MN	$f_{uHL} = 3.2 \text{ K}^{-0.333} / (\text{E}_{s}^{*}\text{D})$						
Pender Eq 3.28	f _{uML}	0.00198	MN ⁻¹	$f_{uML} = 5.0 \text{ K}^{-0.556} / (\text{E}_{s}^{*}\text{D}^{2})$						
	f _{emL}		(m MN) ⁻¹	$f_{\theta ML} = 13.6 \text{ K}^{-0.778} / (E_s^* D^3)$						
Stiffness coefficients:	K _{HHL}	251	MN/m	$K_{\text{HHL}} = f_{\theta \text{ML}} / (f_{\text{uHL}} * f_{\theta \text{ML}} - f_{\text{uML}}^2)$						
Pender Eq 3.40	K _{HML}	-671	MN	$K_{HML} = -f_{uML} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$						
	K _{MML}	3,141	MN m	$K_{MML} = f_{uHL} / (f_{uHL} * f_{\theta ML} - f_{uML}^{2})$						
Stiffness Fixed Head			ļ							
Flexibility coefficient	f _{FH}	0.0039	m/MN	f _{FH} = 1.35*K ^{-0.333} /(mD ²): Pender Eq 3.31						
Displacement	u ^F		mm	$u^{F} = f_{FH}^{*}V$: Pender Eq 3.31						
- Fixing moment parameter	I _{MF}	1.942		I _{MF} = 0.37*K ^{0.222} : Pender Eq 3.32						
Fixing moment	MF		kN m	$M^{F} = I_{MF} * V * D$: Pender Eq 3.32						
Pile horizontal stiffness (single pile)	K _{HHF}		MN/m	$K_{HHF} = V/u^{F}$: small variation from K_{HHL} given above						
Reference	1 100									

Prepared: J Wood									
Edit Date: 18-Aug-17 Print Date: 18-Aug-17									
ltem	Sym	Value	Units	Comment / Formula					
Structural Inputs				•					
Weight of superstructure	Ws	8,400	kN	From separate analysis on Page C5-114					
Length of end spans (A-B)	L _{AB}	20.5	m	From drawings					
Length of centre spans (B-C)	L _{BC}	21.0	m	Two equal spans - from drawings					
Weight of superstructure per unit length	w _{su}	101.2	kN/m	$W_{SU} = W_S / (2^* L_{AB} + 2^* L_{BC})$					
Effective weight of Pier C	W _c	599	kN	Cap + 1/3 wt of column, sep analysis, p. C5-114					
Effective weight of Pier B	W _B	538	kN	Cap + 1/3 wt of column, sep analysis, p. C5-114					
Axial force at base of column C	N _c	3,051	kN	From separate analysis on Page C5-114					
Effective height of Pier C	H _c	14.57	m	Superstructure CoG above Pier C cylinder top					
Effective height of Piers B & D	H _B	10.57	m	Superstructure CoG above Pier B cylinder top					
Height CoG Pier C	H _{Cc}	12.36	m	Above Pier C cylinder top					
Height CoG Piers B & D	H _{Bc}	8.43	m	Above Pier D cylinder top					
Column diameter	D _c	1.524	m	As designed. (Pipe liners neglected)					
Diameter longitudinal bars	d _b	32	mm	As designed					
Diameter transverse hoops	d _t	16	mm	As designed					
Number of longitudinal bars	N _b	40		As designed					
Spacing transverse hoop bars	s _t	80	mm	As designed					
Cover to hoops	Cv	40	mm	From drawings					
Specified concrete 28 day strength	fc	25	MPa						
Adopted steel yield stress	f _y	300	MPa	Longitudinal & transverse steel (275 Mpa specified)					
Elastomeric Bearing Input				specified)					
Width of bearings on piers	B _{be}	380	mm	From drawings. Transverse direction					
Length of bearings on piers	L _{be}	300		From drawings. Longitudinal direction					
Overall thickness of bearing	T _b	119		From drawings.					
Thickness of rubber	t _r		mm	Assume 8 inner layers at 10 mm thickness					
		_		Top & bottom cover of 6 mm thickness					
				9 inner plates of 3 mm tickness					
				Assume no dowels					
Side cover	s _{co}	10	mm	Skellerup brochure					
Bonded area of rubber	A _{br}	0.1008		Based on 10 mm side covers					
Shear modulus	G _b	0.73		53 IRHD - Skellerup brochure					
Shear stiffness	С _р К _r		MN/m	$K_r = A_{br} * G_b/(t_r/1000)$					
Number of bearings on each pier	N _{be}	8							
Total shear stiffness per pier	K _t	-	MN/m						
Foundation Stiffness Inputs	i Nt	0.7		1					
Horizontal stiffness at pile top level	K _h	125	MN/m	From separate analysis on Page C5-117					
Rotational stiffness at pile top level	κ _θ	4,300		From separate analysis on Page C5-117					
Horizontal stiffness of abutment piles	κ _θ Κ _A	4,300		From separate analysis on Page C5-128					

Page C5-130

ltem	Sym	Value	Units	Comment / Formula
Earthquake Inputs	Jym	value	onits	
		0		
Site Subsoil Category	_	C		
Zone Factor	Z	0.42		Danneverke
Return Period Factor	R _u T	1.8		2500 year return period
Spectrum corner period	T _c	3.0		See BM Fig 5.2
Corner period spectral shape factor	$\Delta_{\rm h}(3)$		mm	From Table 5.5 in BM
Design corner period displacement Calculated Structural Parameters	∆(3)	745	mm	$\Delta(3) = R_{u}^* Z^* \Delta_{h}(3)$
	_	50		From a consta harma
Cover to longitudinal bars	C _o		mm	From cover to hoops $4 + p^2/4$
Gross column section area	A _g		m ²	$A_{g} = \pi^{*} D_{c}^{2} / 4$
Area of longitudinal steel	A _s	32,170		$A_{s} = N_{b} * \pi * d_{b}^{2}/4$
Longitudinal steel area ratio	ρ _l	0.0176		$\rho_1 = A_s/(10^{6*}A_g)$
Check minimum required steel area	A _{sm}	24,322		$A_{sm} = 4*10^6 A_g / f_y$: BM 5.6.4(f)
Check maximum permitted steel area	A _{sma}	109,449		$A_{sma} = 18^{*}10^{6} A_{g}/f_{y}$: BM 5.6.4(f)
Area of transverse reinforcement	A _t	201	mm²	$A_t = \pi^* d_t^2 / 4$
Column concrete core diameter	D'	1.428	m	$D' = D_c - (2^*c_o - d_t)/1000$
				Using Priestley el, 1996 & 2007 who define
				D' as measured on centre-line of hoops.
				NZS 3101 uses outside of hoops.
Volumetric ratio transverse steel	ρ_{s}	0.00704		$\rho_{s} = 4^{*}A_{t} / (1000^{*}D'^{*}s_{t})$
				OK: minimum required = 0.005 : BM 5.6.4(h)(i)
Strain Limits for Plastic Rotation				
Yield strength transverse reinforcement	f _{syf}	300	MPa	
Strain at max stress lateral reinforcement	ε _{sut}	0.12		BM Clause 5.3.5(b)
Strain at max stress longitudinal reinf.	٤ _{sul}	0.12		BM Clause 5.3.5(a)
Design comp strength plastic hinge	f _{ce}	32.5	MPa	$f_{ce} = 1.3^* f_c$: BM Table 5.7
Average confining stress	f _{ld}	1.00	MPa	$f_{ld} = 0.95^* f_{syf}^* \rho_s/2$: From Priestley et al, 1996
Confined comp strength concrete	f _{cc}	39.0	MPa	$f_{cc} = f_{ce}^{*} (2.254^{*} (1+7.94^{*} f_{ld}/f_{ce})^{1/2} - 2^{*} f_{ld}/f_{ce} - 1.254)$
				Priestley et al 1996, Eq 5.6
Reinforcement limiting strain	٤ _{sd}	0.027		$\epsilon_{sd} = 0.015+6^{*}(\rho_{s}-0.005) \le 0.5 \epsilon_{sul}$: Eq (5-11)
Concrete limiting strain	ε _{cd}	0.0131		ϵ_{cd} = 0.004+(1.4* ρ_{s} * f_{syf} * ϵ_{sut}) / f_{cc} : Eq (5-12)
Neutral axis depth	с	376	mm	From moment strength analysis
Distance extreme bar to neutral axis	b _{na}	1,076	mm	$b_{na} = D_c^* 1000 - c - c_o - d_b / 2$
Concrete strain from steel strain	3	0.0095		$\varepsilon = \varepsilon_{sd}^* c / b_{na}$
				Steel limiting strain governs
Limit state curvature	φ _{ls}	0.0253	1/m	$\phi_{\text{Is}} = \text{IF}(\epsilon > \epsilon_{\text{cd}}, \epsilon_{\text{cd}} / (c/1000), \epsilon_{\text{sd}} / (b_{\text{na}} / 1000))$
Plastic curvature	φp	0.0230	1/m	$\phi_{p} = \phi_{1s} - \phi_{yy}$
Plastic Hinge Lengths				
Ratio steel ultimate over yield stress	f _u /f _y	1.4		From Pacific Steel test results
Hinge length parameter	k _{ip}	0.08		$k_{ip} = 0.2^* (f_u / f_y - 1) \le 0.08 : Eq (5-38)$
	•			
Distance to point of contraflexure Pier C	L _C	14.57	m	$L_{\rm C} = H_{\rm C}$
Distance to point of contraflexure Pier C Plastic hinge length Pier C	L _C L _{pC}	14.57 1.40		°°
			m	$L_{c} = H_{c}$ $L_{pc} = k_{ip}*L_{c} + L_{sp} \ge 2*L_{sp} : Eq (5-37)$ $L_{B} = H_{B}$

