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An important Note For The Reader

The research detailed in this report was commissioned by Transfund New
Zealand.

Transfund New Zealand is a Crown entity established under the Transit New
Zealand Act 1989. Its principal objective is to allocate resources to achieve a
safe and efficient roading system. Each year Transfund New Zealand invests a
portion of its funds on research that contributes to this objective.

While this report is believed to be correct at the time of its preparation,
Transfund New Zealand, and its employees and agents involved in the
preparation and publication, cannot accept liability for its contents or for any
consequences arising from its use. People using the contents of the docoment
should apply, and rely upon, their own skill and judgement. They should not
rely on its contents in isolation from other sources of advice and information.

This report is only made available on the basis that all users of it, whether direct
or indirect, must take appropriate legal or other expert advice in relation to their
own circumstances. They must rely solely on their own judgement and seek
their own legal or other expert advice in relation to the use of this report

The material contained in this report is the output of research and should not be
construed in any way as policy adopted by Transfund New Zealand but may
form the basis of future policy.
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Executive Summary

The prediction of accident rates on road links and at intersections is an important
input to road safety improvement. Without some knowledge of the relationships
between road, traffic, and environmental factors and accident causation, it is not
possible to gauge the effects of remedial measures.

The main objective of the study was to develop accident prediction models that can be

used for economic evaluation of roading projects, and more specifically for network
wide studies.

While models already exist in the Transfund Project Evaluation Manual, these models
are rather simplistic in form, not relating well to accident causing mechanisms, and
have been developed using normal linear regression, which is not appropriate for
accident data. The new models detailed in this report use the latest statistical analysis
techniques (generalised linear regression) and relate particular accident collision types
to their associated conflicting flow movements.

Models have been developed for a number of rural and urban intersection and ‘mid-
block’ sites including; traffic signal, roundabout, priority and uncontrolled
intersections and strategic (arterials, motorways and highways) and local (collector
and local) routes. National sample sets were collected for each intersection types, as
summarised in Table 1.

Table 1 - Model Sample Sizes

.S.ignalised X-Roads 109 | Rural T-Junctlons 50 T
4-Arm Roundabouts 55 Urban Arterials 165
Priority X-Roads 76 Urban Collectors 149
Signalised T-junctions 30 Urban Local 119
Priority T-junctions &9 Rural Highways 76
Uncontrolled T-Junctions 51 Motorways 100

The data was collected from a variety of sources, including local authorities, Transit
New Zealand and consultants, and from different parts of New Zealand.

The models have either one or two predictor variables. Two variable models have
been used for accidents involving two or more vehicles, where the two vehicles come
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from different approaches. For single-vehicle, mid-block and ‘same approach’ (eg.
rear-end) accidents a single predictor variable has been used. Models have the
following form:

A — b(} ) qlhl-(qziﬂ)

For intersection models ‘A’ is the number of accidents, of each type, in five years on
each approach, and q; and q; are the 24-hour turning volume movements (right turn,
straight through or left turn), the approach or circulating flow (the latter for
roundabouts only). On links, the traffic flow variable is the one or two-way link
volume (AADT). A full description of the models and the parameter values can be
found in the main body of the text.

Prediction models have also been produced using the link flows, for situations where
turning volume counts are unavailable. In these models (product-of-link-flow models)
the predictor variables are the two-way traffic volumes on each of the links that
intersection. For crossroads the first variable (Qmajor) is the highest of the link flows
and Qminor 18 the flow on the other intersection route. For T-junctions the first
predictor variable is always the through road and second is the stem volume,
irrespective of the magnitude of the flows. The parameter values for each of these
models can be found in the main body of the text.

Goodness-of-fit statistics (scaled deviance) have been calculated for all the models
produced (Table 5.24). The majority of the models were found to be statistically
significant to the 95% level of confidence. Confidence intervals were also produced to
show the flow ranges over which the predictions were most accurate. This varies
according to the intersection type, with signalised junction models generally being
more accurate at high flows and uncontrolled junctions being more accurate at lower
flows.

A proposed change to Appendix A6, the accident analysis section, of the Transfund
PEM has been drafted, and appears in Appendix C. Further discussion, on and
development of, this procedure is required, particularly in terms of the trade-off
between level of complexity and level of accuracy of the predictions. The proposed
procedure adds considerable complexity to the accident analysis procedure, but also
provides a lot more information on expected accident occurrence (by accident type)
to analysts and Transfund, therefore allowing more accurate predictions of accident
costs.

It has been shown that the empirical Bayes method, which makes use of both accident
prediction models and historical accident data has merit, and can be used to take into
account local factors at particular crash sites. This is an important consideration at
sites where factors such as geometric deficiencies (steep grades and acute angle
approaches) are prevalent, and models based only on flows are available. Further
development and testing (case studies) of this procedure is required prior to it being
introduced into the Transfund PEM.
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Abstract

Accident prediction models have been developed for rural and urban intersections and
links. This includes models for traffic signals, roundabouts, priority and uncontrolled
intersections, rural highways, motorways and urban arterial, collector and local
streets. Accident (1995 to 1999) and flow data at over 1000 sites throughout New
Zealand were used to develop the models. Test statistics have been prepared showing
the goodness-of-fit and confidence intervals of the models. Application of the models
in economic evaluation has been discussed along with the changes that would need to
be made to the Project Evaluation Manual to incorporate the models.
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1 Introduction

1.1 Background

During 1997 there were 13,378 reported injuries resulting from accidents in New
Zealand and 540 deaths (LTSA, 1998). Since studies of hospital records have shown
that approximately only half of all injury road accidents are reported to the New
Zealand Police (LTSA, 1994), the true number of injuries is much higher than this.

A comparison with other OECD countries shows that New Zealand injury accident
and death rates are higher than most. For example, in deaths per 100,000 population,
out of 24 OECD countries, New Zealand ranks fifth highest (LTSA, 1994), with over
twice the number of deaths of Sweden, which has the lowest rate. In light of this
comparison it is understandable that there has been, and will continue to be, a lot of
emphasis placed on road safety and measures, be they engineering, behavioural or
enforcement, to reduce crash occurrence.

Many different organisations and occupations are involved in this endeavour. The role
of traffic planners and road safety engineers is to create as safe a road environment as
possible, within financial constraints. This is achieved by applying accident remedial
measures to unsafe parts of the road network, investigating and improving road
standards and ensuring that new routes and other network capacity improvement
don’t compromise safety standards. In the latter the sometimes competing needs of
capacity and safety improvements needs to be balanced. Ideally capacity
improvements do not produce a deterioration in road safety, or if they do this is kept
within bounds. The effects on safety can be managed only if an estimate of the effects
of a network change can be calculated.

Accident prediction models and rates can be used to calculate the expected change in
accident occurrence at a intersections, routes (i.e. mid-block), sites (e.g. narrow
bridge) or combinations of these, before and after engineering improvements.
Accident prediction models and rates have been available in the Transfund (formerly
Transit) Project Evaluation Manual (PEM) for intersections, mid-block urban routes
and rural routes since the early 1990’s. The accident prediction models and rates in
the Transfund PEM are becoming more and more important as the need for more
refined economic analysis of roading projects increases.

Since the early 1990s there has been a downward trend in accident occurrence, and
there have been a number of advancements in the development of accident prediction
models. Many of the developments in statistical analysis are detailed in Turner (1995),
and subsequently in work by this author (refer to Nicholson & Turner, 1996, Turner
& Nicholson 1998a & 1998b). This work also contains accident prediction models
developed using these procedures. The main purpose of this study in to develop new
accident prediction models for the Transfund PEM for rural and urban intersections
and mid-block sections/routes using the model forms in Turner (1995). This study
also takes a closer look at the accuracy of the prediction models and includes new
developments that have occurred in statistical analysis.
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1.2 Objectives

The project was split into two stages. The objectives of stage 1 are:

* To develop goodness-of-fit statistics for the Turner (1995) accident
prediction equations for urban intersections;

e To develop confidence intervals for the Turner (1995) accident prediction
equations, and to establish the size of the statistical errors;

¢ To compare the project benefits and benefit-cost ratios derived using both
the Turner (1995) and Gabites Porter (current Transfund PEM) prediction
models (referred to as a zero-based approach in the project brief).

e To develop accident prediction procedures (that are suitable for insertion
into the PEM) for practical application.

» To contact local authorities to determine the amount of data available for
developing accident prediction equations in stage 2.

The objectives of stage 2 are:

¢ To review international literature and current N.Z practice on predicting
accidents along routes and at intersections.

e To develop accident prediction models for major accident types for urban
and rural links and intersections using the macros developed by Turner
(1995).

» To develop goodness-of-fit statistics/graphs and confidence intervals for the
accident prediction models.

e To assess the feasibility of using historical accident records and the empirical

Bayes method to improve accident predictions at individual intersections and
links.

In addition, the report introduces the topic of accident prediction, discusses the
current Transfund PEM procedures, and why changes to this procedure are
warranted. Such information is considered important to demonstrate why this research
has been commissioned.

1.3 Report Layout

The report has been divided into six sections (chapters 2-~7), excluding the
introduction and references. This report includes some of the contents of the stage 1
report.

Chapter 2 introduces the topic of accident prediction and the research undertaken by
Turner (1995) on accident prediction models. It reviews the procedures currently
recommended by Transfund New Zealand for calculation of typical crash rates at
urban intersections and for mid-block crashes on urban and rural roads. It suggests
where there is scope for improvement to these procedures.

Chapters 3 details the review of local and international literature, The review
concentrates on the period 1995 to 2000, as Tumer (1995) contains a review of
literature prior to 1995. This section discusses the merits of new procedures and
methods introduced in the papers reviewed and those methods which have been
included in this research.
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Chapter 4 discusses the data collected from different road controlling authorities
(traffic volume and layout data) and the Land Transport Safety Authority (accident
data). It contains tables and graphs showing the sample sizes, range in flows and
major accident types.

Chapter 5 contains the accident prediction models produced for urban and rural
intersections and links. The goodness-of-fit and confidence intervals are also
presented for each model.

Chapter 6 describes the changes that would be required to include the new accident
prediction models in Appendix A6 of the Transfund PEM. Appendix C shows the new
pages and changes to text that would be required to the Appendix A6.

Chapter 7 discusses the empirical Bayes method, that allows an analyst to update the
accident prediction from a model (or base model) using site accident history data.
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2 Accident Prediction

2.1 Introduction

Traffic accidents, although always too many in human cost, are still relatively rare
events for which there is a host of contributory factors related to the road layout, road
vehicles, drivers and the environmental conditions. Data quality is also variable,
relying on data about officially reported and recorded accidents that are variable in
quality and completeness.

As accident severity reduces, the proportion of accidents that are reported also
reduces. Reporting is also thought to reduce with remoteness, so that there is a
greater likelihood of a minor accident being reported on an urban motorway than on a
remote low volume rural road. Reporting rates are also susceptible to the resources
available for traffic enforcement, and these vary geographically and over time. There
are few data available to independently verify accident numbers, so quantifying the
rate of under-reporting is difficult and becomes more uncertain with decreasing injury
severity. Accident prediction is therefore an area with much uncertainty, not all of
which can be controlied or quantified.

The objective of accident prediction in the context of road investment planning is to
forecast the accident performance of a new or substantially altered section of the road
network, for which the historic accident record is either not relevant or does not exist.

This new section of network may be an individual intersection, a route realignment, or
a new route. Another area of application is in urban traffic modelling, where the
effects of network changes and additions are to be evaluated. In this case the effect of
the redistribution of traffic through the network on crashes at intersections and routes
needs to be predicted.

2.2 Data Availability

A large number of explanatory variables can potentially be introduced to accident
prediction models. The greater the number of such variabies, the more demanding the
resulting models become on data, both in their development and application.
Increasing the number of variables and the complexity of the model must be balanced
against the improvements in forecasting accuracy that this additional complexity
provides,

Traffic volume is a primary explanatory variable in accident prediction. For
intersection accident models, this may be disaggregated at various levels for
explanatory variables:

s Total inflow to the intersection — referred to here as Type 1 models

¢ Inflows on the major and minor approaches — Type 2 models

s  Conflicting turning flows — Type 3 models
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Other variables, such as geometric and land use variables can also be considered in
crash prediction models. However, previous research has not clearly indicated which
of these non-flow variables are the most important.

The form and complexity of accident prediction models must take account of the
limitations in data availability. For strategic network modelling, traffic data will often
be limited to approach flows and data on the physical layout of the intersections will
be limited. For local area network models turning volume flows and some geometric
data are often available. For projects focused on individual road links and
intersections, detailed layout and traffic flow data will often be available.

In general, previous research indicates that the more information that is available for
an intersection or mid-block route, and given that appropriate crash prediction models
are available, the better the crash predictions. When data are limited, as is the case for
the strategic network models, the crash predictions will not be accurate at individual
intersections, but over a medium sized network (say 15 intersections plus) the overall
prediction within the network is usually reasonably good (Turner, 1995). To predict
crashes at the intersection or mid-block link level, much more detailed information
and models are required to provide accurate estimates.

2.3  Theoretical and Empirical Findings from Earlier Research

Research into road safety and accident occurrence has a long history and a very wide
technical literature. A number of general findings have been made over time which are
an important background to any new work. This section details some of the important
findings in the technical literature up to 1995, which is the period covered by Turner
(1995). Developments in the post 1995 period, and any modifications that are
proposed to the Turner accident prediction models and procedures, are discussed in
the next section; literature review.

2.3.1 Accident relationship to traffic volume

Intuitively, accident numbers would be expected to increase with traffic volume and
the empirical evidence generally supports this hypothesis. However total accident
numbers do not necessarily increase in linear proportion to traffic volume.

2.3.1.1 Mid-Block accident rates

For accidents on routes and mid-block, some findings show the single vehicle accident
rate falls with increasing traffic volume, while the multiple vehicle accident rate
increases with traffic volume but levels off and possibly declines at high volumes. This
levelling off is attributed to the effects of congestion, and reductions in vehicle speeds
and speed differences at higher traffic densities.

The levelling off and, in some cases, decline in the crash rate is difficult to measure, as
the drop in crash severity at high traffic volumes due to congestion means that the
error associated with under-reporting of crashes is likely to be greater than in free
flow conditions. It may be that some of this levelling off or decline is due to under-
reporting of crashes, rather than an overall reduction in crash occurrence.
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The overall graph of accidents versus traffic volume is a combination of these effects.
Over a mid-range of volumes, accidents can be expected to increase with traffic
volume, in a relationship that may be close to linear. At low volumes the shape of the

graph is unclear. At high volumes, accident numbers level off and may even decline at
high traffic flows.

2.3.1.2 Intersection accident rates
For intersections, combined empirical and theoretical research has shown accident
numbers to increase in proportion to the product of the intersecting or conflicting
flows raised to a power:

A=by.Q".Q,"

Researchers have made various findings on by and by, including b; = b, = 1 (accidents
proportional to the product of flows), and b; = b; = 0.5 (accidents proportional to the
square root of the product of flows). However, in some models the b, and b, factors
are not fixed to 1 or 0.5, but are instead allowed to vary. Typically, parameters fall
within the range of 0.2 and 1.5. All parameters below 1 indicate the classical trend of
a levelling off in the crash rate at high traffic volumes. The higher parameters values
(greater than 1) are typically associated with crashes that occur more frequently in
congested conditions, such as rear-end crashes, due to the increase in vehicle queuing
and drivers’ limited ability to cope in such conditions. In addition the impacts in terms
of non-recurring congestion, would mean that such crashes would warrant a Police
response, even if the consequences (injuries) are relatively minor.

2.3.2 Disaggregation of accident types
In 2.3.1, possible reasons for separating single vehicle and multiple vehicle accidents
on road links were noted. Other disaggregation may also be useful. At intersections,
as well as single versus multi-vehicle accidents, the majority of accidents can be
grouped by type of movement, in order of frequency, as:
* Crossing, no turning (Type H)
Crossing, right turn (Type L)
Rear End (Type F)
Lost Control (Types C,D)
Crossing/Turning (JA)
Other (pedestrian, cyclist)

The conflicting volumes that correspond to these types of collision will vary with the
type of intersection and the relative proportions of crossing and turning traffic.

2.3.3 Disaggregation by time period

For intersection accidents, the accident rate does not demonstrate any marked
variation between day and night, or by time of day, with high crash periods generally
being associated with high traffic volume periods. Exceptions are loss-of-control (C &
D) accidents, which have a higher night-time frequency when traffic volumes are
lowest. During the day the occurrence of such crashes is lower, which is probably due
to the fact that errant vehicles are more likely to hit another vehicle during the day,
when there is more traffic on the road. Higher vehicle speeds at night, due to less
congested flow conditions, also contribute to the higher crash rates, as do other
factors that vary between daytime and night-time, such as alcohol consumption.
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Turner (1995) attempted to develop accident prediction models by time period and
found that the model parameters were not always converging to within the typical
range of 0.2 to 1.5. Some parameters were negative and other were 2 and above. This
is thought to be a result of the low number of accident observations, particularly in the
2-hour morning and afternoon peak periods. Much larger sample sizes, probably in
excess of 300 intersections, would be required to develop realistic models.

2.4  The Statistical Distribution of Accident Occurrence

The development of accident prediction models involves multivariate statistical
analysis between the dependent variable of accidents and independent variables such
as traffic flows. For metric variables (as opposed to ordinal or nominal variables),
simple (one independent variable) or multiple (more than one independent variable)
linear regression (sometimes referred to as normal linear regression) is frequently used
to determine a best fit relationship between the dependent and independent variables.

In normal linear regression it must be assumed that the probability distribution of the
dependent variable is either normally distributed or sufficiently close to being normally
distributed, that the regression models and other statistics (such as goodness-of-fit)
have a low error. In normal regression the independent and dependent variables
should not only be metric, but also continuous. In addition, the variability in the
dependent variable should be constant for all values of the independent variable.

Even when some of these assumptions are not strictly met, analysts often choose
normal linear regression over other available techniques because it has considerable
advantages in ease of computation, due to the mathematical properties of the normal
distribution. There has also been a lot more development of test statistics, such as the
goodness-of-fit statistic (Pearson’s R®), the standard deviation and confidence
intervals. These statistics are easily understood as they are based on the theory of least
squares, which can be explained within a graphical framework. The more complicated
alternative of the theory of maximum likelihood, which is the basis for generalised
linear regression models, is more difficult to explain and much more difficult to
calculate.

However, in the case of accident prediction, there is no reason to expect that the
dependent variable will be normally distributed. In addition, the accident frequency
variable is discrete, rather than continuous, and the variability in the dependent
variable generally increases as accident frequency increases. In each of these cases the
Poisson or Negative Binomial distribution are more appropriate. The difference
between these two distributions is that in the case of the Poisson distribution the
variance is equal to the mean, which takes into account the site variability (that is the
variability one might expect from year to year at a particular site), be it an intersection
or route. The Negative Binomial distribution has a variance greater than the mean,
which allows for the between-site variability due to features at each site that are not
considered in the predictions, such as a dangerous geometric layout.

To undertake regression with a Poisson or Negative Binomial dependent variable, one
needs to use the theory of maximum likelihood and to develop generalised linear
models. These models require much more computation power than the normal
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regression models. Additionally, the test statistics for these models are not as well
developed, because of the complex mathematics involved.

2.5 The Existing PEM Procedures

251 Introduction

The accident prediction relationships for urban intersections currently set out in the
Transfund Project Evaluation Manual (PEM), derive from work carried out by
Gabites Porter Partners (1991). For mid-block accidents, the analysis is based on
work by the Land Transport Safety Authority (Jackett, 1992 & 1993), which is
regularly updated, Beca Carter Hollings & Ferner Ltd (1994) and Opus International
Consuitants (1997) on multilane median-divided highways and motorways.

2.6 Urban Intersection Accident Prediction

The accident prediction equations for urban intersections currently used in the PEM
are based on work by Gabites Porter (1991) and are of the linear form:

Ar= bo.QT
where:

Agr= total number of reported injury accidents in a five year period

Qr= total flow entering the intersection

These superseded a quadratic relationship of the form:

A= bO-QT2
which was used from September 1993 to March 1995, based on the same research but
with modified coefficients by. Prior to September 1992, the linear form was used (note
that from September 1992 to August 1993 the Ar = by.Qr model form was used but
with incorrect coefficients).

Prior to 1991, the National Roads Board Economic Appraisal Manual gave limited
advice on typical accident frequencies and accident prediction methods, relying on
work by Kitto (1980) on accident rates for urban right angled X and T-intersections
under various forms of control.

The current equation assumes a linear relationship between the dependent variable
(accidents) and the independent traffic volume (the sum of the approach flows). The
foregoing discussion, based on the bulk of research in this area, concluded that a
linear relationship is not appropriate, and therefore the model exponent should
generally not be one, and particularly for total crashes should be less than one. There
are a number of other problems with the existing models, one being that the models
were developed using normal linear regression.

These models also use the sum of the approach flows as the independent variable.
This is not considered a good predictor of crashes as it does not take into account the
fact that most multiple vehicle collisions occur due to the interaction of vehicle
streams, a factor not taken into account by a combined traffic volume variable.
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For example, crash prediction models based on the sum of the approach flows will
return the same crash rate at a cross-roads if 90% of the traffic is on one road, or 50%
is on each road. In the second case there is more chance that a vehicle will conflict
with another vehicle and one would therefore expect a higher crash rate.

Another problem with the models is that the traffic flows were derived from
transportation network models, rather than traffic count data. Even with traffic count
data taken only in three one-hour count periods, there is likely to be considerable
error. The use of modelled rather than actual traffic counts will add modelling error
on top of this. Given that both normal linear regression and generalised linear
regression assume that the independent variables contain no error, to minimise the
error that this assumption causes in the models, raw counts rather than model counts
should be used for developing the accident prediction models.

These models do not predict individual crash types, which can be important when a
network change alters the traffic flow pattern so that fewer vehicles make higher crash
rate manoeuvres, such as right turns.

2.7 Mid-Block Accident Prediction

The accident prediction model currently used in the PEM for urban and rural mid-
block crashes is:

AT = bo.XT
where Xris the exposure in 100 million vehicle kilometres over the mid-block section
length. Values of by have been fitted to this model from analysis of the crash accident
database, distinguishing between speed limit zones, presence or absence of a solid
median, and by traffic volume band for rural roads. A separate value of by has been
determined for motorways and other multilane median divided roads.

The models presented in the PEM are based on models developed using Poisson
regression by the Land Transport Safety Authority (Jackett, 1992). The initial models
considered a number of variables, with the more significant variable classifications
included in the PEM tables. Again the models assume a linear relationship between
the traffic flow variable and the accident frequency, and that the accident frequency
can be related to the sum of the traffic volumes travelling in each direction. While this
may be the case for some mid-block crash types, such as loss-of-control, the product
of the flows in each direction is more likely to be correct for head-on and
driveway/minor intersection type crashes.

Again, these models do not predict individual crash types, which can be important

when calculating the crash benefits of roading improvements because some types of
accidents are “more expensive” than others.
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2.8 Crash Procedures

The PEM provides for two types of crash procedures, accident-by-accident analysis
and accident rate analysis.

2.8.1 Accident-by-accident analysis

An accident-by-accident analysis is used when the intersection or route modifications
do not significantly alter the layout or traffic flow at an intersection or along a route,
so that one can either apply a global crash reduction/increase percentage to either all
crashes or each crash type. Obviously to do this type of analysis there must also be an
existing record of crashes for a route or intersection. This crash record generally
needs to be of five years duration and there should not have been any major
alterations or traffic growth within the five year period that may have significantly
changed the crash rate.

It is not intended that the crash prediction models being developed in this research
project would result in any modification to this type of analysis. However, there needs
to be more guidance within the PEM on when an analyst should use accident-by-
accident analysis and when he/she should use accident rate analysis. This guidance
could be in the form of examples or specific criteria. This has to some extent been
addressed by the new Addendum (B6) in the Transfund project evaluation manual, but
requires further attention.

2.8.2 Accident rate analysis

Accident rate analysis is used when the intersection, route or network modification is
expected to significantly effect the layout or traffic flow pattern, and for new routes
and intersections. This type of analysis makes use of the crash prediction models and
crash rates to establish the expected crash rate for an intersection or route. For an
existing intersection or route the existing crash rate of a site is compared with this
typical crash rate, and it is determined whether the proposed modifications will reduce
the crash rate to this typical rate. If so, the crash benefit is derived from this reduction
in the crash rate, otherwise some fraction of this difference is used depending on the
expected effectiveness of the change.

For new intersections or routes it is expected that the layout will be to the appropriate
Transit or Austroads layout standards, and therefore the crash rate will be equal to or
less than the typical crash rate of existing intersections or routes of that type.

When considering network changes, as might occur when a new link is added, it is
often more realistic to calculate future crash frequencies for routes and intersections
from existing crash rates on the network. For example, a new link may reduce the
traffic volumes on a parallel route by 50%. If it is assumed that the crash rate on this
existing route remains the same, then the crash frequency on this existing route will
halve. Other routes such as those feeding into the new route will carry more traffic
than previously and the crash rates on these routes will therefore increase. For the
new routes there are no existing crash records and crash frequencies can only be
calculated from typical crash rates.
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This method is probably accurate enough for small changes in traffic volumes, as it
can be assumed for small changes in volume, particularly for links and intersections
with mid-range traffic volumes, that the relationship between traffic volumes and
accidents is linear. However, for larger traffic flow changes, such as the 50%
considered in the example above, the non-linear relationship between flow and crashes
may result in large errors in the crash predictions, and therefore crash costs. In such
cases it is necessary to make use of both existing crash rates, to get the right level of
magnitude, and the crash prediction models, to work out the relative percentage
reduction in crashes for a given reduction in traffic volumes. This issue will be
examined in more detail in stage 2 of this research, where the Empirical Bayes method
will be examined. This method makes use of both accident rates and the existing
accident data.