láo m	C	Value	Linita	
Item	Sym	Value	Units	Comment / Formula
Yield Displacements				-
Probable yield strength of reinforcement	f _{ye}		MPa	$f_{ye} = 1.1^* f_{y}$: Table 5.7
Elastic modulus for steel	E _{sb}	200,000		
Yield strain	εγ	0.00165		$\varepsilon_y = f_{ye} / E_{sb}$
Yield curvature	ф _{уу}	0.00233		$\phi_{yy} = 2.15^* \epsilon_y / D_c$: Eq (5-8)
Strain penetration length	L _{sp}	0.232	m	$L_{sp} = 0.022^* f_{ye}^* d_b / 1000$: Eq (5-10)
Coefficient for column fixity	C ₁	0.333		See Appendix 5A
Yield displacement Pier C at super CoG	$\Delta_{\rm yC}$	170	mm	$\Delta_{yC} = C_1^* \phi_{yy}^* (H_C + L_{sp})^{2*} 1000: Eq (5-10)$
Yield displacement Pier C at pier CoG	$\Delta_{\rm yCc}$	123	mm	$\Delta_{yCc} = C_1^* \phi_{yy}^* (H_{Cc} + L_{sp})^{2*} 1000$
Yield disp Piers B & D at super CoG	$\Delta_{\rm yB}$	91	mm	$\Delta_{yB} = C_1^* \phi_{yy}^* (H_B + L_{sp})^{2*} 1000: Eq (5-10)$
Yield disp Piers B & D at pier CoG	$\Delta_{\rm yBc}$	58	mm	$\Delta_{yBc} = C_1 * \phi_{yy} * (H_{Bc} + L_{sp})^{2*} 1000$
Ductility Factor Capacities				
Plastic rotation Pier C	θ_{pC}	0.0321	rad	$\theta_{pC} = \phi_p * L_{pC}$
Plastic displacement capacity Pier C	$\Delta_{\rm pC}$	397	mm	$\Delta_{pC} = \theta_{pC}^* H_{Cc}^* 1000$: based on ht of CoG of pier
Limit state displacement capacity Pier C	$\Delta_{\rm IsC}$	520	mm	Δ_{IsC} = Δ_{yCc} + Δ_{pC} : excludes brgs & foundations
Ductility capacity Pier C	μ_{lsC}	4.23		$\mu_{\rm ISC} = \Delta_{\rm ISC} / \Delta_{\rm yCc}$
Plastic rotation Piers B & D	θ_{pB}	0.0248	rad	$\theta_{pB} = \phi_p * L_{pB}$
Plastic disp capacity Piers B & D	Δ_{pB}	209	mm	$\Delta_{pB} = \theta_{pB}^{*}H_{Bc}^{*}$ 1000: based on ht of CoG of pier
Limit state disp capacity Piers B & D	$\Delta_{\rm IsB}$	267	mm	$\Delta_{ISB} = \Delta_{yBc} + \Delta_{pB}$: excludes brgs & foundations
Ductility capacity Piers B & D	μ_{IsB}	4.59		$\mu_{\rm ISB} = \Delta_{\rm ISB} / \Delta_{\rm yBc}$
Pier Shears at Limit State Displacement (Iterat	tion requi	red as pie	r shear	and inertia forces unknown at this stage)
Pier height ratio	R _H	0.725		$R_{h} = H_{B} / H_{C}$
Pier B&D dist between CoGs on super & pier	h _{Bco}	2.14	m	$h_{Bco} = H_B - H_{Bc}$
Pier C dist between CoGs on super & pier	h _{Cco}	2.21	m	$h_{Cco} = H_C - H_{Cc}$
Height correction factor for shear ratio	R _c	0.041		$R_{c} = (F_{iC}^{*}h_{Cco} - F_{iB}^{*}h_{Bco})/(V_{Bn}^{*}H_{C})$
				Assume = 0 for first iteration and then correct
				after F_{iB} , F_{iC} and V_B are calculated below
Pier shear ratio	R _v	0.766		$R_V = R_H + R_C$
Approx shear in Piers B & D at mom cap	V _{BA}	746	kN	$V_{Ba} = M_{ac} / H_{B}$: M_{ac} = trial mom cap: see below
				(Moment capacities are the same for all cols)
Shear in Piers B & D at limit state disp	V _{Bn}	891	kN	Iterate until $V_{Bn} = V_B$ given below
				Can use V _{BA} to start iteration.
Shear in Pier C at limit state disp	V _{Cn}	682	kN	$V_{Cn} = V_{Bn} * R_V$
Displacements From Foundations & Bearings				inertia forces unknow at this stage)
Pier B super disp from foundation	Δ _{fB}	, 29.4		$\Delta_{\rm fB} = V_{\rm Bn}/K_{\rm h} + ((V_{\rm Bn} - F_{\rm iB})^*H_{\rm B} + F_{\rm iB}^*H_{\rm Bc})^*H_{\rm B}/K_{\rm \theta}$
Pier B CoG displacement from foundation	Δ_{fBc}	24.9		$\Delta_{\text{fBc}} = V_{\text{Bn}}/K_{\text{h}} + ((V_{\text{Bn}} - F_{\text{iB}})^*H_{\text{B}} + F_{\text{iB}}^*H_{\text{Bc}})^*H_{\text{Bc}}/K_{\theta}$
Pier B displacement in bearings	Δ _{bB}	113.1		$\Delta_{bB} = (V_{Bn} - F_{iB})/K_t$
Shear strain in Pier B bearings	ε _b	1.23		$\varepsilon_{\rm bb} = \Delta_{\rm bb} / t_{\rm r} > 1.0$ limit.
	νD			A modification could be made to meet limit
Pier C super disp from foundation	Δ_{fC}	36.1	mm	$\Delta_{fc} = V_{Cn} / K_h + ((V_{Cn} - F_{ic})^* H_c + F_{ic}^* H_{Cc})^* H_c / K_{\theta}$
Pier C CoG displacement from foundation		31.5		$\Delta_{fc} = V_{Cn} / K_h + ((V_{Cn} - F_{ic})^* H_C + F_{ic}^* H_{Cc})^* H_{Cc} / K_{\theta}$ $\Delta_{fcc} = V_{Cn} / K_h + ((V_{Cn} - F_{ic})^* H_C + F_{ic}^* H_{Cc})^* H_{Cc} / K_{\theta}$
Pier C displacement in bearings	Δ_{fCc}	44.1		
	Δ_{bC}			$\Delta_{bC} = (V_{Cn} - F_{iC})/K_t$
	ILISTIC	auonas	sume r _i	$_{\rm B}$ = 0.8V $_{\rm Bn}$ and $F_{\rm iC}$ = 0.5V $_{\rm Cn}$ in above expressions

Page C5-132

Item	Sym	Value	Units	Comment / Formula						
Superstructure Displacement Profile: Determine by Trial and Error to Agree With Structural Analysis Output										
Displacements at Superstructure CoGs		Trial Val	ues	Struc Analysis Output (see matrix analysis below)						
Estimated displacement of abutments	Δ_{AS}	3.57	mm	3.57 mm						
Displacement at Piers B & D	Δ_{BS}	195.1	mm	195.1 mm						
Displacement at Pier C	Δ_{CS}	279.0	mm	279.0 mm						
Proportion of shear transferred to abutments	х	0.592		0.592 Trial & error to get $M_p = M_c$						
Bending moment at base of piers	Mp	9,057	kN m	Target value = long capacity = 9,060 kN m						
				Moment is sensitive to x value.						
Displacements at Pier CoGs			-	Struct Anal Output						
Displacement at CoG of Pier B & D	Δ_{BG}	83	mm	$\Delta_{\rm BG} = \Delta_{\rm yBc} + \Delta_{\rm pBc} + \Delta_{\rm fBc} $ 83 mm						
Displacement at CoG of Pier C	$\Delta_{\rm CG}$	179	mm	$\Delta_{\rm CG} = \Delta_{\rm yCc} + \Delta_{\rm pCc} + \Delta_{\rm fCc} $ 179 mm						
Ductility Demands			-							
Pier C										
Maximum disp demand on superstructure	$\Delta_{\rm tC}$	279	mm	$\Delta_{\rm tC} = \Delta_{\rm CS}$						
Plastic disp demand of superstructure at Pier C	Δ_{pCd}	28.8	mm	$\Delta_{\rm pCd} = \Delta_{\rm tC} - \Delta_{\rm rC} - \Delta_{\rm bC} - \Delta_{\rm yC}$						
Plastic disp demand at Pier C CoG	Δ_{pCc}	24.4	mm	$\Delta_{\rm pCc} = \Delta_{\rm pCd} * H_{\rm Cc} / H_{\rm C}$						
Ductility demand on Pier C at design disp	μ_{dC}	1.20		μ_{dc} = (Δ_{pCc} + Δ_{yCc})/ Δ_{yCc} : based on pier CoG height						
Piers B & D										
Disp demand on superstructure at Pier B & D	Δ_{tB}	195	mm	$\Delta_{\rm tB} = \Delta_{\rm BS}$						
Plastic disp demand on super at Piers B & D	Δ_{pBd}	0.0	mm	$\Delta_{pCd} = \Delta_{tB} - \Delta_{fB} - \Delta_{bB} - \Delta_{yB} \ge 0$						
Plast disp demand at CoG of Piers B&D CoG	Δ_{pBc}	0.0	mm	$\Delta_{\rm pBc} = \Delta_{\rm pBd} ^* {\rm H}_{\rm Bc} / {\rm H}_{\rm B}$						
Ductility demand on Piers B and D	μ_{dB}	1.00		$\mu_{dB} = (\Delta_{pBc} + \Delta_{yBc})/\Delta_{yBc}$: based on pier CoG heigh						
Superstructure Inertia Weights										
Supestructure at each abutment	W _{AS}	1,037	kN	$W_{AS} = W_{SU} * L_{AB}/2$						
Superstructure at Piers B & D	W _{BS}	2,100	kN	$W_{BS} = W_{SU} * (L_{AB} + L_{BC}) /2$						
Superstructure at Pier C	W _{CS}	2,125	kN	$W_{CS} = W_{SU} * L_{BC}$						
Characteristic Design Displacement										
Sum of weights x displacements	S _{WD}	1,616	kN m	$S_{WD} = (2^*W_{AS}^*\Delta_{AS} + 2^*W_{BS}^*\Delta_{BS} + W_{CS}^*\Delta_{CS}$						
				+ $2^* W_B^* \Delta_{BG}$ + $W_C^* \Delta_{CG}$)/100						
Characteristic design displacement	$\Delta_{\sf d}$	218	mm	$\Delta_{d} = (2^{*}W_{AS}^{*}\Delta_{AS}^{2} + 2^{*}W_{BS}^{*}\Delta_{BS}^{2} + W_{CS}^{*}\Delta_{CS}^{2}$						
				+ $2^* W_B^* \Delta_{BG}^2$ + $W_C^* \Delta_{CG}^2$)/(S_{WD}^* 1000): Eq (5-20)						
Effective Mass		•		•						
Total mass	mτ	1027	t	$m_T = (W_S + 2^*W_B + W_c)/9.81$						
Effective mass	m _e	757	t	$m_e = S_{WD} / (\Delta_d * 9.81 / 1000)$: Eq (5-22)						
5			1							

Item	Sym	Value	Units	Comment / Formula
Damping				
Viscous damping Pier C	ξc	0.11		$\xi_{\rm C} = 0.1 + 0.04^* (\mu_{\rm dC} - 1) \le 0.18$: Eq (5-32)
Viscous damping for Piers B & D	ξ _B	0.10		$\xi_{\rm B} = 0.1 + 0.04^* (\mu_{\rm dB} - 1)^{\leq} 0.18$
Abutment damping ratio	ξA	0.05		Assumed for small abutment displacements
Damping in pier bearings	ξ _{be}	0.05		BM Clause 5.4.3(g)(vi)
Shear in Pier B bearings	V _{Bb}	724	kN	$V_{Bb} = V_{Bn} - F_{iB}$
Shear in Pier C bearings	V _{Cb}	282	kN	$V_{Cb} = V_{Cn} - F_{iC}$
				In 1st iteration assume $F_{iB} = F_{iC} = 0$
System damping including abutments	ξ _{sy}	0.078		$\xi_{sv} = (\xi_A * 2^* V_A * \Delta_{AS} + 2^* \xi_B * V_{Bn} * (\Delta_{vBc} + \Delta_{pBc}) +$
				$\xi_{\rm C}^{*}V_{\rm Cn}^{*}(\Delta_{\rm VCc}+\Delta_{\rm pCc})+2^{*}\xi_{\rm be}^{*}V_{\rm Bb}^{*}\Delta_{\rm bB}+\xi_{\rm be}^{*}V_{\rm Cb}^{*}\Delta_{\rm bC})/$
				$(2^*V_A^*\Delta_{AS}+2^*V_{Bn}^*(\Delta_{VBc}+\Delta_{PBc})+V_{Cn}^*(\Delta_{VCc}+\Delta_{PCc})+$
				$2*V_{Bb}*\Delta_{bB}+V_{Cb}*\Delta_{bC}$): Eq (5-123)
Damping modifier	R	0.845		$R_{\xi} = (0.07/(0.02 + \xi_{sy}))^{0.5} : Eq (5-17)$
Effective Period		1		
Damping reduced spectrum corner disp	Δ_{cr}	629	mm	$\Delta_{\rm cr} = R_{\varepsilon}^{\star} \Delta(3)$
Effective period from design spectrum	Te	1.04	s	$T_e = 3^* \Delta_d / \Delta_{cr}$
Secant stiffness	K _e	27,735	kN/m	$K_{e} = 4^{*}\pi^{2*}m_{e}/T_{e}^{-2}$: Eq (5-21)
Total base shear	VT	6,038	kN	V _T = K _e *∆ _d /1000: Eq (5-19)
Inertia forces	- <u>-</u>			
Inertia force on supestructure at abuts	F _{iSA}	13.9	kN	$F_{iS} = V_T^* W_{AS}^* \Delta_{AS} / (S_{wd}^* 1000)$: Eq (5-39)
Inertia force on super at Piers B & D	F _{iSB}	1,531	kN	$F_{ISB} = V_T^* W_{BS}^* \Delta_{BS} / (S_{wd}^* 1000)$: Eq (5-39)
Inertia force on super at Pier C	F _{iSC}	2,215	kN	$F_{iSC} = V_T * W_{CS} * \Delta_{CS} / (S_{wd} * 1000)$: Eq (5-39)
Inertia force on Piers B & D	F _{iB}	167	kN	$F_{iB} = V_T^* W_B^* \Delta_{BG} / (S_{wd}^* 1000)$
Inertia force on Pier C	F _{iC}	400	kN	$F_{iC} = V_T^* W_C^* \Delta_{CG} / (S_{wd}^* 1000)$
Check sum of inertia forces	Fit	6,038	kN	$F_{iT} = 2^*F_{iSA} + 2^*F_{iSB} + F_{iSC} + 2^*F_{iB} + F_{iC}$
Pier Base Shears				
Shear carried by each abutments	VA	1,787	kN	$V_A = x^* V_T / 2$
Shear in Piers B & D	V _B	891	kN	$V_{BD} = (V_T - 2^*V_A) / (2+R_v)$
Check shear in Piers B & D	V _{Bc}	891	kN	$V_{Bc} = \Delta_{bB}^{*}K_{t} + F_{iB}$
Shear in Pier C	V _C	682	kN	$V_{C} = (V_{T} - 2^{*}V_{A})^{*}R_{v}/(R_{v}+2)$
Check shear in Pier C	V _{Cc}	682	kN	$V_{Cc} = \Delta_{bC}^{*} K_{t} + F_{iC}$
Check shear ratio	R_{vC}	0.766		$R_{vC} = V_C / V_B$
Moment applied to base Piers B & D	M _B	9,057	kN m	$M_{B} = (V_{B} - F_{iB})^{*}H_{B} + F_{iB}^{*}H_{Bc}$
Check moment applied to base Pier C	M _c	9,057	kN m	$M_{C} = (V_{C} - F_{iC})^{*}H_{C} + F_{iC}^{*}H_{Cc}$
Check P - A Moment	_			
Displacement of cylinder top at Pier C	$\Delta_{\rm CT}$	5	mm	$\Delta_{\rm CT} = V_{\rm C} / K_{\rm h}$
Displacement of cylinder top at Pier B	$\Delta_{\rm BT}$	7	mm	$\Delta_{CT} = V_{B} / K_{h}$
P-∆ moment on Pier C	$M_{CP-\Delta}$	659	kN m	$M_{CP\text{-}\Delta} = (W_{S}/4^{\star}(\Delta_{CS} - \Delta_{Ct}) + W_{C}^{\star}(\Delta_{pCc} + \Delta_{yCc} - \Delta_{Ct}))/1000$
P- Δ moment on Piers B & D	$M_{BP-\Delta}$	422	kN m	$M_{BP\text{-}\Delta} = (W_S/4^*(\Delta_BS - \Delta_Bt) + W_B^*(\Delta_pBc + \Delta_yBc - \Delta_Bt))/1000$
				The bottom section of the columns is neglected
				as it is a minor component of $P-\Delta$
Ratio: $M_{CP-\Delta} / M_C$	M _{rat}	0.07		