2.9 Improvements to the Existing Accident Prediction Equations

2.9.1 Introduction

The previous section has identified a number of theoretical problems with the existing
crash prediction models and crash rates in the PEM. New crash prediction models are
required, preferably those which can predict individual crash types. These new models
should be based on state-of-art statistical techniques; in this case generalised linear
models with a Poisson or Negative Binomial distribution. A major advantage of these
new models will be that analysts, Transit NZ and Transfund NZ will be able to have
more confidence in the estimates these models produce, due to the better theoretical
basis for the models and the support of international research findings.

This confidence will also flow through to the crash cost estimates, produced by
multiplying the crash rates by the cost per crash. Not only will there be more
confidence in the accuracy of the crash predictions, but it will be possible to use crash
costs for different crash types, rather than one overall average crash cost. Given that
this area of road user benefits has been identified as one that has high error, more
accurate crash predictions is considered well overdue.

A number of crash prediction models of the type recommended have already been
developed by Turner (1995) for major crash types and most intersection and control
types. These equations are discussed in the next section. However, a number of new
models will need to be produced, particularly for routes (or mid-block locations), to
provide a comprehensive set of models for the PEM.

2.9.2 The Turner accident prediction equations

Turner (1995) developed accident prediction models for urban intersections based on
conflicting flow volumes. The models were developed using generalised regression
techniques for over 360 T- and X-intersections including traffic signals, roundabouts,
priority control and uncontrolled. The models were then tested in predictive models
for three road networks in Christchurch and Lower Hutt and yielded promising
results.
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The Turner models are either of a Negative Binomial or Poisson error structure, the
latter being adopted for situations in which the variance is equal to or less than the
mean:
A= bo.szlejzb2

where:

A= conflicting flow crash type between flows g;; and g,

g;1, Qjz = conflicting turning volume counts.

and by, by and b, are regression coefficients

Models were developed for the major crash type for each form of control. Models
were not developed for the more minor crash types as there were either an insufficient
number of crashes observed at the sample intersections or the crashes involved travel
modes for which counts were not available (cyclists and pedestrians). While equations
are not available for these minor crash types, the average proportion of these minor
crash types at a typical intersection is known. Having calculated the total number of
major crashes, the number of minor crashes can be calculated using this proportion.
The only missing information at this stage is a crash cost for these minor crashes,
which will be different from the overall crash costs given in the PEM.

While this method will satisfy in the interim, additional models should be developed,
particularly for cyclists and pedestrians and for centres, such as Christchurch, where
there is a high proportion of cyclists. As for the route equations, the model structures
and analysis methods are already available, and therefore it is just a matter of
collecting new data and processing them, to generate the models.

Ideally, separate intersection models should also be produced for rural intersections,
to take into account the different speed limits in the rural road environment. As a first
step it would be useful to examine the crash patterns occurring at rural intersections,
so that the differences between the urban environment (as explored in Turner’s thesis)
and the rural environment can be compared. It may be possible to use a factor to take
into account the difference in speed environment, although it is expected that separate
models will need to be developed.

2.9.3 Models for routes

It is proposed that the route accident prediction models should also be updated using
the model structure and techniques developed by Turner, as the LTSA (Jackett, 1992)
models/rates do not take into consideration the non-linear relationship between traffic
flows and accidents. Models will need to be developed for both rural and urban
routes.

This will require a data collection exercise, although it is expected that much of the
information used by Jackett, which is updated annually, will be available, although
more information will probably be required for urban routes. It is proposed that a
similar model structure to that for intersections, with either one flow variable (total
two-way flow) or two flow variables (flow in each direction), would be used.
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210 Goodness-of-fit Statistics

Goodness-of-fit statistics are used in linear (and non-linear) regression to test how
much of the variability in the dependent variable, in this case the accident frequency,
can be explained by the independent variables, the traffic flows (or other non-flow
variables). It can be used to assess whether a new independent variable should be
added to the prediction equation, by comparing the value of the test statistic with and
without the variable in the regression equation. If the change in the test statistic is
large, this usually indicates that the new variable has explained a considerable amount
of variability in the observed values of the dependent variable, and should be added to
the list of important predictor variables and the regression equation. If the change is
low then the independent variable is usually unimportant and is discarded.

The goodness-of-fit statistic is also used to assess the accuracy of prediction models,
by quantifying the proportion of variability in the dependent variable the regression
equation predicts. When this proportion is low then there is likely to be considerable
error in the crash predictions as the model being used does not have sufficient
variables to explain enough of the dependent variables variability. When the
proportion is high an analyst can have some confidence that the predictions will be
reasonably accurate,

Unfortunately, most accident prediction models do not explain a high proportion of
the variability in the accident frequency, as deriving a set of adequate variables is not
easy for the road environment, due to the number of factors which impact on this
environment.

In normal linear regression the Pearson’s r* statistic is usually used to express the
goodness-of-fit, as it has mathematical properties that make it easy to explain and
calculate. However, in generalised linear models, the Pearson’s r° statistic can no
longer be used. While there are a number of statistics that have been proposed to test
the goodness-of-fit of generalised linear models, the most commonly used statistic
being the scaled deviance (SD). See Wood (2000b) as to how the scaled deviance can
be calculated.

2.11 Confidence Intervals

The method used to develop confidence interval estimates in multiple or normal linear
regression, can not be directly applied to prediction models developed using
generalised linear models theory. To develop confidence intervals for the Turner
prediction models it was necessary to go back to first principles and to develop, using
the statistical theory of maximum likelihood, new confidence interval equations.
Details of the development of the confidence interval equations and the equations
themselves are given in Appendix E.
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3 Literature Review

Following Turner (1995), there have been a number of advances in the field of
accident prediction modelling. This section outlines some of the most relevant papers
produced during the last five years.

The first paper, by Maher & Summersgill (1996), provides a summary of a number of
technical (statistical) problems that have been identified with the development of
generalised linear models (GLMs) for accident prediction. This paper provides some
solutions to these problems. The remaining papers in this section, except that by
Trinadha & Rengaraju (1998) on modelling conflicts, expand on the problems and
solutions raised by Maher & Summersgill.

3.1 GLM Technical Problems

The technical problems identified by Maher & Summersgill are applicable to the
development of GLMs for accident prediction. The technical problems may or may
not be a problem in other applications of GLMs.

The ‘low-mean-value’ problem, which as the name applies occurs when the mean of
the dependent variable (accidents) is low (generally <0.5), as commonly occurs when
accidents are broken down by accident type, results in poor accuracy of the scaled
deviance goodness-of-fit statistic. At low mean values the scaled deviance statistic can
indicate that the model has a good fit to the data, when compared with the x*
distribution, when the fit is in fact not particularly good. Wood (2000a and/or 2000b)
expands on this discussion, and shows that the accuracy of the scaled deviance test
deteriorates as the mean value reduces. Wood details a method for addressing
problems with the goodness-of fit testing (see later section on low-mean —value
problem).

Overdispersion is another problem associated with accident data. Accident data sets
often have a variance significantly greater than the mean (overdispersion), so that it is
not satisfactory to assume that the data is Poisson distributed (variance equal to or
close to the mean). The overdispersion is thought to occur because of the between-
intersection variability and because of factors, such as geometric variables, that are
not represented in the prediction models.

Overdispersion can be addressed in a number of ways. The most common approach in
accident prediction is to assume a negative binomial distribution for the accident data
set. The negative binomial distribution consisting of the within-intersection variability,
represented by the Poisson distribution, and the inter-intersection variability, being
represented by a Gamma distribution. This is the approach favoured by most overseas
researches and this research team, because of the convenient statistical properties
associated with using the Gamma distribution.

Other distributions can be used to represent the overdisperion, including the quasi-
Poisson distribution and other members of the negative binomial family of
distributions, which involve different inter-intersection distributions to the Gamma.
Discussion on these other options can be found in Maher & Summersgill (1996).
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Dissaggregation of data can also be a problem, because there can be a scarcity of
accident data, and because of correlation between data values. Accident data and
sample sets can be dissaggregated by accident type, time-period, year and intersection
approach. Further discussion on these matters is contained in Poch & Mannering
(1996) and Lord & Persaud (1999), whose finding are discussed in more detail latter.

Leading on from the issue of whether or not to dissaggregate data, or to continue
with aggregated data is that of identifying trends in accident occurrence over a
number of years. In most studies the accident data over several years, often five years,
is used to produce models without factoring in whether there is a trend in the
accidents over the time period. In New Zealand there is evidence that there has been a
major downward trend in accident occurrence, particularly during the 1990s. The
accident rates at sites have been dropping, even though many sites have not received
engineering remedial treatments, because of increased levels of enforcement, changes
in driver behaviour and ‘safer’ vehicles. Lord & Persaud (1999) discusses how the
trend in accident occurrence can be factored into the development of GLMs (see
latter).

The issue of variability in the traffic flow estimates, when an assumption of the
standard GLM procedures is that independent variables are deterministic, has been
discussed in Maher (1989). A method for dealing with this error is presented in
Maher, and summarised in Turner (1995). No attempt has been made to incorporate
the Maher procedure in this work, as there is insufficient traffic data, for intersections
at least, to improve the GLMs. Lord (1999) also discusses method that can be used to
estimate missing traffic counts and improve the reliability of the traffic flow variables.

Maher and Summersgill briefly discuss the combination of model predictions with site
observations, or accident history data. They discuss how much weight should be
placed on site observations and the models. This topic is explored in more detail in
Chapter 7, on the Empirical Bayes method.

3.2 Low-Mean-Value Solution

Wood (2000b) has developed a procedure that deals with the error in the goodness-
of-fit statistic, scaled deviance, when the mean of the accident data is low. The
method involves grouping the data into traffic volume bands, and using the average
flow and accident frequency for each band in the goodness-of-fit test. The lower the
mean of the raw accident data the more sites/approaches that have to be grouped
before testing.

While grouping does reduce the degree-of-freedom of the test, which is not desirable,
it does bring added confidence to the value of the scaled deviance. Wood (2000a)
details the procedure used, including all the statistical theory behind his technique,
while Wood (2000b) provides a guide on how to use the technique, for transport
modellers.

The method developed by Wood has been used in the goodness-of-fit testing. The
results of the goodness-of-fit testing (and the groupings used) are presented in
Section 5.5 of chapter 5.
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3.3 Dissagreggation of Accident Data by Time and/or Approach

A number of researchers, including Maher & Summersgill (1996) have raised
concerns with the dissagreggation of accident data by time, accident type and
approach. In terms of time, accident data can be broken down by year and by
weekday and weekend time periods (e.g, weekday morning peak). Two problems
surface when this is done; (1) there can be a scarcity of data if the sample size is not
sufficient and (2) there is likely to be correlation between accidents occurring at the
same site.

The first issue can be countered by increasing the sample size. Dissagreggation should
only occur to a level where there is still sufficient accident data to produce
‘reasonable’ models. A check of the model parameters can usually determine whether
the models are ‘reasonable’, as such parameters should be in the range of 0.3 to about
1.5. In Turner (1995) the accident prediction models by weekday and weekend time
period involved a number of unreasonable parameters, that were either negative, or
above 2. It was concluded that scarcity of data was a problem and that the sample
sizes were insufficient to dissaggregate the accident data to this level of detail. To the
author’s knowledge a statistical method that indicates how much dissaggregation can
occur for a particular sample size and mean accident rate is not available.

The second consequence of dissaggregation, that of correlation between data from the
same intersection, has been examined by Poch & Mannering (1996). It was thought
that such correlation would result in a loss of estimation efficiency, which would
effect the reliability of the prediction models. In their paper they examined, using
likelihood ratio tests, whether models results are significantly effected by such
violations of independence between data values. They concluded that “independence
violations are not significantly affecting model results”.

3.4 Annual Trends in Accident Data

There is evidence in New Zealand, as overseas, that there is a downward trend in
accident occurrence. While car ownership levels and vehicle-km of travel continues to
rise, accident numbers in general, and fatality rates, continue to drop. This downward
trend has occurred because of the efforts of numerous government organisations,
including road controlling agencies who undertake physical engineering safety works.

This downward trend in accident occurrence is generally not factored into accident
prediction models. Lord and Persaud (1999) discuss a number of models that take
into account trend in accident data by year. This includes marginal models (MM),
transition models (TM) and random effect models (REM). The paper details one of
the MM methods and produces models using the method for 868 four-legged
signalised intersections in Toronto, Canada. The MM, which included the trend in
accident occurrence, were compared with standard Negative Binomial models,
without trend. They conclude that the models incorporating trend are superior to the
models that do not.
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3.5 Conflict Modelling

Trinada & Rengaraju (1998) detail a method developed for modelling traffic conflicts
using simulation. The paper details a model that has been developed for a X-road and
can simulate the effects of vehicle composition (2, 3 & 4 wheeled motorised vehicles,
pedal cycles and heavy vehicles), gap acceptance (critical gaps and move-up times)
and degrees of priority (give-way, stop and signals) on conflict rates, particularly in
congested conditions. Field data (conflict surveys) were collected to validate the
conflict rates predicted by the model. The authors did not relate the conflict rates
(which measure the close misses at an intersection) to the actual accident occurrence,
but this would be the next step in this research.

This paper has been included in the literature review as it shows a promising avenue
for the development of accident prediction modelling, particular in regard to
developing a better understanding of the mechanisms and causal factors that influence
accident occurrence. Such understanding is required to develop future models which
capture more of the variation in accident occurrence by selecting a set of appropriate
predictor variables. The area of relating conflict data to accident occurrence is also an
area of much promise, as conflict data at a site can be collected over short time
periods, whereas a researcher must wait a longer time for accident trends to become
evident. By finding such a relationship we might better be able to predict crash
occurrence.
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3 Data Collection

3.1 Introduction

This section details the traffic, site layout and accident data coliected from road
controlling authorities and the Land Transport Safety Authority (LTSA). Tables have
been produced showing the number of intersections and links that have been selected
from different parts of the country (Appendix A) shows the actual road controlling
authorities who provided data, by intersection and link type). The accident data for
each intersection and link type has been broken down by accident type and presented
in pie graphs. However, before we move onto the data collected we will first discuss
the results of the survey undertaken at the end of stage 1 to assess the availability of
data for the prediction models.

3.2  Survey of Local Authorities)

This section details the results of a survey questionnaire sent to local authorities,
Transit NZ and consultants. The main purpose of the survey was to assess the
availability of data, particularly turning volume counts for intersections. Such data can
be difficult to come by, particularly for low-volume intersections. With the large
sample size required (50 to 100 intersections) to produce good quality prediction
models, it was important to assess whether sufficient data could be sourced. This
survey was undertaken prior to stage 2, so that the scope for stage 2 could be refined,
if necessary, to allow for the collection of additional traffic counts.

Survey Questionnaires were sent out to 58 organisations, including Councils, Transit
offices and consultants. Appendix B lists the organisations approached and a copy of
the questionnaire. As expected the initial response rate was low. However, with
follow-up phone calls the final response rate was 66%. Tables 7.1, 7.2, 7.3 and 7.4
summarise the data that are available. Further details of the questionnaire responses
can be found in the table in Appendix A

Table 4.1 City Council Traffic Count Availability

Manukau 0
Tnvercargill 10 0
Christchurch 200+ 200+ 0
Dunedin 77 42 0
Napier 173 i2 0
Wellington 31 15 0
Palmerston North 205 201 24
Porirna 0 2 0
Waitakere 30 18 i
TOTAL 1292 508 25
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Table 4.2 District Council Traffic Count Availability

Queenstﬁlakes 360 0 0
Tasman. 13 10 0
Westland 0 0 0
Whangarei 60 34 0
Hastings 66 22 0
Banks Peninsula 0 0 0
Waimakariri 300 0
Timaru 330 22 0
Ashburton 1 3 0
Buller 0 0 0
Waimate 100 0 0
Rodney 500 0 0
Rotorua 0 3 0
Hurunui 100 0 0
McKenzie 68 0 0
TOTAL 2400 924 0

Table 4.3 Transit NZ Regional Offices Traffic Count Availability

Hamilton 124 0 0
Dunedin 77 0 0
Auckland 95 30 0
Wellington 75 20 0
Christchurch 200+ 2 0
Wanganui 102 0 ]
Napier 27 0 0
TOTAL 700+ 52 0
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Table 4.4 Consultants and Others Traffic Count Availability

 Opus (Hamilton) 0 0 0
Opus (Lower Huit) 2 0 0
Montgomery Watson 0 23 0
Montgomery Watson (Chch) 0 6 0
Traffic Design Group 0 49 0
Beca Carter 10 30 ¢
Canterbury Regional Council 0 0 0
TOTAL 12 108 8

As expected the district and city councils have both link and intersection count data,
with the latter having the higher number of intersection counts.

The Transit NZ regional offices mainly have route counts, and most of these are on
state highways. Consultants tend to have few traffic counts, with those that are
available being intersection counts.

The Land Transport Safety Authority provided their database on link data, including
traffic counts and layout variables. This information was used to develop the urban
mid-block prediction models in the Transfund PEM. This data was used, along with
information collected from the questionnaire participants, to calculate accident
prediction models for the urban mid-blocks and rural routes.

A more detailed analysis of the questionnaire results shows that there are few turning
volume counts available for rural intersections. Subsequent to this finding a series of
traffic counts (at 50 sites) were collected at rural T-junctions in Canterbury,

Wellington, Wanganui and Tauranga. There are also plans to collect counts at rural
cross-roads (X-roads).

Small sample sizes were available for signalised T-junctions and 3-arm roundabouts.
During data collection (see next section) a number of additional signalised T-
junctions, with traffic count information, were identified, and the sample size was
increased. We were unable to increase the sample size of 3-arm roundabouts to a
desirable level. It was decided that given the layout of roundabouts, being equivalent
to a series of give-way controlled T-junctions on a one-way main road, that we would
compare the small sample of 3-arm roundabouts with their 4-arm counterparts. It was
proposed that a factor be developed to take into account the greater distance between
intersection arms on 3 —arm roundabouts (on at least one approach).

4.3 Data Collected

During stage 2 most of the local authorities, Transit offices and consultants that
responded to the stage 1 questionnaire were approached for traffic count and other
data. The exceptions were those who indicated on their questionnaires that were
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unable to provide data, usually because they did not have adequate staff resource to
extract the information from their records.

For intersections we requested 1-hour turning volume counts for the morning and
evening peaks and a non-peak period. We also asked for information on intersection
layout and to be notified whether there had been a change in control, or some other
major change that would have effected the underlying true accident rate. For links
traffic volume information was collected along with information on land-use.

Table 4.2 summarises the number of intersection and links for which data was
collected from survey participants, from different regions in the country. A full list of
sites by road controlling authority is contained in Appendix A

Our target sample size for each intersection and link type was 100 sites. Most of the
intersection types have sample sizes less than 100, but greater than 50, which while
not ideal is considered sufficient to develop prediction models. Again the problem
seems to be in the availability of turning volume counts. We would suggest that when
the models are next updated that additional intersections be added to the samples.

The sample size for 3-arm roundabouts is too small, and hence we have not produced
models for this intersection type. Instead we have calculated an adjustment factor,
using this small sample, for the 4-arm roundabout prediction models to allow for the
missing arm.

3.4 Major Accident Types

The following pie graphs show the major accident types at each intersection and link
type. Prediction models have been developed for each of the major accident types,
which ranges from 3 to 5 types for each sample (refer to Section 5 for prediction
models). The remaining accident types have been group under ‘other’. Models for the
other category have been developed for completeness, even though such a model does
not account for the causal factors that lead to each particular accident type.

All intersection accidents, except rear-end accidents, have been removed from the link
sample sets, There are a number of factors that can cause rear-end accidents, and
often it is 2 combination of factors. The presence of intersections along a route is a
major causal factor, but other factors such as presence of kerbside parking and high
driveway volumes, are also factors. While the LTSA coding system does attempt to
categorise rear-end factors by type, the categories are not sufficiently fine, nor is there
supplementary data that allows a researcher to confidently determine what rear-end
accidents are associated with intersections and which are associated with mid-block
sections. Jackett (1993) dealt with this problem by using a variable for the number of
intersections per km in his models, and this should be considered in subsequent
research.
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Table 4.5 Intersection/Links by Region

Urban Intersections
Signalised X- 20 11 17 52 9 109
Roundabouts (4- 7 - 15 32 1 55
Priority X-Roads 11 2 15 38 10 76
Signalised T- 1 - 3 26 - 30
Roundabouts  (3-
Priority T- 17 2 18 44 8 89
Uncontrolled T- 11 - I8 22 - 51
Urban Mid-Blocks
Arterials 67 49 12 37 - 165
Collectors 6 44 74 25 - 149
Local Roads 52 67 - - - 119
Rural Intersections *
Priority X-Roads
Priority T- - 20 10 20 - 50
100kph Routes
Rural Highways 5 25 29 41 - 100
Rural Local Roads
Motorways 63 3 8 - - 76

* Additional traffic count data was collected because data was not readily available
for rural intersections.

With intersection accidents (except rear-end accidents) being removed from the
analysis, separate predictions should be made for intersection using the intersection
models. However, rear-end accidents should not be predicted, as this would result in
double-counting.

4.4.1 Urban Intersections

Figure 4.1 to 4.6 show the major accident types for the urban intersection samples:
1. Signalised X-Roads

Roundabouts (4-arm)

Priority X-Roads

Signalised T-Junctions

Priority T-junctions

Uncontrolled T-junctions

Ok BB
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Figure 4.1: Signalised X- Figure 4.2: Roundabouts (4-arm)
Roads
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Figure 4.3: Priority X-Roads Figure 4.4: Signalised T-Junctions
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* refer to Appendix D for the crash coding definitions

At signalised cross-road the major accident types are right-turn against (LB), red-light
running (HA, crossing, both straight), rear-end (F) and loss-of-control (C & D). All
other accident types, including those involving pedestrians are grouped under ‘other’.
The four major accident types make up 75% of all the reported injury accidents at the
study sites.

At 4-arm roundabout a variety of accident types are grouped under the heading of
entering versus circulating accidents. While individual accident types, such as right-
turn against, are coded at roundabouts, there is evidence of mis-coding of many of the
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accidents because Police officers do not always ascertain the direction each vehicle
was intending to travel. Hence a crossing-no-turning accidents might actually be a
right-turn-against accident. Given that all such accidents share common conflicting
flow pairs (the entering and circulating flow), it was decided to group them together.
67% of all reported injury crashes are of this type. A further 23% are loss-of-control
or rearend accidents, making a total 90%.

The major accident type at priority cross-roads is associated with vehicles not giving
way; the crossing-no-turning accident type (HA). 51% of accidents are of this type. A
further 28% are loss-of-control, crossing-right-turn (JA) and right turn against. This
gives a total of 79% of reported injury accidents.

Like signalised cross-roads, a high proportion of T-junction traffic signal accidents, in
this case 30%, are in the ‘other’ category. This is because of the generally higher
occurrence of pedestrian related accidents at traffic signals. The remaining 70% of
accidents, at the sample sites, were divided over four accident types; right-turn-
against (highest), rearend, loss-of-control and right-turn-crossing.

The same major accident types occur at priority and uncontrolled T-junctions, with
the proportion of ‘other’ accidents increasing as the level-of-control and traffic
volumes reduce. At uncontrolled T-junctions many of the accidents are links accidents
that just happened to occur within the analysis section, and don’t necessarily related
to the intersections themselves.

4.4.2 Urban Mid-block Sections

Figures 4.7 to 4.9 show the major accident types for the urban mid-block samples:
1.  Urban Arterials
2. Urban Collectors
3. Urban Local Roads

Figure 4.7: Urban Arterials

Manouvering
Other 14%
29%

2L.oss of control

25%
Rearend-R
vehicle I
9% Rearend
23%

All intersection accidents have been removed from the data-sets. The major accident
types are manoeuvring (including hit-object), loss-of-control and rearend, which is
split into those involving straight through vehicles and those involving one vehicle
turning right. 29% of accident were of ‘other’ accident types. The other links types
show a similar pattern of accident occurrence.
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Figure 4.8: Urban Collectors Figure 4.9: Urban Local Roads
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4.4.3 Rural Intersections
Figure 4.10 shows the major accident types for the rural T-junction sample set:

Figure 4.10: Rural T-

Junctions
OTHER G

24% 269,

LB
10%

JA
40%

* refer to Appendix D for the crash coding definitions.

There were few accidents (less than 50) at the 50 rural T-junctions used in this study.
Ideaily a larger sample set should be used in update studies. Given the small sample
size we could only separate out three of the accident types; right-turn-against, right-
turning-same-direction (G) and right-turn-crossing. These types made up 76% of all
accidents observed at the 50 sites. Interestingly each of these accident types involve
either the right turn movement from the side-road (40% of accidents) or the main
road (36% of accidents).

4.4.4 100 km/h Routes

Figures 4.11 and 4.12 show the major accident types for the rural routes and
motorway samples:

1. Rural Highways (excluding motorways)

2. Urban & Rural Motorways

Figure 4.11: Rural Highways

Rearend (RT) Headon
9% 8%

Rearend
15%

Overtaking
7% Lost Confrol
45%

Other

6%

Manceuvring
10%
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Figure 4.12: Urban & Rural Motorways

Other

16% Rearend
29%

Overtaking
14%

Loss of
control
41%

Again intersection accidents have been removed from the data-set. The predominate
accident type on rural highways is loss-of-control accidents, with 45% of all reported
injury accidents. The other major accident types are rear-end (again split into two
categories), head-on, overtaking and manoeuvring. These six major accident types
include 94% of ‘mid-block’ accidents occurring on rural highways.