Page C5-134

Item	1					Sym	Value	Units	Comment / Formula
Rea	uired Mo	oment Ca	apacity						
	uired mor					M _{Cr}	9.057	kN m	$M_{Cr} = M_{C}$
			:h 40/D32	bars		Mac	-	kN m	
· ·	ctural A					ac	1,001		1
Superstructure Inputs									
	sverse N					ե	4.65	m ⁴	$0.3 I_{G}$: cracked deck section at link slabs
			erstructur	e		E _s	28,200		$E_s = 4,700$ *Sqrt(fc)*1.2: Priestley et al Eq (5.2)
						-5	,		1.2 factor adjusts for probable strength increase
Pier	Inputs					<u> </u>	<u> </u>	<u> </u>	
Stiffr	ness of P	ier B & D	based or	n pier Co	G	K _{BP}	10,718	kN/m	$K_{BP} = V_B / (\Delta_{BG} / 1000)$: includes foundation
			ed on pie	•		K _{CP}		kN/m	$K_{CP} = V_C / (\Delta_{CG} / 1000)$: includes foundation
Mod	el spring	between	super & F	Piers B, D) CoGs	K _{BE}	6,462	kN/m	$K_{BE} = (V_B - F_{IB})/((\Delta_{tB} - \Delta_{BG})/1000)$
Mod	el spring	between	super & F	Pier C Co	G	K _{CE}	2,818	kN/m	$K_{CE} = (V_{C} - F_{iC})/((\Delta_{tC} - \Delta_{CG})/1000)$
	1 0		of Piers			K _B	-	kN/m	$K_{\rm B} = 1/(1/K_{\rm BP} + 1/K_{\rm BE})$
	rall stiffne					К _с	,	kN/m	$K_{\rm C} = 1/(1/K_{\rm CP} + 1/K_{\rm CE})$
Che	ck Elastic	c Stiffnes	s of Piers	;		, v			
l valu	ue of pier	column				I _p	0.265	m ⁴	$I_{p} = \pi^{*}D_{c}^{4}/64$
Assı	umed red	uction fac	ctor for cr	acking		R _{fc}	0.30		
Che	ck elastic	stiffness	of Piers	B&D		K _{BEL}	11,218	kN/m	$K_{BE} = 3*E_{S}*1000*I_{p}*R_{fc}/H_{Bc}^{3}$: (not used)
Che	ck elastic	stiffness	of Pier C	;		K _{CEL}	3,559		$K_{CE} = 3*E_{s}*1000*I_{p}*R_{fc}/H_{Cc}^{-3}$: (not used)
Calo	culated S	tiffness	Matrices	;		ULL			
Stiffr	ness coel	ficient for	Beam Sp	ban A-B		El _A	6.4E+06	kN m	$EI_{A} = 1000^{*}E_{S}^{*}I_{T}/L_{AB}$
Stiffr	ness coel	ficient Be	am Span	B-C		El _B	6.2E+06	kN m	$EI_{B} = 1000^{*} E_{S}^{*}I_{T} / L_{BC}$
C4:#	noss Motri	ix Boom /	P (Dogra	o of Frood	lom Numb	er in First	Powl Co	(ump)	
Sum	1 1	2	з (<i>Degre</i>	4	6				B, C & D for stiffness coeffs
1			3 1.9E+06	-	-	Full sprin			
2			1.9E+06				iy useu ai	abutment	
2 3			6.8E+05		0.0				
			-1.8E+05						
6	0.0			-3.2E+03					
	0.0	0.0	0.0	0.22.00	0.02.100				
Stiff	ness Matri	ix Beam E	3-C (Degre	e of Freed	om Numb	er in First i	Row & Col	umn)	
	2	4	5	6	7				
2			-1.8E+06						
4			-1.7E+05						
			1.7E+05		-1.4E+03				
6		-3.2E+03		8.6E+03					
7	0.0	0.0	-1.4E+03	0.0	3.3E+03				
Tota	l Stiffness	Matrix (D	egree of F	reedom No	o. in First I	Row & Col	umn)		
	1	2	3	4	5	6	7		
1	2.6E+07	1.3E+07	1.9E+06	-1.9E+06	0.0E+00	0.0E+00	0.0E+00	1	
2	1.3E+07	5.1E+07	1.9E+06	-8.8E+04	-1.8E+06	0.0E+00	0.0E+00		
3	1.9E+06	1.9E+06	6.8E+05	-1.8E+05	0.0E+00	0.0E+00	0.0E+00		
4	-1.9E+06	-8.8E+04	-1.8E+05	3.6E+05	-1.7E+05	-6.5E+03	0.0E+00		
5	0.0E+00	-1.8E+06	0.0E+00	-1.7E+05	1.7E+05	0.0E+00	-1.4E+03		
6	0.0E+00	0.0E+00	0.0E+00	-6.5E+03	0.0E+00	1.7E+04	0.0E+00		
7	0.0E+00	0.0E+00	0.0E+00	0.0E+00	-1.4E+03	0.0E+00	3.3E+03		