The type of accidents that can occur on motorways is limited by the ‘limited access’

nature of motorways. The three major accident types are loss-of-control, rearend and
overtaking (or weaving).
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5 Accident Prediction Models

51 Prediction Models

The following subsections present the accident prediction models produced for
urban and rural intersections and links. These generalised linear models (GLMs)
were produced using the method used by Turner (1995), which is in turn based on
work by Hauer (1989) and other researchers. Goodness-of-fit statistics and
confidence intervals for these models are presented in subsequent sections.

5.1.1 Urban Intersections, 50 km/h and 70 km/h Speed Limit Areas

For urban intersections the typical reported injury accident rates are determined
from a series of prediction equations. Where turning movement counts are
available, the accident rate should be predicted by accident type and approach
using the prediction models and parameters in Tables 5.1 to 5.12. The total
accident rate can be predicted by summing the predictions by accident type and
approach. If only approach flows are available, then the total accident rate can be
predicted using the parameters in Table 5.13. The predictions are for a five-year
period, being the length of the accident period used to produce the models.

5.1.1.1 Signalised Cross-roads
The accident rates at signalised cross-roads are predicted by accident type and
approach using the equations in Table 5.1 and the parameters in Table 5.2, Figure
5.1 illustrates the different conflicting and approach flows at crossroads.

‘Table 5.1 Signalised Cross-road Accident Prediction Equations

HA A = bo*qt 2
Right Turn Against LB A=bo*q"*q,”
Rear-end FA to FE A=b*Q,”
Loss-of —control C&D A=b*Q,”
Others A=1bp*Q,”

Figure 5.2 Conflicting and Approach Flow Types (Cross-roads)

Crossing (No HA . 0.34 0.37 1l
Right Turn Against LB . 0.49 0.41 1.9
Rear-end FA to FD 8.52E° 1.07 - 1.7
Loss-of —control C&D 1.56E7 0.94 - 0.8
Others 6.11E7 0.46 - 1.5

* is the Gamima Shape Parameter. This is required when using Empirical Bayes Method (see section 7).
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Table 5.2 Signalised Cross-roads — Prediction Model Parameters

5.1.1.2 Roundabouts

The accident rates at 4-arm roundabouts are predicted by accident type and approach
using the equations in Table 5.3, and the parameters in Table 5.4. The circulating flow
(Q.) is the traffic that the entering flow (Q.) at each roundabout approach must give-
way to.

Table 5.3 Roundabout Accident Prediction Equations

Entering vs Circulating HA, LB, JA | A=b*Q." *Q.
Rear-end FA to FD A =by*Q,”
Loss-of—control C&D A =b*Q.”
Others A=1*Q.”"

Table 5.4 Roundabouts — Prediciion Model Parameters

Entering vs Circulating | HA, LB, JA, 0.42 0.45 12
Rear-end FAwFD 1.19 - 0.6
Loss-of —control C&D 0.55 - 0.8
Others 0.26 - 0.4

5.1.1.3 Priority cross-roads (give-way and stop Control)

The accident rates at priority cross-roads are predicted by accident type and approach
using the equations in Table 5.5 and the parameters in Table 5.6. At priority cross-
roads the straight through flows are differentiated into those with priority (q,) and
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those which have to give-way (g g), or stop. For the crossing (no turns) accidents,
both the q; and qi; flows are used as predictors, but their order in the equation
depends on their priority.

Table 5.5 Priority Cross-road Accident Prediction Equations

rossing (No Turns)
Right Turn Against A =bo*q" *q;”
Crossing (Vehicle Turning) A = bo¥q " *qs”
Loss-of —control C&D A=1b*Q,”
Others A=1by*Q,”

Table 5.6 Priority Cross-roads — Prediction Model Parameters

ident
Crossing (No Turns) HA 1.95E7 0.38
Right Turn Against LB 3.75E7 0.05 0.53
Crossing {Vehicle Turning) JA 5.40E” 1.13 0.44
Loss-of —control C&D 5.22E° 0.30 -
Others 1.87E7 0.57 -

5.1.1.4 Signalised T-junctions

The accident rates at signalised T-junctions are predicted by accident type and
approach using the equations in Table 5.7 and the parameters in Table 5.8. Figure 5.2
illustrates the different conflicting and approach flows at T-junctions.

Table 5.7 Signalised T-junction Accident Prediction Equations

ght Turn Against

Rear-end FA to FD

Crossing (vehicles turning) JA A =Dbo*qs” *q,
Loss of control C&D A =1bg*Q
Others A=1*Q."

Table 5.8 Signalised T-junctions — Prediction Model Parameters

Right Turn Against LB 0.583 -0.43 0.60 3.0
Rear-end FA to FD 3.83E” 1.45 - 0.5
Crossing (Vehicles Turning) JA 0.161 -0.34 0.51 1.2
Loss-of —control C&D 9.37E" 0.17 - 3.0
Others 8.47E* 0.15 - 2.4
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Figure 5.2 - Conflicting and Approach Flow Types (T-junction)

The large negative parameters in the ‘LB’ and ‘JA’ models indicate that intersections
with higher flows have fewer accidents. This is an unexpected result. It is speculated
that at high right turning flows the installation of right turn bays and exclusive right
turn phases reduces accident occurrence. Further research examining these other
variables 1s required.

5.1.1.5 Priority T-junctions
The accident rates at priority T-junctions are predicted by accident type and approach
using the equations in Table 5.9 and the parameters in Table 5.10.

Table 5.9 Priority T-junction Accident Prediction Equations

ght Turn Against LB A =Dby*qs
Rear-end FA to FD A =1*Q,"
Crossing (Vehicles Turning) JA A =by*qs" *q,*
Loss-of —control C&D A =1by*Q,”
Others A =1bp*Q,”

Right Turn Against LB 3.33E° 0.48 0.42 1.5
Rear-end FA to FD 1.45E° 1.18 - 0.5
Crossing (Vehicles Turning) JA 3.60E° 0.93 0.22 1.0
Loss-of —control C&D 8.22E 0.30 - 3.0
Others 2.49E7 0.51 - 3.0

42



5.1.1.6 Uncontrolled T-junctions

The accident rates at uncontrolled T-junctions (that is T-junctions that have no give-
way, stop or signal controls) are predicted by accident type and approach using the
equations in Table 5.11 and the parameters in Table 5.12.

Table 5.11 Uncontrolled T-junction Accident Prediction Equations

Right Turn Against 1B A =bo*qs" *qs
Rear-end FA to FD A = b*Q,”
Crossing (Vehicles Turning) JA A = bo¥qs™ #q, ™
Loss-of —control C&D A = by*Q,”
Others A = b*Q.”

Table 5.12 Uncontrolled T-junctions Prediction Model Parameters

Right Turn Against LB 0.31 0.42 3.0
Rear-end FA to FD 8.69E° 1.50 - 0.7
Crossing (Vehicles Turning) JA 3.62E* 0.22 0.81 3.0
Loss-of ~control C&D 2.51E° 0.31 . 4.0
Others 6.27E° 0.41 - 0.4

5.1.1.7 Product-of-Link-Flow Models

The models in this section predict the accident rate at an intersection from the link
(two-way) flows on each of the intersecting roads. These models should be used only
when turning movement counts are not available, or can not be predicted using
transport models.

These models should not be used when the volume of traffic on opposite arms of an
intersection differs by more than 25% of the higher flow. If the majority of traffic on a
link turns left or right at a cross-roads intersection, so that the opposing arm has a lot
less traffic, then this type of model is inappropriate. Where volumes on both
approaches of a link are available then the two approach flows should be summed to
calculate the link volume.

The total reported accident rate for each intersection types is determined using the
equation:

A-T = bO*Qmjnorbl*anjor b2
where Quinor 18 the lowest of the two-way link volumes for cross-roads, and the stem
flow for T-junctions.
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Table 5.13 Product-of-Link-Flow Models

Signalised Cross-roads 2.04E™ 0.14 0.45 3.0
4 —-arm Roundabout 1.81E? 0.48 0.37 3.0
Priority Cross-roads 7.09E" 0.51 0.21 2.3
Signalised T-junctions 0.778 0.13 0.04 3.0
Priority T-junction 3.70E™ 0.19 0.75 3.0
Uncontrolled T-junction 1.44E2 0.19 0.36 2.6

5.2
Areas

Urban Mid-block Sections, 50 km/h and 70 km/h Speed Limit

For urban arterial, collector and local mid-block accidents, average injury accident
rates can be associated with speed limit, roadside development and for arterials the
presence of a solid median. The accident types predicted for urban mid-blocks
sections, and the model types, are given in Table 5.14. The flow variable used in all
models is the two-way traffic volume per day (Qr).

Table 5.14 Urban Mid-block Accident Prediction Equations

Rear-end (both straight) FA to FF A =be*Qr

Rear-end (one turning right) GC 10 GE A=bg*Qr
Loss-of—control Cé&D A=b*Q. "™
Manoeuvring & Hit Object M&E A=bg*Q;"
Other A=b*Qr"”

Accident prediction models and parameters for the major accident types are given for
arterials, collectors and local streets in Tables 5.15 to 5.17.

Table 5.15 Urban Arterials, 50 and 60 km/h Areas

Rear-end (both straight) . .

Rear-end (one turning right) 3.21E3 0.64 2.25E7 0.64 0.8
Loss-of—control 407" 0.90 5.88E™ 0.90 L5
Manoeuvring & Hit Object 2.92E* 0.45 2.13E7 0.45 0.8
Other 1.07E° 1.34 8.688° 1.34 1.2
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Table 5.16 Urban Collectors, 50 km/h Areas

Rear-end (both straight) 4.32E% 1.96 2.428% 1.96 15
Rear-cnd (one turning right) 1.78E? 0.70 1.36E" 0.70 1.8
Loss-of—control 8.94E~ 0.25 0.145 0.25 3.0
Manoeuvring & Hit Object 6.22E" 0.98 3.82E" 0.98 29
Other 3.10E* 0.93 4.46E™ 0.93 3.0

Table 5.17 Urban Local Streets, 50 km/h Areas

Rear-;nd {both straiéﬁf)

1.46E* | 1LI3 0.1
Rear-end (one turning right) 1.25E% | 0.90 0.1
Loss-of—control 1.99E% | 061 0.1
Manoeuvring & Hit Object 27387 [ 112 0.2
Other 8.56E° | 1.33 0.2

5.3 Rural Intersections, 80 km/h and 100 km/h Speed Limit Areas

The typical reported injury accident rates (per year) for rural T-junction intersections
are calculated by using the urban intersection prediction equations with ‘rural’
parameters (Tables 5.18). Where turning movement counts are available, the accident
rate should be predicted by accident type and approach. The total accident rate can
then be predicted by summing the predictions by accident type and approach.

Where only approach flows are available, then the total accident rate can be predicted
using the parameters at the bottom of each table, and the ‘product-of-link-flow’

equation (see Section 5.1.1 {g]).

Table 5.18 Rural Priority & Uncontrolled T-junctions
Prediction Model Parameters

Right Turn Against LB 121E7 | 0.54 163 | 3.0
Crossing (Vehicles Turning) JA 1.988™ 0.34 0.93 3.0
Turning verses same direction G 1.13E7 0.58 - 0.4
Others 6.23E7 0.34 - 3.0
Total (Product-of-link-flows) All 1.23E% 0.53 0.42 3.0

Models for Rural X-roads were not developed, as traffic volume data was not readily

availble.
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5.4 Rural Mid-block Sections, 80 km/h and 100 km/h Speed Limit
Areas

For rural highways (both Transit NZ and district) and local streets (all other 80 and
100 knvh streets), the average injury accident rates can be associated with the terrain
type (flat, rolling and mountainous). The accident types predicted for rural mid-blocks
sections, and the model types, are given in Table 5.19. The flow variable used in all
models is the two-way traffic volume per day (Qr). In the head-on model it is assumed
that the traffic vehicle split by direction is approximately 50:50 over 24-hours.

Table 5.19 Rural Mid-block Accident Prediction Equations

Head-on B A =bo*((Qr/2))"
Overtaking A A =bo*((Qr/2)")"
Rear-end (both straight) FA to FF A =b*Q "
Rear-end (one turning right) GCto GE A =be*Qr ™
Loss-of—control C&D A =bg*Qr ™
Manoeuvring & Hit Object M&E A =b*Qr "
Other A =by*Qr ™

The accident prediction model parameters for the major accident types are given for
rural highways and motorways/expressways in Tables 5.20 and 5.21. Insufficient data
was available for rural local roads.

‘Table 5.20 Rural Highway Accident Prediction Equations

5.15E°
Rear-end (both straight) 1.09E7 | 172
Rear-end (one turning right) 425" | 0.78
Loss-of—control 2.83E% | 048
Manoeuvring & Hit Object 4.00E° [0.52
Other 1.68E" | 0.84

Table 5.21 Motorways and Expressways

Rear-end 1.88 3.0
Loss-of—control 281E° | L1 3.0
Overtaking 1.25E° | 1.10 1.6
Other 2.65E2% |0.41 0.5
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5.5 Goodness-of-fit Statistics

Goodness-of-fit statistics have been developed for all the crash prediction models.
Table 5.22 to 5.24 summarises the results of the analysis. It has been necessary to
group data into flow bands to overcome the problem associated with a low mean
value. The appropriate group size is dependent on the mean of the accident data and
the value of k (the Gamma shape parameter).

All models that have a scaled deviance below the chi-squared value are considered to
fit at a 5% significance level. This means that the model explains a significant amount
of the variability in the data. The lower the scaled deviance in relation to the critical
chi-squared value the better the model explains the variability in the data.

These tables indicate that in all but one case the prediction models are significant at
the 95% level of confidence. The only exception is right-turn-against accidents at
priority intersections. Research by Turner (1995) shows that at priority and
uncontrolled T-junctions there is confusion caused by the New Zealand left-turn give-
way rule. In such circumstances the volume of other turning movements has been
shown to be significant. The theory being those drivers have to be aware of whether
they need to give-way to such movements. So, for this accident type, a larger model,
including three or more flow variables should be considered in future research.

5.6 Confidence Intervals

Confidence intervals (95%) have been derived for the accident predictions, using the
Minitab macros and worksheets developed by Wood (Transit NZ, 1993) and Turner
(1995).

Confidence Interval Graphs

Confidence intervals graphs have been produced for both the one and two predictor
variable models. The confident intervals were produced using the following formulas,
which are derived in Appendix A of the stage 1 report.

An approximate 95% confidence interval for by, is:

T.ower Limit =

exp{b} +b,x—1.96y(X'WX)! +2log x{X’ WX} + (logx)’ (CWX)7. )

Upper Limit =
exp{bj +b,x+1.96y(XWX);! + 2logx(X'WX )} +(loge)* (X'WX)7. }

e S [oil q

XWx), (XWX),
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and (X"WX)-1 is the inverse of the Fisher Information Matrix (refer to generalised
linear modelling theory in Turner (1995)).

For the one variable models, the confidence intervals can be plotted, along with the
fitted regression curve, on an accident versus traffic volume graph. For the two
variable models the confidence intervals are areas, rather than a single line. The
confidence areas can be plotted on a 3-D graph.

Interpretation

The confidence intervals/areas show, for each approach of every intersection type, the
range of the ‘underlying true accident rates’ that would be expected 95% of the time.
When compared with the raw accident observations, the confidence intervals don’t
appear to contain 95% of the data points, especially when the number of zero
observations are considered. It must be remembered that while the accident count at a
site might be zero the ‘underlying true accident rate’ is not zero, as there is always
some risk if there is traffic travelling through the intersection, that an accident might
occur. A better appreciation of the value of the ‘underlying true accident rates’ and
their relationship to the confidence interval can be seen when the data are grouped
into different flow bands and plotted on the confidence interval graphs. For
convenience we have used the grouped data derived using the goodness-of-fit testing,
and plotted it on the confidence interval graphs.

The confidence intervals are wider at high traffic volumes (and sometimes low traffic
volumes as well). The variable width of these bands confirm what has previously been
speculated: that accident predictions from the models are not particularly accurate at
high or low traffic volumes, and that the most accurate estimates are at mid-range
traffic flows, as the majority of intersection have flows in the mid-range. Users of the
models should be aware of the ranges over which the model predictions are most
accurate.
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6 Proposed Changes to PEM Accident Analysis
Procedures

A proposed update to sections A6.4 of the Transfund PEM has been prepared, and
included in Appendix C. Most of the existing models and rates, except those for
curves, have been removed and replaced with new accident prediction models. While
the size of this section of the manual will need to be increased significantly, this is
thought to be worthwhile, because of the greater precision of the generalised linear
models and the additional information, in particular accidents by types, which can be
calculated. The UK and many of the European countries have switched to generalised
models, based on the conflicting flows for accident prediction, because of this greater
precision.

Intersection prediction models are to be included in the PEM for both individual
accident types (conflicting flow models) and total accidents (product of route flow
models). While our preference is for the first type of model, it is acknowledged that in
the absence of turning volumes, the second type of model should be available.

The parameters for these new models are based on accident data from the period 1995

to 1999. To produce annual prediction models from the models presented in Section
5, we have divided the coefficient (or bo) by five.
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7 Empirical Bayesian Method

The field of statistics can be divided into two streams, ‘conventional’ methods and
‘Bayesian’ methods. Bayesian, like conventional methods, assume that any parameter
in a problem (such as the true accident rate at a blackspot in our case) can be
regarded as the value of a random variable having a probability distribution. The
difference in the two methods being that in Bayesian statistics the probability of the
parameter(s) is normally estimated before any data becomes available, with this being
known as the prior distribution of the parameter. When data becomes available the
Bayes theorem is used to convert the prior distribution of the parameter into a
posterior distribution. If further data becomes available, this posterior distribution
becomes the prior and a new posterior distribution is produced. Generally the effect of
the prior distribution diminishes quickly as it is updated with more and more
observation data.

Most applications of Bayesian methods are considered controversial because the prior
distribution is based on an investigator’s personal beliefs (or judgement) about the

possible values of the parameter, with preferred values having a higher degree of
belief,

The empirical Bayes method is a ‘hybrid’ approach that uses elements of both the
conventional and Bayesian methods. It is not considered controversial, and in a sense
is not a true Bayesian method, as it does not rely completely on a subjective
evaluation of the prior distribution.

In accident prediction modelling (where accidents have a Negative Binomial
distribution) the prior distribution is generated using data from a number of typical
sites, the conventional accident prediction models (or base models). The prior is then
converted to the posterior distribution using Bayes theorem and accident data from a
particular site. In this way factors that are not captured in the prediction models can
be factored into the accident predictions for particular sites. This method allows both
sources of information, typical accident rates for the population of sites and the local
accident history, to be utilised in generating accident predictions.

The empirical Bayes method detailed in this section is reliant on a number of
assumptions, which include:
e That the annual accident counts at a particular site are Poisson distributed
about a constant true accident rate (m) over the accident period.
* That the accident count in each year of the accident period is independent.
¢  That the true accident rate ‘m’ varies from site to site.
¢ The prior distribution of ‘m’ is described by a gamma probability density
function f,(m).

The combined accident estimate (Z) is given by the following equation:
Z=aE(m)+(1-a) X Equation 7.1
where, a = (1 + Var(m) / E(m))"
E(m) is the accident prediction produced from the base model and ‘X’ is the accident
count from historical accident records. ‘a’ is the weighting placed on the base model
and accident history.
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Now E (m) =y, the accident prediction from the base model
and Var (m) = y*/k, where k is the shape parameter of the gamma distribution

Substituting in the values of E(m) & Var(m) Equation 7.1 becomes:
Z=y* (1+yk)y +X* (1~ (1 +y/k)™) Equation 7.2

When the accident prediction period (i-years) differs from the accident history period
(j-years), Equation 7.3 should be used.
Z=y*GA)* (1 +GA) yky'' +X* (1 -1+ (G yky") Equation7.3

Example 1 (theoretical)

Proposed changes at the intersection of Colombo Street and Brougham Street (in
Christchurch) are expected to change the right turning intersection volumes. The
expected flow changes have been predicted using a traffic network model, as
indicated in Table 7.1.

Table 7.1 — Right Turn Volumes Before and After Network Change (24hr)

North 747 4784 300 4784
East 577 14759 400 14759
South 830 4075 600 4075
West 2440 13971 700 13971

What is the expected change in the right-turn-against accident rate at this intersection?
The accident history shows that there have been five right-turn against accidents
observed during the last five years (1995 to 1999), with 2 on the east and west
approaches and one on the north approach.

Table 7.2 (next page) shows the predicted accident rate both before and after the
traffic flow change with and without the inclusion of accident history data. The base
predictions were generated using the model in Table 5.1.

The results in Table 7.2 show that there can be an appreciable difference in the
accident predictions calculated using the accident history, compared with those
calculated only using the accident prediction models. For the example site the use of
the latter method would have resulted in underestimating the benefits resulting from a
reduction in the right turning movements.

For additional information on this application of the empirical Bayes method we

would refer the reader to Abbess, Jarrett & Wright (1981), Mountain & Fawaz (1989
& 1991) and Lau & May (1989).
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Table 7.2 Accident Predictions Before and After Network Changes (in 5 years)

North 1 0.40 0.33 0.51 0.42
East 2 0.56 0.47 0.89 0.74
South 0 0.40 0.34 0.33 0.28
West 2 1.11 0.60 1.44 0.75
Total 5 2.47 3.16 1.74 222
Difference 0.73 0.94

* In the absence of ‘after” accident data, this rate has been calculated based on the percentage difference for the ‘before’ period

between predictions with and without accident history. Further research is required to establish whether this is an appropriate
method,
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Appendix A

Intersection and Link Locations

CROSSROADS

INTERSECTIONS

City No.
Christchurch 44
Auckland City 17
Wellington 8
Bunedin 8
Lower Hutt 3
Hamilton 11
North Shore City 2
Waitakere City 1
Other 9
Palmerston North 8
TOTAL 109

T-JUNCTIONS

City No. City No.
Christchurch 32 Christchurch 29
Auckland City 3 Auckland City 10
Lower Hutt 5 Wellington 5
North Shore City 2 Dunedin 9
Waitakere City 2 Lower Hutt 9
Other 1 Hamilton 2
Palmerston Notth 10 Nerth Shore Ci 1
TOTAL 55 Other 10
Palmerston No 1
TOTAL 76

y

y

y

Chiristchurch
Auckland City
Wellington
Palmerston North
TOTAL

Christchureh
Auckland City
Wellington
Dunedin

Lower Hutt
Hamilton

North Shore City
Waitakere City
Other
Palmerston North
TOTAL

50

fee) wl=zh
BrovevoanogBF

Christchurch 22
Aucldand City 8

Wellington 4
Lower Hutt 14
Waitakere City 3
TOTAL 51

Christchurch 20

Wellington 2
Wanganui 8
Tauranga 20
TOTAL 50




LINKS

Local Body No. Local Body No. Local Body No.
ASHBURTON 3 ASHBURTON 4 CENTRAL HAWKES BAY 3
AUCKLAND 23 BLENHEIM 4 CENTRAL OTAGO 10
CHRISTCHURCH 17 CENTRAL HAWKES BAY| 2 CHRISTCHURCH 1
DUNEDIN 3 CHRISTCHURCH 8 CLUTHA 3
GISBORNE 2 DUNEDIN 2 DUNEDIN 7
GORE 4 GISBORNE 5 GISBORNE 8
HAMILTON 10 HASTINGS H GORE 2
HASTINGS 5 HAURAKI WAIHI 2 HAMILTON 5
HAURAKI WAIHI 1 HORCWHENUA 6 HASTINGS 6
HAURAKIPAEROA 2 LOWER HUTT 8 HAURAKIPAEROA 1
HORCWHENUA 1 MASTERTON 9 HOROWHENUA 5
INVERCARGILL 10 NAPIER 5 INVERCARGILL 5
MANUKAU 11 NELSON 3 MACKENZIE 1
MASTERTON 2 NEW PLYMOUTH 3 MANAWATU 10
NAPIER 5 PALMERSTON N 24 MANUKAU 5
NEW PLYMOUTH 3 PAPAKURA 4 NEW PLYMOUTH 8
NTH S8HORE 9 RODNEY 2 PALMERSTON N 3
PAPAKURA 3 S.WAIKATO PUT 2 QUEENSTOWN LAKES 10
PORIRUA 1 S.WAIKATO TKR 8 RANGITIKEI 3
RODNEY 2 TIMARU 3 SOUTHLAND 1
ROTORUA 4 UPPER HUTT 13 TAURANGA 2
TAUPO 6 WAIPA TEAWAMU 3 WAITAKI 1
TAURANGA 5 WANGANUI 8 TOTAL 100
WAIPA CMBGE 4 WELLINGTON 3

WAIPA TEAWAMU 2 WHAKATANE 6 DFWAY!
WAITAKERE 11 TOTAL 148 Local Body No.
WANGANUI 2 AUCKLAND 25
WELLINGTON 3 FRANKLIN 6
WHAKATANE 3 ocal Body MANUKAU 18
WHANGAREI 8 HASTINGS NORTH SHORE

TOTAL 165 HASTINGS URBAN OTAHUHU

6

2

HAV. NTH RURAL 1 PAPAKURA 4
HAV. NTH URBAN 8 WAIKATO 3
MANUKAU 52 WAITAKERE 4
TOTAL 119 WELLINGTON 8
TOTAL 76
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1. Have yon, or one of your colleagues, or your network consultants used the Transfund Project

Appendix B

Local Authorities Questionnaire and Responses

DEVELOPMENT OF NEW ACCIDENT RATES FOR THE
TRANSFUND PROJECT EVALUATION MANUAL.:

QUESTIONNAIRE 1

Evaluation Manual (PEM) for a Safety Improvement Project.

2. Please indicate which type of improvement projects have been assessed using the Transfund

(a)

(b)

©

3.