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

Inverted Stiffness Matrix								
	1	2	3	4	5	6	7	
1	2.3E-07	1.0E-07	-3.3E-08	3.3E-06	4.3E-06	1.2E-06	1.8E-06	
2	1.0E-07	1.2E-07	-2.3E-08	2.1E-06	3.4E-06	8.1E-07	1.4E-06	
3	-3.3E-08	-2.3E-08	2.0E-06	1.4E-06	1.1E-06	5.2E-07	4.8E-07	
4	3.3E-06	2.1E-06	1.4E-06	6.1E-05	8.3E-05	2.3E-05	3.5E-05	
5	4.3E-06	3.4E-06	1.1E-06	8.3E-05	1.2E-04	3.1E-05	5.2E-05	
6	1.2E-06	8.1E-07	5.2E-07	2.3E-05	3.1E-05	6.7E-05	1.3E-05	
7	1.8E-06	1.4E-06	4.8E-07	3.5E-05	5.2E-05	1.3E-05	3.2E-04	

Rotations					
1	0.0103 ra	ad			

2	0.0074	rad

Displacements					
3	0.0036	m			
4	0.1951	m			
5	0.2790	m			
6	0.0831	m			
7	0.1789	m			

Beam A-B Forces					
1	0.00	kN m			
2	-36,357	kN m			
3	14 kN				
4	2,135	kN			
6	84	kN			

Bear	Beam B-C Forces					
2	36,357	kN m				
4	-605	kN				
5	1,108	kN				
6	84	kN				
7	200	kN				

Check Force Sums							
3	14	kN					
4	1,531	kN					
5	1,108	kN					
6	167	kN					
7	200	kN					

Shear in AB					
V _{AB}	-1774	kN			

Shear Ratio in ABV_R-0.587

References:

Priestley M J N, Seible F and Calvi G M, 1996. Seismic Design and Retrofit of Bridges. John Wiley & Sons Inc Priestley M J N, Calvi G M and Kowalsky, 2007. Displacement-Based Seismic Design of Structures. IUSS Press.

Input Forces from Above						
0	kN m					
0	kN m					
13.9	kN	= F _{iSA}				
1531	kN	= F _{iSB}				
1108	kN	$= F_{iSC}/2$				
167	kN	= F _{iB}				
200	kN	$= F_{iC}/2$				

Check Input Forces

-			
Based on (
0	kN m		
0	kN m		
13.9	kN		
1531	kN		
1108	kN		
167	kN		
200	kN		
			•

(This page is intentionally blank)

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

C6 Site stability, foundations, earthworks and retaining walls

Table C6.1: Unweighted peak ground acceleration coefficients, $C_{0,1000}$, corresponding to a 1000 year return at a subsoil Class A or B rock site and subsoil Class D or E deep or soft soil site, and effective magnitude, M_{eff}, for various return periods for New Zealand towns and cities

Town/City	C0,1000 Class A/B Class D&E		Effective magnitudes (M _{eff}) for design return period (years)	Town/City	Co, Class A/B	1000 Class D&E	Effective magnitudes (M _{eff}) for design return period (years)		
	rock	deep/ soft soil	500 - 2500 50 - 250		rock	deep/ soft soil	500 - 2500	50 - 250	
Kaitaia	0.12	0.15	5.75	Whakatane	0.43	0.46	6.	6.1	
Paihia/Russell	0.13	0.16	5.75	Opotiki	0.40	0.44	6.	6.1	
Kaikohe	0.12	0.15	5.75	Ruatoria	0.34	0.41	6.	1	
Whangarei	0.13	0.16	5.8	Murupara	0.42	0.41 ²	6.	3	
Dargaville	0.13	0.16	5.8	Таиро	0.38	0.42	6.	1	
Warkworth	0.13	0.17	5.9	Taumarunui	0.32	0.36	6.	0	
Auckland	0.15	0.19	5.9	Turangi	0.36	0.40	6.	25	
Manakau City	0.17	0.21	5.9	Gisborne	0.37	0.41	6.	4	
Waiuku	0.16	0.20	5.9	Wairoa	0.35	0.41	6.	5	
Pukekohe	0.18	0.22	5.9	Waitara	0.27	0.32	6.	0	
Thames	0.26	0.30	5.8	New Plymouth	0.28	0.33	6.	0	
Paeroa	0.28	0.33	5.8	Inglewood	0.27	0.32	6.	1	
Waihi	0.29	0.34	5.9	Stratford	0.27	0.32	6.2		
Huntly	0.23	0.28	5.8	Opunake	0.27	0.32	6.1		
Ngaruawahia	0.23	0.27	5.8	Hawera	0.26	0.32	6.	2	
Morrinsville	0.27	0.32	5.8	Patea	0.27	0.34	6.	2	
Te Aroha	0.29	0.34	5.9	Whanganui	0.31	0.37	6.	0	
Tauranga	0.29	0.34	5.9	Raetihi	0.35	0.37	6.	2	
Mount Maunganui	0.29	0.34	5.9	Ohakune	0.35	0.38	6.	2	
Hamilton	0.24	0.28	5.9	Waiouru	0.35	0.39	6.	25	
Cambridge	0.26	0.32	5.9	Napier	0.41	0.43	6.9	6.2	
Te Awamutu	0.24	0.29	5.9	Hastings	0.40	0.43	6.9	6.2	
Matamata	0.27	0.34	5.9	Waipawa	0.40	0.44	6.75	6.25	
Te Puke	0.30	0.35	6.0	Waipukurau	0.40	0.44	6.75	6.25	
Putaruru	0.29	0.34	6.0	Taihape	0.35	0.41	6.3		
Tokoroa	0.31	0.35	6.0	Marton	0.35	0.40	6.25		
Otorohanga	0.25	0.27	5.9	Bulls	0.36	0.41	6.	3	
Te Kuiti	0.26	0.27	5.9	Feilding	0.40	0.43	6.7	6.1	
Mangakino	0.31	0.36	6.0	Palmerston North	0.42	0.44	6.9	6.1	
Rotorua	0.35	0.39	6.0	Dannevirke	0.43	0.46	7.0	6.2	
Kawerau	0.41	0.43	6.2	Woodville	0.44	0.46	7.0	6.2	

Note: For a Class C shallow soil site refer to note 1 at the end of the table.

The NZ Transport Agency's Bridge manual commentary

First edition, Amendment 0

Effective from October 2018

Table C6.1: continued

	C 0,	1000	Effective magnitudes			<i>C</i> 0,	C 0,1000		Effective magnitudes	
Town/City	Class A/B	Class D&E		esign return (years)	Town/City	Class A/B	Class D&E		esign return (years)	
	rock	deep/ soft soil	500 - 2500	50 - 250		rock	deep/ soft soil	500 - 2500	50 - 250	
Pahiatua	0.45	0.47	7.1	6.2	Rangiora ³	0.37	0.38	6	.4	
Masterton	0.50	0.45 ²	7.0	6.3	Christchurch ³	-	-	-	-	
Foxton	0.40	0.42	6.7	6.1	Akaroa ^{3, 4}	-	-	5.8	6.25	
Levin	0.43	0.44	6.8	6.1	Ashburton	0.25	0.29	6	.1	
Otaki	0.42	0.44	6.8	6.2	Geraldine	0.25	0.28	6	.0	
Paraparaumu	0.42	0.44	6.9	6.2	Temuka	0.22	0.24	6	.0	
Wellington	0.44	0.45	7.1	6.2	Fairlie	0.32	0.32	6	.1	
Porirua	0.43	0.44	7.0	6.2	Mt Cook	0.45	0.48	6.9	6.2	
Lower Hutt	0.45	0.45	7.1	6.2	Timaru	0.20	0.23	6	.0	
Upper Hutt	0.47	0.45 ²	7.1	6.25	Waimate	0.20	0.24	6	.0	
Eastbourne - Point Howard	0.44	0.45	7.1	6.2	Twizel Wanaka	0.39 0.39	0.37 ² 0.42	6		
Wainuiomata	0.47	0.44 ²	7.1	6.2	Cromwell	0.33	0.37	6	.25	
Takaka	0.42	0.46	5	.8	Alexandra	0.29	0.32	6	.3	
Motueka	0.42	0.46	5	.9	Arrowtown	0.39	0.42	6	.4	
Nelson	0.40	0.43	6	.1	Queenstown	0.40	0.42	6	.5	
Picton	0.35	0.38	6.6	6.1	Milford Sound	0.62	0.62	7.1	6.1	
Blenheim	0.40	0.42	6.75	6.1	Oamaru	0.22	0.24	6	.0	
St Arnaud	0.46	0.48	6.9	6.1	Palmerston	0.22	0.25	6	.0	
Westport	0.54	0.52 ²	5	.7	Mosgiel	0.23	0.26	6	.0	
Reefton	0.53	0.56	6	.0	Dunedin	0.22	0.25	6	.0	
Murchison	0.51	0.54	6	.2	Te Anau	0.43	0.42 ²	6	.4	
Hanmer Springs	0.55	0.53 ²	7.0	6.5	Riverton	0.26	0.30	6	.2	
Kaikoura	0.55	0.53 ²	6.7	6.1	Winton	0.26	0.28	6	.2	
Cheviot	0.43	0.42 ²	6	.6	Gore	0.26	0.27	6	.2	
Greymouth	0.50	0.50	6	.5	Mataura	0.24	0.26	6	.1	
Hokitika	0.52	0.54	6.75	6.3	Balclutha	0.22	0.24	6	.0	
Arthurs Pass	0.65	0.62 ²	7.0	6.3	Invercargill	0.21	0.26	6	.1	
Otira	0.65	0.60 ²	7.1	6.4	Bluff	0.20	0.24	6	.1	
Darfield ³	0.40	0.37 ²	6	.25	Oban	0.19	0.23	6	.1	