IFNOGOTO3

PEM

Route Improvements

Intersection Improvements

Other

Motorway
Urban Arterial

Urban Collector

Urban Local Road
Rural Highway (State or Local)

Rural Local Road

Other

(Please Specity)

Motorway Interchange

Signal
Roundabout
Urban Priority

Rural Priority

Rural Priority/Uncontrolled

Other

(Please Specity)

Yes

]

OO0dbodbod bDboooobd

Do You have electronic or manual motor vehicle, cyclist or pedestrian counts for urban or rural  Yes

routes.
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4. Do you have electronic or manual motor vehicle, cyclist or pedestrian turning volume counts for  Yes No
intersections (for at least the morning and evening peak hours) D D

IFNOTO3&4GOTO7

5. Are you willing to provide electronic/manual count data for this research project (we can  Yes No
provice assistance if necessary) D

I¥ YES please indicate the approximate number of sites for which count data (route counts or turning volume
counts) can be provided. A site should have remained unmodified during a six year period in the 1990’s. Please
indicate whether data is from electronic or mannal sources, and in what format,

Site Classification Number Type* & Format
(a) Routes - Motorway

- Urban Arterial

- Urban Collector

- Urban Local Road

Rural Highway (State or Local)

Rural Local Road

Other (please specify)

Number Type & Format

(b) Intersections Motorway Interchange

- Traffic Signals

- Roundabout

« Urban Pricrity (Stop or Giveway)

- Urban Un-controlled

- Rural Priority (Not State Highway)

- Rural  Un-controlled (Not  State
Highway)

- Rural (State Highway)

- Others (please specify)

Number  Type & Format

(c) Others - Railway Crossing
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- Narrow Bridge (one way or two way)

If this table is too small for your comments, please provide them on an appended sheet. Examples of the count data

formats would also be appreciated.
* Type is motor vehicle, cyclist or pedestrian.

6. Can you provide the following information for each site.

Site Information
(a) Routes Road side development (predominate type)

Road cross-section (e.g. median types and lane widths)
{b) Intersections Intersection layout (layout plan or sketch)

Approach Grades (0%, (-3%, 3-6% & 6% plus)
Signal phasing and controiled legs (stop or give-way)
Lane and median widths
(c) Railway Crossing Number of tracks
Control type (stop or barrier arms)
Safety equipment (signs, etc)
(d) Bridges Approach & bridge seal widths
Length
Abutment & rail protection measures (sketch plan)
7. Please provide contact details below:
Name:
Position:
Phone:
Fax:
Email:
Thank you for your co-operation. Please return in prepaid envelope by:

TUESDAY 12 OCTOBER.
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Appendix C
Proposed PEM Procedures

A6.4 Accident Rates
A6.4.1 Introduction

Change second bullet point to:
m typical injury accident rates and prediction models (A6.4.3 to A6.4.8)

A6.4.2 General Accident Trends
No changes required.

A6.4.3 Typical Injury Accident Rates
Changes suggested below

The typical rates and prediction models of reported injury accidents in Sections
A6.4.4 to A6.4.8 are the result of studies carried out for TNZ, Transfund NZ and
LTSA. (remove next sentence, as no longer relevant). While there is a wide spread
of results between different geographic areas, rates are currently not available for
each region (this is the subject of on-going research). Consequently the injury
accident rates presented apply nationwide.

When undertaking accident rate studies non-injury accidents shall not be included due
to the inconsistency in non-injury reporting rates from district to district.

Replace sections A6.4.4 to A6.4.7 with following.

A6.4.4 Urban Intersections, 50 km/h and 70 km/h Speed Limit Areas

For urban intersections the typical reported injury accident rates (per year) are
determined from a series of prediction equations. Where turning movement counts
are available, the accident rate should be predicted by accident type and approach
using the prediction models and parameters in Tables A6.1 to A6.12. The total
accident rate can be predicted by summing the predictions by accident type and
approach. If only approach flows are available, then the total accident rate can be
predicted using parameters in Table A6.13 (see Section A6.4.4.7).

A6.4.4.1 Signalised Cross-roads
The accident rates at signalised cross-roads are predicted by accident type and

approach using the equations in Table A6.1 and the parameters in Table A6.2. Figure
A6.2 illustrates the different conflicting and approach flows at crossroads.
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11Kaikoura District Council

S)Hamilton City Gouncil

5) Papakura District Council

[TWaitaki District Gauncil

11}Selwyn District Council

12)Grey District Coungil

14)0pus (Auckland)

18)Clutha District Council

19)Gisbome District Council

[20)Lower Hutt Cily Council

21)Tauranga District Council

[24)Manukau Consultants

[27)Nelson City Council

1) {Used Transfund PEM? (Y=1/N=0)

2a}{Route Improvements

Motorway

-~ E)Manukau City Coungil

< B)Queenstown-Lakes District Council

-+ Ki)Tasman District Council

o [BiWestland District Council

~ [90pus {Hamilton}

— li0)Whangaret District Council

—J13}Hastings District Council

—|15)Transit NZ (Hamilten)

-+ §18) Invercargill City Council

-+[§7)Land Transport Safety Authority (HCY)

-+ 22)Banks Peninsula District Council

—E23)Waimakariri District Council

— 5 Timaru District Council

o P8)Opus (Lower Hutt)

—B8)Ashburlen District Council

Urban Arterial

Urban Collector

Urban Local Read

Rural Highway

Rural Local Road

[ S JEEN 'Y P Y

Qther

2b)| Intersection improvemenis

Motorway Interchange

PR P JErY g 'y Dy gt

=] ||l

PRI 7% LY Y i g Y

Signal

Roundabout

Urban Priority

Rural Priority

P Jiry g vy B}

PR 5 Jury pury ot

PRS Y [rY prY PG DY

Rural Prority/Unconirolled

R eI

Other

PR [ PR R Py PG O

2c)iOther

3} _jRoute Counts (Y=1/N=0)

4} [Intersection Counts {Y=1/N=0)

5} |Provide data? {¥=1/N=0}

5a)| Boutes

Motorway

Urban Arterial

148

Urban Collector

200

Urban Local Road

200

Rural Highway (State or Local)

Rural Local Read

Cther

[4:3
o

|5b) intersections
Motorway Interchange

ESTESI SR B BT TR

ESTEE) BRI EGY BL) BT B

Traffic Signais

Roundabout

Urban Priorily {Stop or Giveway)

Urban Un-contrelied

Ruraf Priority (Not SH)

Hural Un-controlled (Not SH)

Rural (State Highway)

Other

5¢} Others

Rafiway Crossing

BRI EN] BE E] 0] BRA BEY BRT S

FR] B Y B BT P Y Y o)

Narrow Bridge (one or two way)

B8a){Routes

Road side development

Road cross section

6b)}intersections

Intersection layout Some - All No Most Most Some Some Most - - Some Some - All
Approach Grades Some - All No Most Most Some Most Some - - No All - All
Signal phasing and controlled fegs No - - No Most Ali All Some All - - No All - Al
Lane and median widths Some - All No Most Most All All All - - Some Some - All
6c)|Railway Crossing
Number of tracks All - - - - Al Al - Most - - Same Most - -
Control type All - - - - All All - Al - - All All - -
Safety equipment All - - - - All All - Most - - Mast All - -
6d}|Bridges
Approach and bridge seal widths Most - - - - All All All Seme - - All Most - -
Length All - - - - All All All Most - - All Most - -
Abtutment and rail protection No - - - - Some tost Most Most - - Some Some - -
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Table A6.1 Signalised Cross-road Accident Prediction Equations

Crossing (No Turns) HA A =bo*q *ay
Right Turn Against LB A =bo*qy  *g
Rear-end FA to FE A =b*Q.”
Loss-of —control C&D A =b*Q"
Others A =by*Q."

Crossing (No | HA 2.00E” 0.34 0.37
Right Turn Against | LB 9.70E° 0.49 0.41
Rear-end FA to FD 1.70E° 1.07 -
Loss-of —control Cé&D 3.12E° 0.94 -
Others 1.22E7 0.46 -
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A06.4.4.2 Roundabouts

The accident rates at 4-arm roundabouts are predicted by accident type and approach
using the equations in Table A6.3, and the parameters in Table A6.4, The circulating

flow (Q.) 1s the traffic that the entering flow (Q.) at each roundabout approach must
give-way to.

Table A6.3 Roundabout Accident Prediction Equations

Entering vs Circulating HA, LB, JA | A=bg*Q. *Q. >
Rear-end FA to FD A =b*Q.™
Loss-of —control C&D A =be*Q,!
Others A =bg*Q."

Table A6.4 Roundabouts — Prediction Model Parameters

Entering vs HA, LB, JA, | 8.92E” 0.42 0.45
Circulating MB, KA &

KB
Rear-end FA to FD 5.76E" 1.19 -
Loss-of -control C&D 3.02E* 0.55 -
Others 2.28E° 0.26 -

A6.4.4.3 Priority Cross-roads (Give-way and Stop Control)

The accident rates at priority cross-roads are predicted by accident type and approach
using the equations in Table A6.5 and the parameters in Table A6.6. At priority
cross-roads the straight through flows are differentiated into those with priority (qp)
and those which have to give-way (q gw), or stop. For the crossing (no turns)
accidents both the q; and qy; flows are used as predictors, but their order in the
equation depends on their priority.
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Table A6.5 Priority Cross-road Accident Prediction Equations

Crossing (No Turns)

Right Turn Against

Crossing (Vehicle Turning) | JA
Loss-of —control C&D A = b*Q.!
Others A = by*Q"

Crossing (No Turns) ; )

Right Turn Against LB 7.50E™* 0.05 0.53
Crossing (Vehicle Turning) | JA 1.08E” 1.13 0.44
Loss-of —control C&D 1.04E" 0.30 -
Others 3.74E* 0.57 -

A6.4.4.4 Signalised T-junctions

The accident rates at signalised T-junctions are predicted by accident type and
approach using the equations in Table A6.7 and the parameters in Table A6.8. Figure
A6.3 illustrates the different conflicting and approach flows at T-junctions.

Table A6.7 Signalised T-junction Accident Prediction Equations

Right Tllfn Agamst”

-

Rear-end FA to FD
Crossing (Vehicles Turning) | JA
Loss-of —control C&D

Others
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Figure A6.3 - Conflicting and Approach Flow Types (T-junction)

‘Table A6.8 Signalised T-junctions — Prediction Model Parameters

Right Turn Against LB 0.117 -0.43 0.60
Rear-end FA to FD 7.66E° 1.45 -
Crossing (Vehicles Turning) | JA 3.22E° -0.34 0.51
Loss-of —control C&D 1.87E°3 0.17 -
Others 1.69E™ 0.15 -

A6.4.4.5 Priority T-junctions

The accident rates at priority T-junctions are predicted by accident type and approach
using the equations in Table A6.9 and the parameters in Table A6.10.

‘Table A6.9 Priority T-junction Accident Prediction Equations

Right Turn Against LB A =bo*gs" *qs
Rear-end FA to FD A =be*Q."
Crossing (Vehicles Turning) | JA A =bo*gs" *q,™
Loss-of —control C&D A =be*Q."
Others A =b*Q.”
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Table A6.10 - Priority T-junctions Prediction Model Parameters

N

Right Turn Against LB

Rear-end FA to FD 2.90E” 1.18 -
Crossing (Vehicles Turning) | JA 7 20E° 0.93 0.22
Loss-of —control C&D 1.64E° 0.30 -
Others 4 98E™ 0.51 -

A6.4.4.6 Uncontrolled T-junctions

The accident rates at uncontrolled T-junctions (that is T-junctions that have no give-
way, stop or signalised controls) are predicted by accident type and approach using
the equations in Table A6.11 and the parameters in Table A6.12. At uncontrolled T-
junctions some accident types depend on the volume of three turning movements.
This is thought to be due to the confusion caused by the lefi-turn give-way rule.

Table A6.11 Uncontrolled T-junction Accident Prediction Equations

_Right Turn Aéﬁinst

LB A =be*qs *qs”
Rear-end FA to FD A=b*Q.>"
Crossing (Vehicles Turning) | JA A =bo*qs *q,
Loss-of —control C&D A =be*Q.>"
Others A =Dbe*Q."

Table A6.12 - Uncontrolled T-junctions Prediction Model Parameters

Right Turn Against LB 2.98E* 031 0.42
Rear-end FA to FD 1.74E° 1.50 |-
Crossing (Vehicles Turning) | JA 724E° 022 [0.81
Loss-of —control C&D 5.02E* 031 -
Others 1.25E7 0.41 -

A6.4.4.7 Product-of-Link-Flow Models

The models in this section predict the accident rate at an intersection from the link
(two-way) flows on each of the intersecting roads. These models should only be used
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when turning movement counts are not available, or can not be predicted using
transport models.

These models should not be used when the volume of traffic on opposite arms of an
intersection differs by more than 25% of the higher flow. If the majority of traffic on a
link turns left or right at a cross-roads intersection, so that the opposing arm has a lot
less traffic, then this type of model is inappropriate. Where volumes on both
approaches of a link are available then the two approach flows should be summed to
calculate the link volume.