Notes:

1. Shallow soil PGAs are determined from the rock values by multiplying by 1.33.

2. The deep soil PGAs are less than the rock values at some high-hazard locations because of nonlinear site-response effects built into the modelling.

3. The Canterbury earthquake region values are to be determined from a new seismic hazard model for the region in 2014.

4. The M_{eff} decreases with return period for Akaroa because its estimated hazard has a larger contribution from the Alpine Fault at low acceleration values which is replaced by contributions from local earthquakes as the PGAs increase.

5. M_{eff} values given in this table may vary slightly from those derived from the maps as they have been assessed conservatively to apply across a range of return periods.

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment 0 Effective from October 2018

C7 Evaluation of bridges and culverts

C7.3 Material strengths

C7.3.3 Prestressing steel

The following tables provide prestressing steel strengths and proof loads from historical British standards^{*}, some of which were also declared New Zealand standards or specifications, and NZ Ministry of Works documents[†].

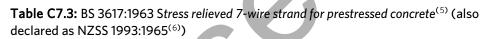
Table C7.1: MOW *Bridge manual* (1955)⁽¹⁾ and BS 2691-1:1955 Steel for prestressed concrete part 1 Plan hard drawn steel wire⁽²⁾

Diamete	r of wire	Tensile ra	ange min	Tensile ra	ange max
Inch	mm	Tons/in ²	MPa	Tons/in ²	MPa
0.276	7.0	95	1468	105	1622
0.200	5.1	100	1545	110	1699
0.160	4.1	110	1699	120	1854
0.128	3.3	120	1854	130	2008
0.104	2.6	130	2008	140	2163
0.080	2.0	140	2163	150	2317

Table C7.2(a): BS 2691:1963 Steel wire for prestressed concrete⁽³⁾ (also declared as NZS 1417:1964⁽⁴⁾)

	Cold	drawn and st	ress relieved	wire						
1	Imperial units			Metric units						
Nominal	Tensile s	strength	Nominal	Tensile	strength					
diameter	Min.	Max.	diameter	Min.	Max.					
in	Tonf/in ²	Tonf/in ²	mm	kgf/mm²	kgf/mm²					
0.276	95	105	7	150	165					
0.276	100	110	7	160	175					
0.200	100	110	5	160	175					
0.200	110	120	5	175	190					
0.160	110	120	4	175	190					
0.128	110	120	3.25	175	190					
0.128	120	130	3.25	190	205					
			2.5	190	205					

The 0.2% proof stress may be taken as not less than 85% of the minimum specified tensile strength.


* Tables C7.1 to C7.6 are reproduced with permission from the quoted British Standards. Permission to reproduce extracts from British Standards is granted by BSI. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel +44 (0)20 8996 9001, Email: cservices@bsigroup.com. † Tables C7.7 to C7.9 are reproduced with permission from WSP Opus. The information supplied therein has been superseded by other standards and should therefore not be relied upon for any designs outside of the context of clause 7.3.3 of the *Bridge manual*.

C7.3.3 continued

Table C7.2(b): BS 2691:1963⁽³⁾ (also declared as NZS 1417:1964⁽⁴⁾)

Cold drawn wire												
	Imperial units	;		Metric units								
Nominal	Tensile	strength	Nominal	Tensile strength								
diameter	Min.	Max.	diameter	Min.	Max.							
in	Tonf/in ²	Tonf/in ²	mm	kgf/mm²	kgf/mm²							
0.200	100	110	5	160	175							
0.200	110	120	5	175	190							
0.160	110	120	4	175	190							
0.128	110	120	3.25	175	190							
0.128	120	130	3.25	190	205							
0.104	120	130	3	175	190							
0.080	130	140	2	205	220							

The 0.2% proof test may be taken as not less than 75% of the minimum specified tensile strength

	Approx di stra	ameter of and	Minimum Io.	
	in	mm	lbf	kgf
	1/4	6.3	10,000	4,536
	5/16	7.9	15,500	7,031
	3/8	9.5	21,000	9,525
	7/16	11.1	28,000	12,700
	1/2	12.7	37,000	16,783
	0.60	15.2	51,000	23,133
5				

C7.3.3 continued

Grade	Nominal diameter	Nominal steel area	Minimum tensile strength	Maximum tensile strength	Minimum 0.2% proof stress
	mm	mm²	MPa	MPa	MPa
	4	12.57	1720	1950	1460
	5	19.64	1720	1950	1460
Normal relaxation	5	19.64	1570	1800	1330
	7	19.64	1570	1800	1330
	7	38.48	1470	1700	1250
	4	12.57	1720	1950	1550
	5	19.64	1720	1950	1550
Low relaxation	5	19.64	1570	1800	1410
. c.a.lution	7	19.64	1570	1800	1410
	7	38.48	1470	1700	1320

 Table C7.4: BS 2691:1969 Steel wire for prestressed concrete⁽⁷⁾

 Table C7.5: BS 3617:1971 Seven-wire steel strand for prestressed concrete⁽⁸⁾

Grade	Nominal diameter	Nominal steel area	Minimum tensile strength	Minimum 0.2% proof load
	mm	mm ²	kN	kN
	6.4	24.5	44.5	37.9
	7.9	37.4	69.0	58.7
Normal	9.3	52.3	93.5	79.5
relaxation	10.9	71.0	125.0	106.3
	12.5	94.2	165.0	140.3
	15.2	138.7	227.0	193.6
	6.4	24.5	44.5	40.0
	7.9	37.4	69.0	62.1
Low	9.3	52.3	93.5	89.1
relaxation	10.9	71.0	125.0	112.5
	12.5	94.2	165.0	148.5
	15.2	138.7	227.0	204.3

Table C7.6(a): BS 5896:1980 Specification for high tensile steel wire for the prestressing of C7.3.3 continued concrete⁽⁹⁾

		High tensile	e steel wire		
	Nominal diameter	Nominal steel area	Nominal tensile strength	Specified characteristic breaking load	Specified characteris 0.1% proo load*
	mm	mm²	MPa	kN	kN
	4	12.6	1770	22.3	1
	4	12.6	1670	21.0	
	4.5	15.9	1620	25.8	2
	5	19.6	1770	34.7	-28
Cold-drawn wire	5	19.6	1670	32.7	2
wire	6	28.3	1770	50.1	4
	6	28.3	1670	47.3	3
	7	38.5	1670	64.3	5
	7	38.5	1570	60.4	5
	3	7.07	1860	13.1	1
	3	7.07	1770	12.5	1(
	4	12.6	1770	22.3	1
	4	12.6	1720	21.7	1
Cold-drawn wire in mill coil	4	12.6	1670	21.0	1
	4.5	15.9	1620	25.8	20
	5	19.6	1770	34.7	2
	5	19.6	1670	32.7	2
	5	19.6	1570	30.8	24