The total reported accident rate for each intersection types is determined using the
equation:

- bl b2
AT - bO*Qminor *Qmajor

where Quine: is the lowest of the two-way link volumes for cross-roads, and the stem
flow for T-junctions.

Table A6.13 Product-of-Link-Flow Models

4.08E° 0.45

4 —arm Roundabout 3.62E* 0.48 0.37
Priority Cross-roads 1.42E° 0.51 0.21
Signalised T-junctions 0.156 0.13 0.04
Priority T-junction 7.40E” 0.19 0.75
Uncontrolled T-junction 2.88E" 0.19 0.36

A6.4.5 Urban Mid-block Sections, 50 km/h and 70 km/h Speed Limit
Areas

For urban arterial, collector and local mid-block accidents, average injury accident
rates can be associated with speed limit and, roadside development. The accident
types predicted for urban mid-blocks sections, and the model types, are given in Table
A6.14. The flow variable used in all models is the two-way traffic volume per day

(Qr).

Table A6.14 Urban Mid-block Accident Prediction Equations

.":Rear-end (b.éth stra1ght) .'

FA to FF_

Rear-end (one turning right) | GC to GE
Loss-of—control C&D
Manoeuvring & Hit Object M&E

Other
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The accident prediction parameters for the major accident types are given for arterials,
collectors and local streets in Tables A6.15 to A6.17.

‘Table A6.15 — Urban Axrterials, 50 and 60 kph Areas

Rear-end (both straight) 1L.39E7  ]1.59 1.21E7 159
Rear-end (one turning right) 6.42E*  10.64 4.50E* 1 0.64
Loss-of-control 8.14E° 0.90 1.18E* |0.90
Manoeuvring & Hit Object S.84E° 1045 426E° 045
Other 2.14E° 1134 1.74E° | 134

Table A6.16 — Urban Collectors, S0 kph Areas (no median)

484E° | 1.96
2.72E* 0.70

Rear-end (both straight) 8.64E“'§
Rear-end  (one turning | 3.56E™*

Loss-of—control 1.79E* 2.90F™ 0.25
Manoeuvring & Hit Object | 1.24E™ 7 .64E” 0.98
Other 6.20E" 8.92E° 0.93

Table A6.17 — Urban Local Streets, 50 kph Areas (no median)

Rear-end (both straight) 2.92E° |1.13

Rear-end (one turning | 2.50E™* |0.90
right)
Loss-of—control 3.98E° |0.61

Manoeuvring & Hit Object | 5.46E” |1.12

Other 1.71E® | 1.33

A6.4.6 Rural Intersections, 80 km/h and 100 km/h Speed Limit Areas

The typical reported injury accident rates (per year) for rural intersections are
calculated by using the urban intersection prediction equations with ‘rural’ parameters
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(Table A6.18). Where turning movement counts are available, the accident rate
should be predicted by accident type and approach. The total accident rate can then
be predicted by summing the predictions by accident type and approach.

Where only approach flows are availabie, then the total accident rate can be predicted
using the parameters at the bottom of each table, and the ‘product-of-link-flow’

equation (Section 6.4.4.7).

Table A6.18 — Rural Priority & Uncontrolled T-junctions Prediction Model

Parameters
Right Turn Against LB 242E° 054 | 1.63
Crossing (Vehicles Turning) JA 3.96E° 1034 |0.93
Turning verses same direction | G 226E%  |0.58 -
Others 12587 034 |-
Total (Product-oftlink-flows) | All 2.46E* |0.53 0.42

A6.4.7 Rural Mid-block Sections, 80 km/h and 100 km/h Speed Limit

Areas

For rural highways (both Transit NZ and district) and local streets (all other 80 and
100 kph streets), the average injury accident rates can be associated with the terrain
type (flat, rolling and mountainous). The accident types predicted for rural mid-
blocks sections, and the model types, are given in Table A6.19. The flow variable
used in all models is the two-way traffic volume per day (Qr). In the head-on model it
is assumed that the traffic vehicle split by direction is 50:50 over 24-hours.

Table A6.19 Urban Mid-block Accident Prediction Equations

| Head-on T B

A = be*((Qu2))™
Overtaking A A = be*((Qv2)™
Rear-end (both straight) FA to FF A =be*Qr "
Rear-end (one turning right) | GC to GE A =bg*Qr ™
Loss-of-control C&D A=Dbe*Qr ™
Manoeuvring & Hit Object |M&E A=bg*Qr ™
Other A =be*Qr "

The accident prediction parameters for the major accident types are given for rural

highways, and motorways/expressways in Tables A6.20 and A6.21.
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Table A6.20 Rural Highway Accident Prediction Equations

Headon @ |191E*® | 033 . 033

Overtaking 1.03E* [ 0.65 3.16E7 | 0.65

Rear-end (both straight) 2.18E® | 1.72 1.98E° [ 1.72

Rear-end (one turning | 8.50E° | 0.78 1.25E° [0.78
right)
Loss-of-control 5.66E° |0.48 3.64E” |0.48

Manoeuvring & Hit Object | 8.00E™ | 0.52 2.14E* |0.52

Other 3.36E° | 0.84 2.44E° | 0.84

e

Aceident Tvpe
Rear-end
Loss-of——control
Overtaking .
Other 530E |0.41

A6.4.8 Curves in 100 km/h Speed Limit Areas
No changes required
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Appendix D
Crash Codings

| TYPE

A

C

E

F

D

— D0ap, e
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ND ; r GTHER
ULLING QUT OR CUTTING INQR | LOST CONTROY] LOST CONTRO
M CHAN NE HEAD DN HAN IN N (OVERTAKING WEAVING IN
LANE CHANGE: HANGING LA EAD O CHANGING LANG  {OVERTAE siEnoan | IOVERTAKEN ™| e
B | HEAD ON t E - GTHER
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CUTTING CORNER SWINGING WiDE  BOTHOR SRS R
LOST CONTROL
ok | wm | |
C OFF ROAD OUT OF CONTRO] OFF ROADWAY OTHER
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RIGHT TURN
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AGAINST STOPPED
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L Y -
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[
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Appendix E
Development of Confidence Interval Equations

AIM: To develop an expression for the 95% confidence interval for the business
hours mean accident rate, for a given vehicle flow rate, using Generalised
Linear Models (GLMs).

EXAMPLE: The accompanying graphic shows the pattern of type one (rear end)
injury accidents against vehicle flow rate for business hours (Hauer et
al. 1989). The fitted curve is:

y=12311x 107 x""(=b,x*")

where y is the average number of accidents from 1989 to 1991 and x is the vehicle
flow rate.

Assume that x = 5000 and y = 0.266. The aim is then to find a 95% confidence
interval for the true mean value, 3, %™, which this figure estimates.

y -----------------------
A '''''''''''''
0266 [T TTTTTTTTTTTOLA ""\
__,..«*’f L Need an interval which
/,-f’ | contains the true value
Crash j.-"" 95% of the time
Rate ) rd
."““.‘.
‘_,.-"
-"."-
if'
r
.’; ]
) 1
5 |
4 H X
' |
5,000 Flow rate (vpd)

SOLUTION USING SIMPLE LINEAR REGRESSION:

There are four steps:

1. The business hours mean at x, 3,' + J; x, need to be found ( 3, is used here to be
consistent with later notation).
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true line 8, + §x

Crash

rate
fitted line b,"+b,x

>X

Flow rate

2. We estimate 3," +3; x using b, + byx, which is found by using least squares
(equivalent to maximum likelihood).

3 by N B Varb, Covbgb,
Lo, T LB | |CoVblb, Varb,
A multivariate (in fact bivariance) normal distribution, with the covariance matrix
known. The tmportant conclusions from this are:
e by’ + byx has a normal distribution
e E b’ +bx]=3,+3x, or by’ + byx is an unbiased estimator of %’ +3; x

o Var(by + bix) = Var by’ + 2x Cov by’ by + x* Var b;

So that the distribution of by'+ by x is normal, as shown:

Distribution of vy, +b; x

standard deviation is [Var(b's+ by X)JP

s N

[
ol

Centred on 5+ |x

4, Thus:

P[ﬁ’“ +ﬁ1X—1.96"/Va}’(b'0 —i—blx)s bo+bx<pfo +1-96\jVa"Ib'0 +b1x)}

=095
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from which, in the usual way, we have:

(b, +b,x) £1.964f Var(b}, +b,x)

as a 95% confidence interval for %' +3 x (for N, the simple size, being
sufficiently large).

5. It turns out that:

Var(b/, +b,x) ~ S l+,.ﬁ£f._—i
Z (xs - x)2
=l
and the construction of the confidence interval can be completed.

The important thing here is the sequence of:

parameter — estimator — distribution of estimator — confidence interval
F' +5 x b+ by x (normal) for the estimator

We now follow the same pattern to find a confidence interval for the true mean in the
Hauer GLMs. For the single flow model.

y=Fx"
as used in the pattern one example. That the distribution for a given flow rate is
negative binomial will be accommodated enroute!

CONFIDENCE INTERVALS FOR TRUE MEANS IN GLM CONTEXT

1. A confidence interval for y = J,x” is needed.

2. We use the method of scoring to find maximum likelihood estimates of 3 and
4, called by and b, (this using the MINITAB macros in Turner (1995)). So by

x*! is our estimator of Jpx7.

3. The next step is the important part. When we maximise the likelihood in our
macros, we deal with the model in the form:

log y=logb, +b, logx

, (hence the earlier notation)
=by +b, logx

and estimate b’y and b;. Standard maximum likelihood theory (see for example
Dobson 1990), states:
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,~ asympt. ,
NI
b, A,

or the covariance matrix is the inverse of the Fisher information matrix:

9L 0°L

- 88" 8B, op,
o°L 8L

0B, OB 8B

where L is the log - likelihood.

In summary:
(i) Linear combinations of normal random variables are normal, so since b’y and b,
are normal,

log y = b+ bilog x

is normal, or y itself (our interest being in y) is “log-normal”, i.e. its logarithm has a
normal distribution. Log-normal distributions look like:

0

which is good, since we’d expect this sort of distribution for b, x*' (go back to the
pattern one accidents for x = 5,000).

(i) We need to find the covariance matrix 1", Fortunately this is approximated by
(X'WX)' (see p.65 of Turner (1995)), which is aiready computed in

the MINITAB macros used in this research, (for example as m9 in
TRIAL MTB).

Returning to the main discussion:

4. A 95% confidence interval for %' +7; log x is thus:

(bg +b, logx)+1 .96\/Var(ﬂoa + 43, log x), where
Var(b;, +b, 10gx) = Var b}, + 2 logeCov b/, b, +(logx)’ Var b,
= (X'WXJ;) +2logr(X'WX),, +(log x)" (XWX,

78



where

— z[(xwx):: (xwx);;}

(xXwx), (XWX),

A caution - we have made two assumptions:
NS . -
(1) b is only asymptotically bivariate normal.
1

Gy xwxy'=1!
So a larger sample size will help in each case.
5. Finally, we need a 95% confidence interval for y, not log y, so if we exponentiate

the confidence bounds found so far, we will be finished, i.e. 2 95% confidence
interval for FxF is:

exp{b, +b, logx +1.96./Var(b), +blxi}

COMPUTATIONAL SUMMARY (for the Jx™ model)
1. Find b's (= log by )} , by and (X'WX)™, from the macro.

2. Then an approximate (improving with sample size) 95% confidence interval for
x™ is such that:

Lower Limit =
exp{b) +b,x—1.96y(XWX);! +2log x(X’ WX} +(logr}(X'WX)7.}

Upper Limit =
exp{b}, +b,x +1.96y (XWX + 2loge(X'WX).! + (loge)* (X'WX);. )

A WORKED EXAMPLE

For the pattern one, business hours example described at the start, TRIAL MTB
yields:

by, =-11.035,b, =1.2311x107 ,b, =1.17176 and
3.54747 -0.42210]

(WX {
-0.42210  0.05047

For x = 5,000 , bex™ = 1.2311 x 10”° x 500070 ~ 0.266 , while
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exp{1.964/8.54747 + 2(10g5000)x ~0.42210 + (log 5000’ x 0.05047}
= 1.3052. Then

1

exp{-1.96J8.54747+ 2(log5000)x —0.42210 + (log 5000)’ x 0.05047} } = )

=0.7662

So the 95% confidence interval is:

[0.7662 x 0.266 , 1.3052 x 0.266]
or [0.204 , 0.347] injury accidents in the 1989 to 1991 period.

FINAL COMMENTS

(i) It was anticipated that the confidence interval width would increase as flow rates
increase. This automatically will happen thanks to the “quadratic in logx” form
of Var(b’y + byx).

(ii) The validity of the interval improves as sample size increases.

(i} The analysis for two-flow models will follow similarly, e.g. for by x,""x,™ use:

Var (b}, +b, logx, +b, logx,)= Varbj +(log x, ) Var b, + (logx, )’ Var b,
+2[(logx, )Cov b}, b, +(logx,)Covb) b, +(logx, Nlogx, }Cov b,b, ]

and pick these variances and covariances off the (X'WX)" matrix.
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