C7.3.3 continued

Table C7.6(b): BS 5896:1980⁽⁹⁾

	7-wire strand													
	Nominal diameter	Nominal steel area	Nominal tensile strength	Specified characteristic breaking load	Specified characteristic 0.1% proof									
	mm	mm²	MPa	kN	kN									
	9.3	52	1770	92	78									
7-wire	11.0	71	1770	125	106									
standard	12.5	93	1770	164	139									
	15.2	139	1670	232	197									
	8.0	38	1860	70	59									
	9.6	55	1860	102	87									
7-wire super	11.3	75	1860	139	118									
	12.9	100	1860	186	158									
	15.7	150	1770	265	225									
	12.7	112	1860	209	178									
7-wire drawn	15.2	165	1820	300	255									
	18.0	223	1700	380	323									

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment O Effective from October 2018

		Sta	ndard d	etails						Alte	ernative	cable m	ake-up			
	Nominal	80% of	70% of	Min duct	Min dim of conc.	Max cable	7mm	wire	8mm	wire	12.5mm stra				Macalloy bars	
Туре	UTS kN	nominal UTS kN	nominal UTS kN	size mm	at anch.	ecc. in duct mm	Number per cable	Actual UTS kN	Number and size	Actual UTS kN						
1	740	590	520	41	250	10	12	762	10	779			4	736	1-32mm	800
2	930	740	650	47	300	10	15	953	12	935	6	1014	5	920	2-25mm*	1000
3	1250	1000	870	56	330	10	20	1270			8	1352	7	1288	1-40mm	1250
4	2000	1600	1400	69	360	13	32	2032			12	2028	11	2024	4-25mm*	2000
5	2750	2200	1930	78	390	13	44	2794					15	2760	4-32mm*	3200
6	3400	2720	2380	85	430	14	54	3429			20	3380	19	3496	2-25mm* + 2-40mm	3500
7	4050	3240	2830	91	460	14	64	4064			24	4056	22	4048		
8	4600	3680	3220	95	500	15	73	4636			27	4563	25	4600		
9	4950	3960	3460	98	540	16	78	4953			30	5070	27	4968		
Notes	а	b	С	d	е	f	Ę	g		1		i	j		k	

Table C7.7: MWD CDP 802/B (1974) Design tables⁽¹⁰⁾ - Table of standard prestressing cables

Notes

a. Nominal U.T.S. is that to be used for design, to permit free use of alternative prestressing systems.

b. 80% of nominal U.T.S. is the maximum prestressing force to be applied temporarily to the cable to overcome friction.

c. 70% of nominal U.T.S. is the maximum prestressing force in the cable at any point after anchoring.

d. Duct size given is the minimum outside diameter to suit all cable make-ups, except those marked*. Where cables are to be threaded into duct after concreting, duct diameter should be 6mm larger.

e. Dimension for thickness of concrete is that sufficient to accommodate a standard stressing end anchorage with 50 mm cover each side. For certain cables and prestressing systems, smaller anchorages may be available for use in thin slabs, etc.

- f. The figures given for the maximum eccentricity of the centroid of the cable relative to its enclosing duct are average values for the alternative cable make-ups, and may be used for design, with suitable adjustments made after acceptance of a tender, if the difference is significant.
- g. 7 mm wire is assumed to have a characteristic strength of 1650MPa giving 63.5kN per wire.
- h. 8 mm wire is assumed to have a characteristic strength of 1550MPa giving 77.9kN per wire.
- i. 12.5 mm normal strand is assumed to have a characteristic strength of 169 kN per strand.
- j. 12. 5 mm super-strand is assumed to have a characteristic strength of 184 kN per strand.
 k. The assumed U.T.S. for Macalloy high strength alloy steel bars are those given by the manufacturer.

	Standard details									Alte	ernative	cable m	ake-up			
		80% of	70% of		Min dim	Max cable	7mm	wire	8mm	ı wire		12.5mm normal strand		super-	Macalloy	y bars
Туре	Nominal UTS (a) kN	UTS UTS (a) (b)		Min duct size (d) mm	of conc. at anch. (e) mm	ecc. in duct (f) mm	Number per cable	Actual UTS kN	Number per cable	Actual UTS kN	Number per cable	Actual UTS kN	Number per cable	Actual UTS kN	Number and size	Actual UTS kN
1	740	590	520	41	250	10	12	772	10	779			4	744	1-32mm	830
2	930	740	650	47	300	10	15	965	12	935	6	984	5	930	2-25mm*	1010
3	1250	1000	870	56	330	10	20	1286			8	1312	7	1302	1-40mm	1300
4	2000	1600	1400	69	360	13	32	2058			12	1968	11	2046	4-25mm*	2020
5	2700	2160	1890	78	390	13	42	2701					15	2790	4-32mm*	3320
6	3450	2760	2415	85	430	14	54	3472			21	3444	19	3534	2-25mm* + 2-40mm	3610
7	3900	3120	2730	91	460	14	61	3922			24	3936	21	3906		
8	4600	3680	3220	95	500	15	73	4694			28	4592	25	4650) These sizes () to obtain and	
9	5000	4000	3500	98	540	16	78 5015				31	5084	27	5022) only be used) tional circum	
															25mm 32m	m 40mm
A	Area per wire, strand or bar,		mm²		38	8.5	50	0.3	9	3	10	0	491 804	4 1257		
Ν	Nominal ten		igth,		MPa		16	70	15	50	17	70	186	60	1030 1030	0 1030
S	Specified characteristic breaking load, kN			64.3		77	7.9	164		186		505 830) 1300			
S	Standard specification				BS 589	6:1980	Not co	overed	BS 589	6:1980	BS 589	6:1980	BS 4486	:1980		

Table C7.8: MWD CDP 802/C (1982) Design tables⁽¹¹⁾ - Table of standard prestressing cables

Notes

a. Nominal U.T.S. is that to be used for design, to permit free use of alternative prestressing systems.

b. 80% of nominal U.T.S. is the maximum prestressing force to be applied temporarily to the cable to overcome friction.

c. 70% of nominal U.T.S. is the maximum prestressing force in the cable at any point after anchoring.

d. Duct size given is the minimum outside diameter to suit all cable make-ups, except those marked*. Where cables are to be threaded into duct after concreting, duct diameter 6mm larger should be allowed for detailing.

e. Dimension for thickness of concrete is that sufficient to accommodate a standard stressing end anchorage with 50 mm cover each side. For certain cables and prestressing systems, smaller anchorages may be available for use in thin slabs, etc.

f. The figures given for the maximum eccentricity of the centroid of the cable relative to its enclosing duct are average values for the alternative cable make-ups, and may be used for design, with suitable adjustments made after acceptance of a tender, if the difference is significant.

	1	2	3	4	5	6	7	8	9						
	(a) Normal chara breaking load		740	930	1250	2000	2700	3450	3900	4600	5000				
	(b) 80% of norm breaking load	nal characteristic d (kN)	590	740	1000	1600	2160	2760	3120	3680	4000				
Standard	(c) 70% of normal char breaking load (kN)		520	650	870	1400	1890	2415	2730	3220	3500	Char		ics of one v	wire,
details	(d) Typical duct	36 41	39 46	51 58	57 64	63 70	75 82	81 88	90 97	90 97	(CBL :	strand or bar (CBL = characteristic breaki load)			
	(e) Minimum din concrete at a	nension of Inchorage (mm)	250	300	330	360	390	430	460	500	540	Dia	Area	Nominal tensile	CBL
	(f) Maximum ter eccentricity i		10	10	10	13	13	14	14	15	16			strength MPa	
	7 wire	Number per tendon	12	15	20	32	42	54	61	73	78		20.5	1/70	(12)
	BS 5896:1980	Actual CBL of tendon (kN)	772	965	1286	2058	2701	3472	3922	4694	5015	7	38.5	1670	64.3
Alternative	12.5mm normal	Number per tendon		6	8	12		21	24	28	31	12.5	93	1770	164
tendon make-ups	strand BS 5896:1980	Actual CBL of tendon (kN)		984	1312	1968		3444	3936	6 4592 5084		12.5	25	1770	104
	12.9mm super strand	Number per tendon	4	5	7	11	15	19	21 25 27		12.9	100	1860	188	
	BS 5896:1980	Actual CBL of tendon (kN)	744	930	1302	2046	2790	3534	3906	4650	5022	12.9	100	1000	100
Notes a. Nomina	l CBL is that to be	used for design	to por	mit fro		faltorn	ativo					40	1257	1030	1300
prestres	sing systems.									by bars		32	804	1030	830
	nominal CBL is th arily to the cable t			ig force	e to be	applied	l		BS 448	0:1980		25	491	1030	505
	nominal CBL is th ter anchoring.	ie maximum pre	stressir	ng force	e in the	tendor	n at any	/				36			
d. Duct siz	e given is the mir								Dywida	ig bars			1018		
allowed	readed into duct a for in detailing.							De	BS 448			32	804	1230	989
	ion for thickness (d stressing end ar											26.5	552	1230	678
thin slat	and prestressing s os, etc. Ires given for the											38	1134	*1030 +1080	
relative ups, and	to its enclosing d I may be used for nce of a tender, if	uct are average design, with sui	values f table ac	or the a	alterna	tive ter	ndon m		VSL str AS 1313	ess-bai :1972	'S	32	804	*1030 +1080	
									* Regul + Supe			29	660	*1030 +1080	

430

450

*1030

+1080

23

415

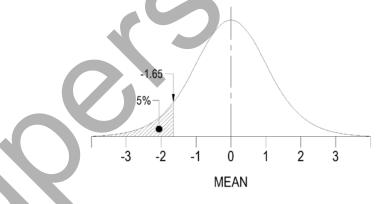
Table C7.9: MWD CDP 802/D (1990) *Design tables*⁽¹²⁾ – Table of standard prestressing tendons for post-tensioning

The NZ Transport Agency's *Bridge manual commentary* First edition, Amendment O Effective from October 2018

C7.3.6 Analysis of test results

```
a. Introduction
```

In 7.3.6(a) it is recommended that the characteristic strength of reinforcing steel, where determined by testing, be the 5% percentile strength and determined with 95% confidence. This approach determines the characteristic yield strength which represents the performance of an individual bar.


In practice, reinforcing bars are rarely loaded individually, and the tensile demands are shared. The probability of two independent events with probability P_1 and P_2 occurring simultaneously is $P_1 \times P_2$. For two independent bars, the probability of both bars having strength less than the 5th percentile is 0.25% (ie 5% x 5%). This shows that the total strength of two bars is less variable than the strength of individual bars; the combined characteristic strength of the two bars will therefore be greater than twice the characteristic strength of an individual bar.

As a result, in many cases use of a higher characteristic strength representing the performance of a group of bars may be justified.

b. Background

The distribution of yield strength for a particular grade of reinforcement within a structure is generally accepted to be approximated by a normal distribution. The value of strength which less than 5% of test results would fall below is called the characteristic strength. Figure C7.1 illustrates a standard normal distribution with a mean of zero and a standard deviation of 1; the hatched area represents the 5% probability of falling below the characteristic value.

Figure C7.1: Standard normal distribution

An estimate of the characteristic strength based on a sample of n test results can be represented by:

$$F_k = \overline{X} - ks$$

Where:

$$\overline{X}$$
 = the mean of the sample = $\frac{1}{n} \sum_{i=1}^{n} X_i$

k = the "tolerance limit factor", which is the number of standard deviations below the mean of the point where the characteristic value lies. This value is sourced from statistical tables. For a normally distributed large population, the value of k is 1.65. When dealing with a sample, the value of k increases as the sample size decreases or the desired level of confidence increases.

C7.3.6 continued

s = the sample standard deviation which is given by:

$$s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

c. Derivation of "characteristic strength" for a group of bars

If *X* and *Y* are two independent random variables that are normally distributed the sum of *X* and *Y* is also normally distributed with mean and variance as follows:

Mean:
$$\mu_{(X+Y)} = \mu_X + \mu_Y$$

Variance: $\sigma^2_{(X+Y)} = \sigma^2_X + \sigma^2_Y$

Here the symbols μ and σ represent the mean and standard deviation of the entire population. Variance is the square of the standard deviation.

If N bars are resisting tension at a given location in a beam, the probability distribution of the total strength (ie the total yield force) of the group of bars can be defined by:

Mean:
$$\mu_{Total} = \mu_1 + \mu_2 + \dots + \mu_N$$

Variance:
$$\sigma^2_{Total} = \sigma^2_1 + \sigma^2_2 + \dots + \sigma^2_N$$

If all the bars are taken from the same population $\mu_1 = \mu_2 = \dots = \mu$ and $\sigma_1 = \sigma_2 = \dots = \sigma$, therefore:

$\mu_{Total} = N \mu$

$$\sigma^2_{Total} = N\sigma^2$$
 and $\sigma_{Total} = \sqrt{N\sigma^2}$

If the population parameters are estimated from tests, the applicable mean is \overline{X} and the standard deviation is *s*. We therefore have:

$$F_{Total} = N\bar{X} - ks_{Total} = N\bar{X} - ks\sqrt{N}$$

Where:

- F_{Total} = the estimated total characteristic strength (yield force (kN)) of a group of N bars of a particular size resisting tension at a given location in a beam
 - \overline{X} = the mean value of a series of *n* representative tests (kN)
 - = the sample standard deviation of that series of n tests
 - k = the "tolerance limit factor" for the specific combination of tolerance limit (eg 5th percentile), sample size (*n*), confidence limit (eg 95%). This value is sourced from tables such as table 7.2

This equation can be expressed in terms of the characteristic yield strength (stress) of the group (MPa) as follows:

$$f_{Total} = \frac{F_{Total}}{NA_{bar}} = \bar{X}_{stress} - \frac{ks\sqrt{N}}{NA_{bar}}$$
$$= \bar{X}_{stress} - \frac{ks_{stress}}{\sqrt{N}}$$

C7.3.6 continued

- Where:
 - f_{Total} = the characteristic yield strength (stress) of the group (MPa)
 - A_{bar} = the cross-sectional area of the reinforcing bar (mm²)
 - \bar{X}_{stress} = the mean yield strength (stress) of a series of *n* tests (MPa)

 s_{stress} = the sample standard deviation of yield strength from that series of *n* tests

d. Application

The application of this approach to specific strength assessments requires the professional judgement of a suitably experienced structural engineer, and must be considered on a case-by-case basis. It is reliant upon a small amount of ductility within the reinforcement, as individual bars will reach yield strength prior to the characteristic strength of the group of bars being reached.

This approach may not be suitable for shear reinforcement where the number of individual bars contributing to shear resistance at a section is likely to be small, and the assumption of independence of the reinforcing bars may not be appropriate.

As described in 7.3.6, in applying this approach the engineer shall also be satisfied that tests have been taken at sufficient locations to represent the whole structure, or the entire group of similar members, as appropriate to the assessment, including making due allowance for any anomalies in the test results.

Where possible, non-destructive sampling (ie hardness testing) should be carried out on the most critical members.

References for C7

- (1) Ministry of Works (1955) Bridge manual. Wellington. Superseded
- (2) British Standards Institution BS 2691-1:1955 *Steel for prestressed concrete*. Part 1 Plan hard drawn steel wire. Withdrawn.
- (3) British Standards Institution BS 2691:1963 Steel wire for prestressed concrete. Withdrawn.
- (4) Standards New Zealand NZS 1417:1964 Steel wire for prestressed concrete. Withdrawn.
- (5) British Standards Institution BS 3617:1963 Stress relieved 7-wire strand for prestressed concrete. Withdrawn.
- (6) Standards New Zealand NZSS 1993:1965 Stress relieved 7-wire strand for prestressed concrete. Withdrawn.
- British Standards Institution BS 2691:1969 Steel wire for prestressed concrete. Superseded, withdrawn.
- (8) British Standards Institution BS 3617:1971 Seven-wire steel strand for prestressed concrete. Superseded, withdrawn.
- (9) British Standards Institution BS 5896:1980 Specification for high tensile steel wire for the prestressing of concrete. Superseded, withdrawn.
- (10) Ministry of Works and Development CDP 802/B (1974) *Design tables*. Wellington. Superseded.
- Ministry of Works and Development CDP 802/C (1982) Design tables.
 Wellington. Superseded.
- (12) Ministry of Works and Development CDP 802/D (1990) *Design tables*. Wellington. Superseded.